
 280

FlowVision software: numerical simulation of industrial CFD applications 
on parallel computer systems. 

 
Andrey A. Aksenov1*, Sergey A. Kharchenko2, Vladimir N. Konshin2, Victor I. Pokhilko3 

 
1Institute for Computer Aided Design of RAS; 2-nd Brestskaya str., 19/18, Moscow, Russia 

2Dorodnicyn Computing Centre of RAS, Vavilov str., 40, Moscow, Russia 
3Institute for Mathematical Modelling of RAS, Miusskaya sq,. 4a, Moscow, Russia 

 
 

Abstract 
FlowVision is CFD code for modeling industrial three-dimensional turbulent fluid flows 

[1]. 
FlowVision is based on the finite-volume method and rectangular adaptive mesh with lo-

cal refinement. FlowVision uses a subgrid geometry resolution to approximate the curvilinear 
shape of a computational domain with high accuracy. This technology provides importing a ge-
ometry from CAD packages and exchanging data with FEA systems. 

The presented technology was implemented as a portable parallel software using the MPI 
message passing interface. It has been proven to be very reliable when solving industrial CFD 
problems. Results of numerical simulations of time dependent flow using network of worksta-
tions are presented.  
 

Introduction 
FlowVision is a CFD tool designed for accurate and reliable modelling of industrial flow 

problems on parallel computer platforms. This multi-disciplinary investigation brings together 
the advanced results from the fields of mathematical simulation, approximation theory, numeri-
cal linear algebra, and parallel computing.  

The basic features of the numerical finite volume scheme used in FlowVision are pre-
sented below:  
second order truncation error;  
spectral-like resolution, i.e., low phase errors and a dissipative mechanism which suppresses or 
filters only spurious solution modes; 
positive definiteness and compatibility of the resulting discrete systems; 
discrete conservation, i.e., the approximation is based on the integral form of the system of the 
conservation laws; 
high accuracy and stability on rectangular grid with local refinement; 
a stable cell-centered formulation based on the high order stabilization; 
fully implicit time stepping with Newton's method for the solution of resulting nonlinear sys-
tems. 

FlowVision technique has been successfully used for many industrial applications. The 
numerical simulating a time-dependent flow around aircraft is presented as an example. The 
streamlines are shown in Fig.1a and the part of grid with local refinement is shown in Fig.1b.  

The simulation was conducted without simplifying assumptions on the aircraft geometry 
on a single CPU as well as on the network of workstations.  

                                                 
* E-mail: anda@tesis.com.ru 



 281

       
Fig. 1. Flow near aircraft (a) and grid (b). 

 
Numerical methods 

Consider the nonlinear problem described by the Navier-Stokes equations. In the operator 
form the discrete problem can be written as follows 

u f=L , (1) 
where the nonlinear discrete operator L  corresponds to the approximation of the Navier-Stokes 
equations. 

The solution method for the system (1) is the Newton-like method which can be written 
in the following form 

1( ) ,k k k
f u u u f+ − + =L L  (2) 

here k is the iteration number corresponding to the k –th time step and the linear operator fL  is a 

suitable linearization of L . In order to compute the iterate u k+1  from (2) it is necessary to solve 
the pre- and post- conditioned linear system of equations 

1 ,k
f u r+ =L  (3) 

where .k k
fr f u u= + −L L  

From the algorithmic point of view, the solution method is split into three major blocks: 
1) the computation of residuals, i.e., the computations of vectors kuL  and k

f uL ; 
2) generation of matrix fL ; 
3) iterative solution of linear system (3). 

FlowVision generates different types of the systems of linear equations. Consider the 
system of linear equations in the general formulation: 

bAx = , (4) 
where A is large sparse matrix with irregular structure of non-zero elements. Irregularity of the 
sparsity structure of matrix A is induced by the local grid refinement. 

