
 298

Object-oriented Software for Domain Decomposition Methods
with Local Adaptive Refinement

S.P. Kopyssov, I.V.Krasnoperov, A.K.Novikov, V.N.Rychkov*

Institute of Applied Mechanics UB RAS, Izhevsk, Russia

Key words: software tools and environments, parallel algorithms, parallel unstructured
solvers.

Recently the methods of analysis of sophisticated engineering objects (domain decompo-

sition, domain composition, domain partitioning, etc.) are strongly developed. The main idea is
to divide the main sufficiently complicated task into the tasks corresponded subdomains and then
to solve them by the efficient method. That enhances speed and efficiency considerably when
large and complex systems are calculated.

Domain decomposition allows complicated tasks to be solved in different fields of re-
search. Its practice application is restrained by considerable efforts in implementation. It is
common knowledge how much time is spent on creation of computing programs. They are espe-
cially far from ideal when non-professional programmers create them. Furthermore, the majority
of the existing domain decomposition software is built up with procedure programming lan-
guages (Fortran, C). Therefore, these packages are difficult to use and practically non-extensible.
Object-oriented programming for domain decomposition enables one to understand various as-
pects and properties of the developed program system, so that it essentially facilitates program
developing, testing, maintenance, modification and creating of a new version.

To re-use program code, to make it extensible and flexible, ensuring object-oriented prin-
ciples must be used in design of the problem solution algorithm. Following these principles, first
the main tasks of the domain decomposition must be recognized. Then they are isolated in single
classes, with their interfaces defined. It is important that the interfaces enable classes to work
with each other and new classes to be added without changing of the existing ones. Well-
designed object-oriented program system enables to conduct and change experiments with new
solution algorithms and to use different ordering schemes, system of equations storage and solv-
ing methods, boundary conditions handling, etc. In domain decomposition several basic subtasks
may be singled out, some of them are independent:

• To partition domain into subdomains.
• To order node degrees-of-freedom.
• To assemble matrix system of equations, taking into account element and node contribu-

tions.
• To impose boundary conditions.
• To solve system of equations.
• To update node quantities according the solution obtained.

Theoretical object analysis of the basic domain decomposition tasks has been carried out.
It has resulted in detailed classifications of the objects, algorithms and computational problems
arising from the domain decomposition methods. All objects of the model are sorted into four
groups:

• Modeling classes. Classes used to create and to describe analytical model of the problem
(nodes, elements, domains, boundary conditions, etc.).

• Numerical classes. Classes used to carry out the numerical operations and to store the
data (matrices, vectors, system of equations, graphs, etc.).

* E-mails: {kopyssov, ilya, an, bobr}@udman.ru

 299

• Analytical classes. Classes used to perform the analysis of the problem (solution algo-
rithms, integration schemes, boundary condition imposition, equation ordering methods,
etc.)

• Domain Decomposition classes. These are classes used in the analysis of the problem
by means of domain decomposition method (subdomains, subdomain equation solver,
etc.)
Modeling classes are used for creating analytical model of the problem, i.e. they repre-

sent elements, nodes, boundary conditions, loads, domains, etc. For the complex problem it is
important to create the analytical model in simple and clear manner. DomainBuilder and Domain
are the main classes of this group. Class Domain stores components of the analytical model and
represents methods to handle them. Different variants of the analytical model editor Domain-
Builder allow creating analytical models from the file, graphical editor, CAD system, etc.

The main class of the analytical classes subsystem is the Analysis class. It is an aggrega-
tion of the following objects:

• SolutionAlgorithm. It is responsible for the orchestrating the steps performed in the
analysis.

• AnalysisModel. It is a container for storing and providing access to the objects of DOF-
Group and AnalysisElement classes. The DOFGroup class represents the degree-of-
freedom at the nodes and new degrees-of-freedom introduced into the analysis to enforce
the constraints.

• Integrator. This class is responsible for defining the contributions of the DOFGroup and
AnalysisElement objects to the system of equations and for updating the response quanti-
ties at the Node objects with the appropriate values given the solution of the system of
equations.

• ConstraintHandler. It is responsible for handling the constraints by creating DOFGroup
and AnalysisElement objects of the correct type.

