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1 Introduction 

In most polymer processing applications and in lubrication systems the changes of tem-
perature are significant and cannot be ignored. The description of nonisothermal flows not only 
requires the simultaneous solution of three equations of change (continuity, motion, and energy), 
but in addition the temperature dependence of all physical properties, especially that of the vis-
cosity, must in general be taken  into account; moreover, for polymeric liquids the shear-rate de-
pendence of the viscosity cannot be neglected (Bird 1987). As an example, we shall treat the 
flow of a non-Newtonian fluid round a hot sphere falling along the centreline of a cylindrical 
tube, with using of parallel computers.  

The well – known equations for the fluid-flow and the heat – transfer are as follows : 
Continuity   . 0V∇ =  (1) 

Motion        -DV g p
Dt

ρ ρ ηγ= ∇ +∇  (2) 

Energy        ( )1. :
2p

DTC k T
Dt

ρ η γ γ= ∇ ∇ +  (3) 

Due to the temperature – dependence of the viscosity and constitutive equation coeffi-
cients, the equation of motion and energy are strongly coupled. In general, then, the solution of 
the set of equations of change cannot be obtained analytically. This problem was resolved for the 
isothermal case using Finite Element Method (Celasun et al. 2002). 

 
2 Isothermal case 

In the isothermal case the schematic diagram of a sphere of radius a  falling through a 
non – Newtonian fluid in a cylinder of radius R is given in Fig.1. The global cylindrical coordi-
nate system is (r, θ, z). The local area coordinates are L1, L2, L3. The notations are the usual ones. 
Let’s see promptly the formulation in that case. 

2.1 The non-Newtonian fluid chosen (CEF Model) 
The constitutive equation of the CEF fluid is 

( ) 2
1 1 2 1 1 2

1
2

pI A v v A v Aτ η= − + + + −  (4) 

The Rivlin-Ericksen tensors involved in the CEF equation are 
1
2 2
1

2

2
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2

T

T T

A d V V
A d
A a a V V

= = ∇ +∇

=

= ∇ +∇ + ∇ ∇i
 

The shear strain-rate in term of the second invariant IId is 
2
1 2

1 12  
2 2dII trA tr Aγ = = =  
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Fig. 1 Schematic diagram of a sphere falling 

through a fluid in a cylinder. 
Fig. 2  Mesh pattern around sphere, a/R= 0.2 

 
3 Material functions in steady-state shear flows 

Viscosity :  ( )yx yxτ η γ γ=  
Normal stress coefficients :  

2
1( )xx yyτ τ υ γ γ− =  

2
2 ( )yy zzτ τ υ γ γ− =  

Carreau formula for the viscosity coefficient : 

( )
( )210 10

0.3182
0 1

0.169 log 0.76log 0.8211

2 1 1 2 1

1 32.32
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4  Explicit expressions of the dimensionless governing equations 

Continuity equation 

0r z rv v v
r z r

∂ ∂
+ + =

∂ ∂
 (5) 

Projection of the motion equation on the r axis 
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Projection of the motion equation on the z axis 
1 1 1

1 1

2 2 2
2 21 1 1 1 1
1 1 1

( ) ( ) ( )( ) ( )
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 (7) 
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5 Nonisothermal case 

Admitting combined hydrodynamic and thermal entry length solution in the asymptotic 

zone and neglecting energy dissipation and axial conduction 
2

2

Tk
z

∂
∂

 term, the energy equation (3) 

becomes: 
2

2

1 ( )zT T v r T
r r r zχ

∂ ∂ ∂
+ =

∂ ∂ ∂
 (8) 

The thermal diffusivity / pk Cχ ρ= , the wall temperature Tw, and the hot sphere tempera-
ture Ts are supposed constant. The entry temperature is T∞ and the uniform entry velocity is Vs. 
Dimensionless temperature is θ=(T-Tw)/(Ts-Tw). 

The dimensionless boundary conditions are θ=1 at 122 =+ zr , 
θ = 0 at R/a and  θ= (T∞ -  Tw) / (Ts-Tw) at  z = ∞. 
The dimensionless form of the eq. (8), with the Péclet number /zRv χ  is  

é 1P r
R z r r r

θ θ∂ ∂ ∂ =  ∂ ∂ ∂ 
 (9) 

 
6 Temperature effects 

As temperature is increased, the zero-shear-rate viscosity ηo decreases. Considering the 
“master curve” and the “shift factor aT” concepts, the viscosity measured at a temperature T and 
shear rate γ  is equivalent, after correction for the temperature dependence of ηo, to viscosity 
measured at the reference temperature To and shear rate  aTγ .  

According to “Arrhenius dependence” : 

















−=

o
T TTR

Ea 11exp  (10) 

The flow activation energy ratio E/R has typical values around 4.5 x 103 K. We chose as 
reference temperature To the usual inlet temperature T∞. The formulas applied are: 

( , ) ( , ) /o T oT T a T Tη γ η γ=     and    2
1 1( , ) ( , ) /o T oT T a T Tυ γ υ γ=  (11) 

 
7 Conclusions  

We chose a linear triangle for the temperatures, like for pressures in the Finite Element 
process whereas we take a quadratic one for the velocities (Fig. 2). Thus, together with the conti-
nuity and motion equations (5), (6), (7) and now the energy equation (9), we have at each trian-
gle overall 18 equations and 18 variables as vr , vz, p and T (we don’t use eqs (5) and (9) at mid-
side nodes). We apply the same procedure as for the isothermal case using always the area coor-
dinates and the Gauss quadrature. We have numerous simultaneous and highly non linear  equa-
tions, which moreover are overdetermined due to the existence of the boundary conditions. 
Hence, we were compelled to resort to  the optimisation techniques to resolve the equation sys-
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tem.  Fig.3 displays the great distortion of the flow field that is possible due to thermal effects 
(Morris 1982). 

 

 
Fig. 3 Effect on streamlines of viscosity –temperature variation in Newtonian, creeping flow. 
(a) Isothermal solution. (b) Hot sphere, heat-sensitive viscosity. 
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