
 261

Parallel computations to solve steady-state transport equations

S.N.Lebedev, E.M.Romanova*, O.V.Stryakhnina

RFNC-VNIITF, Snezhinsk, Russia

A study is done of paralleling methods likely to be applied to solve neutron transport

equation using a steady-state equation as an example. The code is used to estimate an effective
neutron multiplication factor. A difference scheme based on the rhomb model of the DSn-
method is used for numerical solution. A parallel version of the code can run on a set of multi-
processor computers both with shared and distributed memory. Different methods of geometry
decomposition have been evaluated as well as paralleling by groups or by neutron directions.
Some qualitative and quantitative assessments of the computation speed-up have been done.

1. Paralleling methods for solving a steady-state transport equation

A code solving steady-state neutron transport equation is a part of the software package
for emergencies at the fast reactors [1,2]. In particular, it is used to calculate the effective neutron
multiplication factor. The code solves the steady-state transport equation in a 2D axisymmetrical
statement in the multi-group anisotropic approximation. A difference model based on the rhomb
DSn-method is built for numerical solution. A discrete ordinate method is used in the space of
the neutron directions. Zeidel method or simple iteration method is applied to calculate the colli-
sion integral.

The parallel version of the code can run on a set of multi-processor computers with both
shared and distributed memory. Based on the study performed, we could evaluate the advantages
and disadvantages of the geometry decomposition method, paralleling by groups and by neutron
directions and obtain qualitative and quantitative characteristics of the computation speed-up.

Statement of the problem to assess a critical parameter Keff.

A closed axi-symmetric region D = {r,z}, being a section of an axi-symmetric body by a
plane containing the z-axis, is used to resolve the following system of transport equations for the
energy groups (g=1,2,…G) in the multi-group kinetic approximation:

div(ΩNg) +αgNg = ∑∫
=

βπ

G

1'g

s

'gg2
1 NgdΩ’ +

π2
1

K
1

eff
∑∫
=

β
G

1'g

f

'gg
NgdΩ‘.

Here boundary conditions are zero, Ng(r, Ω) is density of angular flux of the g-group
neutrons flying in the particle direction, Ω is a unity vector in the neutron direction, αg is a neu-
tron absorption coefficient, β

s

'gg
is a macroscopic neutron scattering cross-section, β

f

'gg
is a cross-

section of neutron scattering on the fission reactions.
Under the above conditions there exists the only positive eigenfunction up to a factor

{ N0
g , g=1,2…G}, corresponding to a simple real eigenvalue 0KK 0

effeff >= , which is less than
modulus of any other eigenvalue Km

eff .
Different methods are applied to solve the system [3], for instance, iteration method for

fission neutron source. An internal iteration loop implies iterations of the scattering source cal-
culation, and the fission neutron source is assumed known from the previous external iteration
loop:

SNK
1

2
1

SN2
1

NLN
)1i(

'g

G

1'g

f

'gg1i

)1j,i(

'g

G

1'g

s

'gg

)j,i(

gg

j)(i,

g

−

=−

−

=
∑∑ βπ

+βπ
=α+

* Corresponding author. E-mail: ye.m.romanova@vniitf.ru

 262

Here i is external iteration number, j is internal iteration number, L is difference ap-
proximation of the transport operator div(ΩNg), SNg is a scalar flux of the g-group neutrons.

External iteration recalculates the fission neutron sources and parameter Кi:

dVSN

dVSNK
K i

'g
D

f
'gg

g'

g

1i
'g

D

f
'gg

g'

g

i

1i

∫βΣΣ

∫βΣΣ
=

+

+

Convergence criterion for internal iteration loop is as follows 1
i |1N| ε<− , where ε1 is

an accuracy of internal iteration termination, Ni =
||N||
||N||

i

1i−

; and for the external iterations the cri-

terion is |Ki - Ki-1| < ε2, where ε2 is an accuracy of Keff calculation.
There are a lot of mathematical ways to speed up Keff calculation though, unfortunately,

none of them is universal. Practice shows that for each way there is a problem where this par-
ticular way is the longest.

The transport equation in the above statement, though simulating 2D systems, is actually
solved in the multidimensional phase space. For anisotropic problems with large number of
groups and neutron directions and a number of grid points of an order of 100 000, time needed to
calculate one iteration of transport equation can reach several minutes. We deal with the prob-
lems where, first, the neutron transport equation is to be solved hundreds and even thousands of
times and, second, a huge amount of random access memory is needed and the problems often
claim an exclusive usage of the computer. Paralleling of the problems like these will not only
speed up the solving process but will enable the enlargement of the problems since each proces-
sor will calculate only some part of them. For a small computer complex, paralleling is abso-
lutely necessary since it will in addition enable other problems to get some real time for comput-
ing. The above reasons motivated the efforts made to parallel the calculation of neutron trans-
port equation.

