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Introduction 
Advanced computation and simulation in science and engineering constitute an important 

area in rapid growth. The background for this is the continuing development of efficient hard-
ware, and the need for more realistic simulations of mathematical models. Often, large scale 
simulations are performed with complex geometries using sophisticated numerical techniques. 
Due to the high amount of computational resources needed, these simulations are usually done 
using parallel computer architecturesr: on supercomputers or dedicated commodity clusters. 
However, the initial high costs of infrastructure and later maintenance and upgrade costs are lim-
iting the large scale availability of these environments. An alternative, cost effective approach is 
to use the computational resources of the existing desktop systems (very often powerful PCs) in 
a distributed computing environment. 

This paper presents some first experiences with running a typical Computational Fluid 
Dynamics problem in a distributed computing environment. The QADPZ software system for 
distributed computing is described, as is the numerical method for solving the incompressible 
Navier--Stokes equations, which is used in a test case for the system. Further, a description of the 
implementation of both the simulation software and QADPZ system are given. An evaluation of 
the performance of the system is presented, by comparing it with running the same simulation on 
a typical dedicated cluster environment. 

 
Distributed Computing 

In many cases the computing power and memory resources of a single desktop computer 
is not enough for running large scale numerical simulations of realistic problems in science and 
engineering. Both large running times of the simulations and insufficient disk/memory resources 
on a desktop are requiring a parallel approach. 

Distributed computing harnesses the idle processing cycles of available workstations in a 
local network and makes them available for participating in computationally intensive problems 
that would otherwise require a supercomputer or a dedicated cluster of computers. The idea is 
that most of the computers in offices and labs are not used at their full computing capacity most 
of the time. Such an environment consists of a pool of computational nodes, usually PCs with 
their own CPU, memory, and storage, and one or more central servers responsible for managing 
these resources. A given application would be split into smaller tasks, which can be independent 
from each other or not, and executed on the individual nodes. 

QADPZ [3] is an open-source system [2] for distributed computing on non-dedicated 
desktop computers. This is an ongoing research project in our group, which is investigating the 
possibilities of using existing computing resources in a local network (e.g. computers from labs 
and offices) for computationally intensive tasks. QADPZ is an multithreaded, object-oriented 
system, with support for multiple users and different operating systems. Supported platforms are 
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Linux, Windows, and most of the UNIX versions. The design of the system was made in such 
way to minimize the effort needed to install and use the software. Minimal knowledge about the 
system's internals is required in order to be able to use it. 

QADPZ consists mainly of three types of computers: slaves, masters, and clients. A slave 
represents one of the computing desktop PCs, running a small software, which is responsible for 
reporting its current status to the central master computer and also for starting the actual compu-
tational task sent by the master. Only slaves which are not used interactively by other users can 
execute tasks. One parallel application can consist of multiple tasks running on different slave 
computers (possibly using different operating systems), and which communicate to each other 
using message passing. The client is a computer from where a user interacts with the system, de-
scribing the applications to be executed in the system. 

 
Numerical Solution Method 

To solve the incompressible Navier--Stokes equations we use a version the well-known 
projection method, in which equations for the velocity components and pressure are solved se-
quentially at each time step. Solving the discretized, fully coupled equations can be very expen-
sive due to the nested iterations, and this decoupling procedure is found to be computationally 
efficient for transient problems, particularly for higher Reynolds numbers [11]. In general, the 
separation of pressure and velocity can be performed on both the continuous equations and the 
discretized equations [5,9,10]. While the latter is attractive due to the straight forward interpreta-
tion of boundary conditions, these methods give a significantly more complicated pressure equa-
tion and we therefore prefer a splitting at the differential level. 