The matrix A may have different algebraic properties. In particular, FlowVision gener-
ates symmetric positive matrices ( 0TA A= > ), unsymmetric matrices ( TA A≠ ), block 3x3 un-
symmetric matrices ( 3 3 3 3

TA A× ×≠ ). Matrices of the first type are generated for elliptic equations, 
matrices of the second type are generated for scalar parabolic equations and matrices of the third 
type – for vector parabolic equations (for example, Navier-Stokes vector equations). 

Incomplete Cholessky preconditioned conjugate gradient method is used to solve linear 
systems with the matrices of the first type. Incomplete LU and incomplete block LU precondi-
tioned Lanczos method is used to solve linear systems with the matrices of the second and third 
type.  

Parallel implementation technique for the second type of matrices is described below, 
while for the first and for the third types of matrices the parallel implementation is similar. 
 

Parallel implementation 
Consider the main factors which influence the parallel efficiency [2].  
Load balancing problem. Uniform load of the processes substantially affects the overall 

efficiency of the parallel implementation such as parallel scalability. We use special techniques 



 282

to balance the load. In particular, we have used MeTiS [3] software to generate the partitioning 
of the computational nodes over the processes. Partitioning that is computed by MeTiS splits all 
nodes of the matrix graph into p  subgroups, here p  is the number of processes. Each group of 
nodes have almost equal number of nodes, and the number of edges of the graph that have nodes 
from different groups is as minimal as possible. Each group of nodes is assigned to some proc-
ess. Partitioning of the nodes induces the ordering of the nodes in which the matrix takes the fol-
lowing block bordered form: 

1 1

1

0

0 p p

p

A C

A
A C

B B D

 
 
 =
 
 
  

. (5) 

We also applied RCM [4] profile optimization algorithm to optimize the profile of the di-
agonal subblocks. The sparsity patterns of the original and of the resulting reordered coefficient 
matrices for p  = 2, 4, 8 for the model problem described above are presented on figures below. 
 

 
Fig. 2. Original and reordered sparsity patterns of the matrix for p =2,4,8. 

 
Serial part of the code. The serial part of the code should be as minimal as possible. Ma-

jor serial part of the code in our implementation is related to the computations with the nodes 
from the bordering. Thus, by minimizing the number of bordering nodes we minimize as much 
as possible the serial part of the code. 

Communication costs. The above described mathematical technologies were imple-
mented on distributed memory parallel computer in a message-passing style. In this case the total 
wall time of the application consists of the computation and communication costs. In order to get 
better parallel scalability it is necessary to minimize communication costs. Major communication 
costs in our implementation connected with the data related to the nodes from the bordering. 
Again, by minimizing the number of nodes in the bordering we minimize as much as possible the 
communication costs of the algorithm. Moreover, we extensively use the overlap of communica-
tions and computations whenever possible.  

Distribution of the data between processes. The data of the linear system are distributed 
among processes according to the block bordered form (5) as follows. The data of each diagonal 
block row of the permuted coefficient matrix and the corresponding data of the right hand side 
and solution vectors are assigned to the corresponding process. The data of the bordering block 
row and the corresponding right hand side and solution vectors data are assigned to the process 
with identification number 0id = . During incomplete LU preconditioner generation stage the L  
and U  data of the preconditioner are distributed over the processes as follows. The data of each 
diagonal block row of U  and the data of each diagonal block column of L  are assigned to the 
corresponding process. Diagonal subblock corresponding to the bordering are assigned to the 
process with 0id = .  

The parallel computation of the ILU preconditioner is implemented as follows. At the 
first stage each process computes ILU factorization of its block row/block column according to 
the Dongarra/Eisenstadt algorithm separately without synchronizations or data exchanges. At the 
second stage each process sends the computed bordering data to the process with 0id = . And at 



 283

the third stage the process with 0id =  performs computation of the Schur complement for the 
bordering diagonal subblock of the reordered coefficient matrix with the use of received data, 
and then computes its ILU factorization.  

Taking into account the distribution of the coefficient matrix over the processes, the par-
allel generation of the ILU preconditioner requires to exchange before factorization only small 
size data from the bordering part of the coefficient matrix.  