• DOFNumberer. It is responsible for mapping equation numbers of the system of equa-
tions to the degrees-of-freedom in the DOFGroup objects.
Different kinds of the problem solution, in particular adaptive, domain decomposition

ones and their combinations, can be included in this object-oriented model through inheritance
and polymorphism. Corresponding classes are presented below.

The extra data included in AdaptiveAnalysis class are following: error estimations Er-
rorEstimation, refinement strategies Refinement, refinement indicators ErrorIndicator. The dif-
ferent improvements of solution are implemented on basis of Refinement class: reallocation of
nodes in 2D/3D (r-version), local refinement/coarsening for 2D triangle meshes (h-version), in-
creasing of degrees of integrated Legendre polynomials for 3D hierarchical hexahedral elements
(p-version). ErrorEstimation subclasses represent a priori and a posteriori error estimations
based on: error residual, interpolation type, projection type, extrapolation type, dual method. Er-
rorIndicator subclasses provide selection of domain to refine: global refinement, strategy of
maximum, equidistribution, guaranteed error reduction. The object-oriented model of adaptive
analysis allows building the optimal computational model with given precision and a minimum
of computational costs. Domain decomposition is the most effective way to solve the problems
by h-, p-versions FEM.

SubdomainAnalysis class is inherited from Analysis and corresponds the process of do-
main decomposition on one of the subdomains. The number of SubdomainAnalysis objects at
runtime is equal to the number of subdomains. This class aggregates ConstraintHandler, Inte-
grator, DOFNumberer, AnalysisModel, LinearSOE, SubdomainSolver, SubDomain and Do-
mainDecompositionAlgorithm to execute elementary actions of domain decomposition method.
For example, Integrator forms tangent matrix and residual vector for a subdomain; Subdomain-
Solver solves the system of equation and forms tangent matrix and residual vector for the bound-
ary. Implementing descendants of these classes and combining them, different domain decompo-
sition algorithms, storage schemes and solvers of system of equations can be obtained. Domain

 300

decomposition is widely used. In supercomputing this method can be adapted to parallel com-
puter with any memory management and node communications. Domain decomposition algo-
rithms naturally make solution coarse-grained parallel.

Object-oriented technique helps to define objects and methods executed simultaneously
and independently. The demonstration of possible parallelization on domain decomposition de-
sign is given below.

• To define the tasks using data from all subdomains and the tasks running independently.
To run the main analysis object, e.g. DomainDecompositionAnalysis, AdaptiveDomain-
DecompositionAnalysis, and several subdomain analysis objects, e.g. SubdomainAnaly-
sis, IterativeSubdomainAnalysis, which are distributed objects and can perform parallel
operations. Subdomain tasks are called and synchronized by the main task. To create
SubDomain and its set of aggregated objects in separate processes as distributed objects.
This step distributes the data and makes all the operations on subdomain parallel, because
SubDomain’s aggregated objects execute them.

• To divide domain on subdomains with help of DomainPartitioner subclasses which uses
any GraphPartitioner subclasses. If analysis model is relatively small, sequential parti-
tion is used, else if obtained graph has a lot of nodes or dynamic load balancing is neces-
sary, domain partition has been parallel. In that case the subclasses of DomainPartitioner
and GraphPartitioner are implemented to encapsulate any parallel library (e.g. ParMetis,
Zoltan).
Some parallel distributed implementations of objects were examined on MPI and

CORBA. After that parallel distributed component technique were suggested to develop object-
oriented software for domain decomposition. It is based on CORBA, component model CCM,
asynchronous method invocation AMI. The technique is implemented as component application
service and component template library according CCM::Components standard. Distributed data
and parallel processes of domain decomposition are designed with help of components.

Besides, integration of existing MPI applications is provided by this technique. The com-
ponent encapsulated MPI library ParMETIS, which included a wide range of mesh partition
methods, is implemented to use together with domain decomposition components.

Object-oriented model of domain decomposition and parallel distributed component
technique let us develop the series of software programs for numerical experiments and verify
the efficiency of algorithms. In particular, theoretical and real rates of convergence of imple-
mented algorithms, including adaptive refinement, were compared and computational costs were
evaluated.

The work was supported by Russian Foundation Basic Researches, grant 02-07-90265.

