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1. Introduction 

The temperature distribution in a thermoelectric cooling module is considered. The mod-
ule is an array of thermocouples made of n- and p-type semiconductors and connected electri-
cally in series. An iterative algorithm based on a domain decomposition is proposed. Tempera-
ture distributions are computed for subdomains characterized by different physical properties and 
nonlinear temperature dependencies of the coefficients contained in the heat balance equation. 
The resulting analytical and numerical solutions are matched on the subdomain boundaries. 

 
2. Statement of the problem 

In this report we propose a method for solving the heat balance equations describing the 
temperature distribution in a thermoelectric cooler. 

A thermoelectric cooling module is a multi-element assembly of components character-
ized by different coefficients of thermal expansion, including thermocouples made of n- and p-
type semiconductor branches (connected electrically in series and thermally in parallel) and sol-
der layers (Fig.1). When a direct current is passed through the thermocouples, heat is absorbed at 
certain thermocouple junctions and evolved at other junctions (this phenomenon is known as the 
Peltier effect) [1]. 

 

 
Fig. 1 

 
In [2-4], temperature distributions were obtained for different components of thermoelec-

tric cooling modules by calculating temperature at each grid point. Since a thermoelectric cool-
ing module consists of many identical units, substantial computing and storage resources are re-
quired to perform the calculations for the module as a whole, and it is reasonable to explore the 
possibility of performing parallel computations for these units on a multiprocessor computer. 

Accordingly, the entire domain to be considered was decomposed into nonoverlapping 
subdomains. In this approach, the subdomain boundaries were defined, and the method was de-
veloped for matching the corresponding solutions. Similar approached have been developed in 
numerous studies of boundary value problems for elliptic equations. The analyses presented in 
[5,6] should be mentioned here as the guidelines for our study. 

In this report, we present an iterative method based on decomposition into subdomains 
and matching of solutions on their boundaries. The method is designed to solve the specific 
problem outlined above. Our analysis is focused on the development of a computational tech-
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nique for simulating the heat transfer processes that take place in a thermoelectric module 
through parallized computations for individual units on a multiprocessor computer. 

 
3. System of equations for heat transfer in the module element  

and numerical solutions method 
A time-independent temperature distribution in a nonuniformly heated thermoelectric 

material is governed by the equation 
( ) 2div 0T j Tjκ ρ α∇ + − ∇ = , (1) 

where κ is thermal conductivity, ρ is resistivity, j is current density, and α is the thermoelectric 
coefficient. 
Eq.1 can be rewritten in equivalent form as 

2 0T j j Tκ ρ τ∇ ∇ + − ∇ = , (2) 
where /T Tτ α= ∂ ∂  is the Thomson coefficient. 

In a two-dimensional Cartesian coordinate system denoting by T(n) the temperature calcu-
lated as a result of the n-th iteration step, we can rewrite Eq. (2) as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )1n n n n n n nT T L T f T
x x y y

α κ α κ α ω+ ∂ ∂ ∂ ∂   − − − = −    ∂ ∂ ∂ ∂  
 (3) 

Defining an auxiliary quantity T* as the intermediate value of temperature corresponding 
to an intermediate step and applying the approximate factorization method, we represented the 
transition from the n-th to (n+1)-th iteration step as a sequence of two steps: 

( ) ( ) ( )( ) ( )( )*n n n nT L T f T
x x

α κ α ω∂ ∂   − = −   ∂ ∂ 
 (4a) 

( ) ( ) ( )( )1 *n n nT T T
y y

α κ + ∂ ∂
− − = ∂ ∂ 

 (4b) 

Both equations were solved by using the scalar flux-based tridiagonal algorithm. 
In a set of subdomains the temperature fields are determined analytically. The analytical 

solution for temperature in each of such subdomains has the form 
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 (5) 

This technique was employed to solve the problem on a multiprocessor computer “Su-
percomputer MVS 1000M”. The solutions computed by means of different processors should be 
matched along the vertical boundaries that separate the domains of analytical solutions from the 
semiconductor domains. 
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