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1. Introduction. 
For investigation of slow isothermal viscous gas (liquid) flows around rigid bodies 

widely used the Navier--Stokes system in Stokes approximation. Well-known analytical solution 
of this system is constructed for the problem on the flow round a ball with no-slip boundary con-
ditions. Using this solution the external force applied to ball was calculated [1]. 

Deviations from Stokes law were observed for slow air flows near small oil drops with 
size order of mean free path of the molecules. American physicist R. Millikan experimentally 
established the effect of diminishing the force of resistance, when Knudsen number Kn tends to 
unity. He also proposed more exact empirical expression for this force [2]. In Knudsen number 
range [0.01, 0.1] the experimental data may be adequately described by classical Stokes system, 
if refuse from no-slip conditions on the drop surface and use Maxwell slip conditions. If 

(0.1, 0.5]Kn∈ , then necessity in construction of alternative mathematical models is arising. 
The hierarchy of new mathematical models, based on the so called system of Quasi-

Hydrodynamic (QHD) equations, was considered in the monographs [3], [4]. The essential dif-
ference from Navier-Stokes theory consisted in using the procedure of spatial-temporal averag-
ing for determination of main macroscopic values -- density, velocity and temperature. 

In the report new analytical solution of QHD system in Stokes approximation for the 
problem on the external flow round a ball with slip boundary conditions will be constructed. 
More exact expression for force of resistance and some results of numerical calculations will be 
presented. 

 
2. Statement of the problem.  

Stokes approximation of stationary QHD system in spherical coordinates  (r, φ, θ) with-
out influence of external forces has a form 

( ) ( )2 2
2 2 2

1 1 1 1sin sin
sin sinr

p pr u u r
r r r r r r rθθ τ θ

θ θ θ θ θ
∂ ∂ ∂ ∂ ∂ ∂    + = +    ∂ ∂ ∂ ∂ ∂ ∂    

, (1) 

( ) ( )2
2

1 12 sin
sinrr r

p r
r r r r r

θθ ϕϕ
θ

σ σ
ν σ θσ

θ θ
+ ∂ ∂ ∂

= + − ∂ ∂ ∂ 
, (2) 

( ) ( )2
2

cot1 1 12 sin
sin

r
r

p r
r r r r r

θ ϕϕ
θ θθ

σ σ θ
ν σ θσ

θ θ θ
− ∂ ∂ ∂

= + + ∂ ∂ ∂ 
, (3) 

In (1)-(3) the component of velocity uφ is equal to zero. Other macroscopic parameters 
are not depending on φ. Connection of spherical coordinates (r, φ, θ) with Cartesian ones (x,y,z) 
is given by relations x=rcosφsinθ, y=rsinφsinθ, z=rcosθ. Components of velocity strain tensor σ̂  
are calculated by the formulas   
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Small relaxation parameter τ is determined with the help of expression  
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in which /ν η ρ=  is the coefficient of kinematical viscosity, η is the coefficient of dynamical 
viscosity, ρ is the density, *sc R Tγ=  is the sonic velocity, T is the temperature, R* is the gas 
constant, γ is the specific heat ratio, Sc is the Schmidt number. In particular, for air we have 
γ=1.4, Sc=0.74. 

System (1)-(3) is closed under unknown functions - the components of velocity vector 
ur=ur(r,θ), uθ=uθ(r,θ) and the pressure p=p(r,θ), divided to constant density ρ. If 0τ → , then it is 
transform to classical Stokes system. 

The problem of the external uniform flow round a ball of radius R with the center in ori-
gin of coordinates, directing along oz axis and having under r → +∞  velocity U∞  and pressure 
p∞ , consist in finding the functions ur, uθ and p, satisfying in the domain 

( ){ }, : , 0G r R rθ θ π= < < +∞ < <  the equations (1)-(3), and the conditions 
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Here ξ is the part of the molecules, reflected by diffusive way, which is approximately equal to 
unity. For placed in the air oil drop we may put ξ =0.9. Mean free path of the molecules λ is cal-
culated according to well-known [2] D.Chapman formula 
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First equality (5) is the Maxwell slip condition for tangential component of the velocity vector 
near drop surface.  

 
3. Self--similar solution. 

The solution of posed problem will be finding in the form  
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Substitution (7) in (1)-(3) gives  
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It is necessary to supplement the system with the conditions 
( ) ( )1 0, 1A A= +∞ = ; (11) 
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Here the Reynolds number is determined with the help of expression ( )Re /U R ν∞= . By 
symbol x the ratio r/R is designated. Connection of positive constants δ and ς with Knudsen 
number Kn=λ/R is given by relations 2 / 2 /R Kn Scδ τν π= = , ς=α Kn, where α=(2-ξ)/ξ. 

The problem of finding the solution of the system (8)-(10) on the interval (1,+∞), satisfy-
ing the conditions (11)-(13), may be reduced to the problem of integrating the modified Bessel 
equation. The final result is representing as 
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Turning in (14)-(18) to limit under 0δ → , 0ζ →  and substituting the functions A(x), B(x), C(x) 
to (7), we obtain the classical Stokes solution [1]. 

 
4. Force of resistance. 

Using constructed solution, for Kn ≤ 0.5 and small Re numbers the external force applied 
to spherical oil drop and directed along oz axis may be calculated:  
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Formally turning in (19) parameter δ to zero, we obtain corresponding expression for 
force of resistance, which follows from Navier-Stokes theory when slip Maxwell effects on the 
drop surface are taking into account: 
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Passage to the limit in (20) under 0ζ →  leads to classical Stokes law. 
Experimental values of the force of resistance may be calculated [2] with the help of Mil-

likan formula 
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It is easy to verify, that for ξ=0.9, Sc=0.74 and ≤ 0.5 take place the inequalities 
( ) ( ) ( )slip slip

M QHD NSF Kn F Kn F Kn< < . 

Thus, function ( )slip
QHDF Kn  better than ( )slip

NSF Kn  describes the experimental data in indicated 
Knudsen number range. 
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