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We consider the Stefan problem with prescribed convection, which the most important 
application is the continuous casting problem. 

The corresponding initial boundary-value problem can be written as 
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with monotone and continuous function g(.), and maximal monotone multi-valued function H(.). 
Here ΓD and ΓN are the parts of the boundary for the domain 3RΩ⊂ , u stands for the tempera-
ture of a substance, χ for the enthalpy, while υ is the speed of casting. The existence of a unique 
solution for problem (1) is proved in [13]. 

Problem (1) is approximated by the implicit mesh scheme 
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where tχ∂  is the backward approximation of the time derivative 
t
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, and by so-called charac-

teristic scheme 
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where  td χ  approximates  the first order operator 
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. Above A is a mesh approxima-

tion of Laplace operator, Bχ is an up-wind approximation for nonlinear convective term, C is a 
monotone and continuous operator, and H is a nonlinear multivalued operator. Both mesh 
schemes  (2) and (3) belong to a class of finite-dimensional problems with several multivalued 
operators 
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Problem (4) includes as a partial case the “traditional” finite-dimensional variational ine-
qualities, such as obstacle problem, two-sided obstacle problem etc. (they correspond to s=1 and 
unit matrix B1). 

We prove the unique solvability of (4) in the case of M-matrices A, Bk and diagonal 
maximal monotone operators Ck, and the convergence and geometric rate of convergence for 
several classes of iterative methods. They are, in particularly, multisplitting method (constructed 
in [10] for linear equations), Schwarz-type methods, based on the domain decomposition with 
overlapping subdomains  (studied in [4], [3], [1], [11], [16], [17] for obstacle-type problems). 
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For problem (3) with positive definite matrix A the splitting iterative method in combina-
tion with non-overlapping domain decomposition is also investigated theoretically and numeri-
cally. 

The most attention is paid to parallel implementation of the iterative algorithms and 
studying  their rate of convergence and scalability; numerical comparison of all the algorithms is 
executed. 

Also, several new predictor-corrector mesh schemes for time-dependent problem (1) are 
constructed and numerically investigated (cf. [14], [15] for theory of so-called regional-additive 
schemes for linear time-dependent problems, and [12] for predictor-corrector schemes applied to 
nonlinear equations). These schemes are treated as the splitting ones and the splitting of the op-
erators are made on the basis of the domain decomposition  with non-overlapping subdomains. 
Namely, a variant of this scheme, corresponding to implicit approximation (2) is 
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with A2=χA, A1=(1-χ)A and χ being the characteristic function for the set of all subdomains 
boundaries. The implementation of (5) for fixed time level n+1 consists of three steps: finding 
the solutions on the  subdomains boundaries (predictor step), concurrent solution of the "sub-
problems" in the subdomains (main step), and  improvement of the solutions on the  subdomains  
boundaries  (corrector step). The predictor-corrector  schemes were founded to be uncondition-
ally stable and highly scalable. 

In the report, we cite the main theoretical results (basically published in [5]-[9]) as well 
as a number of numerical results for model and real life continuous casting problems. The calcu-
lations were executed by using Cedar computer (Espoo, Finland). 
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