The operator of the momentum equation is split in two parts, resulting in the following 
semi-discretized equations when the implicit Crank-Nicolson method combined with a second 
order Adams-Bashforth method is used to advance the solution in time: 
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u�  is an intermediate quantity in the computation without any particular physical meaning. Tak-
ing the divergence of (2) and applying the continuity constraint gives a Poisson equation for the 
pressure; 

1nt p uδ +∆ = ∇ � . (3) 
The equations are solved sequentially as (1), (2), and (3). 

The Galerkin finite element method is used to discretize in space. The pressure is fixed in 
one node to ensure a unique solution, and has homogeneous Neumann conditions on all bounda-
ries. Although this is an approximation to the theoretical boundary conditions [7], we have found 
it to be sufficiently accurate for our purpose. u and u�  are given the same boundary conditions. 

The pressure Poisson equation is preconditioned with a mixed additive/multiplicative 
domain decomposition method: one iteration of overlapping Schwartz combined with a coarse 
grid correction. The first velocity step (1) has no preconditioner, while the updating step (2) is 
preconditioned with the lumped mass matrix. Conjugated gradients and BiCGStab are used as 
linear solvers. 

 
Implementation 

Implementation of the flow solver was done is C++ using the object oriented numerical 
library Diffpack. A parallel version of Diffpack [6] was used, which is based on a standard Mes-
sage Passing Interface (MPI) for communication. We used Linux as a development platform. 

The QADPZ system was developed in C++ simultaneously in Linux and Windows envi-
ronments. This made the integration of different platforms much easier and helped us to find the 
flaws in the source code faster. Communication in QADPZ is based on UDP, an unreliable 
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communication protocol, in which packets are not guaranteed to arrive and if they do, they may 
arrive out of order. The advantage of UDP over TCP/IP is that UDP is fast, reducing the connec-
tion setup and tear-down overhead, and is connectionless, making the scalability of the system 
better. We implemented a higher level reliable protocol, which is message based, allowing us to 
overcome the disadvantages of UDP. This is based on message confirmation. Each message con-
tains a sequence number, and each time it is sent, it is followed by an acknowledgment from the 
receiver. Each sent or received message is accounted, together with the corresponding acknowl-
edge, and in case of not receiving an acknowledgment, the message is resent a few more times. 
An acknowledge and a normal message can be combined into one message to reduce the network 
traffic. This layer permits both synchronous and asynchronous message sending. 

An MPI library with a subset of the most use MPI calls was implemented on top of 
QADPZ's communication protocol. This QADPZ-MPI library allows us to use QADPZ as a 
straightforward replacement communication system for most of the applications which are based 
on MPI. 

 
Evaluation and Results 

A series of tests were performed on a dedicated cluster of 40 PCs, with Athlon XP 
1.46GHz CPU, 1 GByte memory, and 100 MBps network interconnection between nodes, run-
ning a Linux distribution. First, we used the original implementation of the solver software, 
which is using MPICH as a parallel communication protocol, to run the cluster version of the 
simulation. Second, we recompiled the solver using the QADPZ-MPI library to create the dis-
tributed computing version of the simulation. The solver was run using exactly the same com-
puters from the cluster (i.e. identical hardware setup). A third test case was using a pool of 8 
computers with similar hardware specifications. These computers were ordinary desktop PCs 
from our labs, connected to our LAN, together with other computers. Simulations were done in 
two different times of the day: during the night, when network traffic in the LAN is minimal, and 
during working hours, when LAN traffic is much higher. 

The results are from simulating some time steps of an oscillating flow around a fixed cyl-
inder in three dimensions. The grid has 81600 nodes and is made of 8-node isoparametric ele-
ments, while the coarse mesh (used for pressure preconditiong) has approximately 2000 nodes. 

 
Conclusions 

The use of already existing hardware resources, like for example desktop PCs, in a dis-
tributed computing environment has a tremendous potential of providing a computing platform 
on which large scale Computational Fluid Dynamics simulations can be executed in a time com-
parable with supercomputers and dedicated clusters. This approach is also a very affordable al-
ternative, as investment costs and later maintenance are minimal compared to other systems.  
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