After completion of the parallel incomplete factorization redistribution of some part of 
the  preconditioner data among processes is performed. As a result, diagonal block rows of L  
and diagonal block columns of U  are assigned to the process to which the corresponding diago-
nal block row of the coefficient matrix is assigned to. Such redistribution of the preconditioner 
data requires to exchange the data corresponding to the bordering only. 

Iterative solution of the linear system by the ILU preconditioned Lanczos algorithm re-
quires at each iteration the following major computations: multiplication of the vector by the co-
efficient matrix and by its transpose, solution of the linear system with the lower ( L  and UT) and 
the upper triangular (U  and LT) matrices, and computation of some scalar products and some 
vector updates. 

During the iterative solution stage all vector data are distributed over the processes ac-
cording to the distribution of the block rows of the coefficient matrix. 

Parallel multiplication on the coefficient matrix and on transposed matrix requires to ex-
change only a small part of vector data. These data correspond to nonzero entries of the coeffi-
cient matrix in the off-diagonal part of the bordering block row/block column. 

Parallel solution of the linear system with the lower triangular matrices ( L  and UT) is 
performed as follows. At the first stage each process separately solves its own lower triangular 
subsystem corresponding to the diagonal subblock. After that each process sends some part of 
the obtained vector data to the process with id=0. At the final stage process with 0id =  updates 
its own vector data from the bordering using the received data, and then solves system with the 
lower triangular submatrix of L  or UT from the bordering diagonal block. 

Parallel solution of the linear system with the upper triangular matrices (U  and LT) is 
performed as follows. At the first stage process solves system with the upper triangular subma-
trix of U  or LT  from the bordering diagonal block. Then process with 0id =  sends a part of the 
solution vector data from the bordering to each process. And at the final stage each process up-
dates its own vector data from the block diagonal part using the received solution vector data 
from the bordering, and then solves system with the upper triangular submatrix of U  or LT  from 
the diagonal block. 

Computation of the scalar products in the parallel environment is implemented as fol-
lows. First of all each process performs computation of its own part of the scalar product, and 
then the results obtained by all process are collected. All vector updates are performed locally. 
 

Numerical results 
All numerical experiments were performed under Windows 2000 operating system on the 

network of PC workstations (500MHz Pentium II processors) with slow network (100Mbit per 
second).  

Figure 3 shows timing results up to 4 processors for the problem considered. The results 
indicate that the parallel algorithm is scalable for small number of processors. For larger number 
of processors it is necessary to use more complicated parallel algorithms, e.g., multilevel parallel 
algorithm, to get better parallel efficiency.  
 



 284

 
Fig. 3. Timing results for incomplete factorization (a) and iterative solution (b) stages. 

 
Conclusion 

FlowVision is proven to be reliable and efficient tool for simulating complicated 3D 
CFD problems. Parallel version of FlowVision demonstrates reasonable scalability on rather 
slow network of a small number of PC workstations. The basic approach implemented in Flow-
Vision can be efficiently advanced to large number of processors by using multilevel parallel 
algorithms. 
 

References 
1. A.A.Aksenov, A.A.Dyadkin, V.I.Pokhilko. Overcoming of Barrier between CAD and CFD 

by Modified Finite Volume Method, Proc 1998 ASME Pressure Vessels and Piping Division 
Conference, San Diego, ASME PVP-Vol. 377-1, 1998 

2. V.N.Konshin, V.A.Garanzha. Highly accurate numerical methods for incompressible 3D 
fluid flows on parallel architectures. In: Lecture Notes in Computer Science. Vol.1662. 1999. 
Pp. 68-76. 

3. G.Karypis and V.Kumar. "MeTiS: A software package for partitioning unstructured graphs, 
partitioning meshes and computing fill-reducing ordering of sparse matrixes, version 4.0. 
1998". 

4. A. George, J.W. Liu, "Computer Solution of Large Sparse Positive Definite Systems", Pren-
tice Hall, 1981. 

 