1.1. Geometry decomposition method

Geometry decomposition method as applied to our code splits the closed 2D area into
computational regions. The main criterion of the splitting is an approximately equal number of
points in each computational region. This makes the computational load on the processors almost
equal, and the paralleling efficiency almost the highest. In our case the whole system is divided
into the computational regions – zones. The principle of block-regular mesh construction is used
afterwards. Zone size and number depend on the problem statement. Each zone is described
with its own regular rectangular mesh. If some zones differ significantly in the number of points,
the code can additionally split “large” computational regions, thus forming additional computa-
tional regions.

When a problem has a small number of zones, additional splitting of the system into lar-
ger number of computational regions will speed up the computation. The larger the number of
computational regions differs from the initial zone number, the more iterations the problem
computation will require. Thus, even in the case of acceptable accuracy of the result and high
speed-up factor of an iteration, the actual speed-up factor of the whole code is as much lower, as
much higher is the number of paralleled iterations compared to the number of iterations in the
sequential code version. The same disadvantage is typical of all problem zones unbalanced by
the number of computational points.

One more disadvantage of the geometry decomposition method is that the result of the
parallel code version does not coincide with that of the sequential code version – no matter how
small the difference is. Having studied the code results, we considered this method inefficient for
the problems with complex geometry and currently we use it only for testing and numerical
simulation of the simple problems.

 263

1.2 Method of paralleling by the neutron directions.
To refresh your memory, in DSn-method the space where neutrons fly is covered by a

special mesh, so called “tortoise”, described in the literature devoted to neutron transport equa-
tions. The mesh is built by angular variables in compliance with ESM − quadrature as shown in
Fig.1:

Fig.1. Mesh in the space of neutron directions.

ES8 - quadrature.

Surface of the unit sphere describing the space of neutron directions is divided into the
cells of equal area. Each “tortoise” belt, i.e. a set of cells of one and the same latitude on the unit
sphere can be calculated regardless of the other belts during one iteration. Having distributed the
belts among the processors so that to load the processors similarly and having then summed up
the integral values of the neutron fluxes obtained at every specific point of the system by all
processors, we obtain a solution coinciding with that of the sequential code version.

The method is free of the disadvantages of the geometry decomposition method, though
it should be kept in mind that the number of the paralleled processes in this case cannot exceed
the number of processors working with shared memory.

1.3 Paralleling by groups
The above disadvantages of the geometry decomposition method were studied with re-

spect to the system regions and the results obtained made us draw a conclusion on the ineffi-
ciency of this method for our problems. We started paralleling by groups, not fully rejecting the
geometry decomposition method. Paralleling by groups is some sort of decomposition method as
well. It’s implemented on distributed memory and has its own advantages and drawbacks.

Being paralleled, each group of the system is computed on a dedicated computer node.
Within the node the paralleling by the neutron directions still works on shared memory. This ap-
proach was formed historically – paralleling of the transport equation solution had started long
before we gained an opportunity to use several connected multi-processor computers for solving
problems. We believe that difficulties are unlikely to happen during transition from paralleling
on the shared memory to paralleling on the distributed one.

After an iteration is done for each group, it is necessary to calculate the source parame-
ters which imply node-to-node exchange of huge data arrays. For anisotropic problems these ar-
rays can comprise tens of megabytes that will decrease the paralleling efficiency.

The second and initially deemed more important drawback of this method is the use of
simple iterative method instead of Zeidel iterations. However, the numerical experiments showed
that the number of transport equation solutions increased slightly at the same specified accuracy.
In any case, the speed-up of computations due to paralleling is much higher than deceleration
caused by the increased number of the transport equation solutions.

The undoubted and important for us advantages of the method include its good balance
(each processor performs the same amount of arithmetic operations) and coinciding solutions of

 264

the parallel code version and the sequential one, to be more precise, the code version where Zei-
del iterations were replaced by the simple ones.

2. Technologies of code paralleling

2.1 Paralleling on distributed memory
Since geometry decomposition method implies an arbitrary large number of the paral-

leled processes, paralleling on the shared memory, i.e. within the node, is not suitable for this
method because of the limited number of processors in the node. Therefore, geometry decompo-
sition method was implemented using MPI-tools.

Processor-to-processor exchanges are implemented as follows:
1. During internal iteration the computations are done within every computational region in-

dependently, regardless of other regions. These computations are done on each computer
node. In each computational region Zeidel iterations are done for each group. Then each
computational region transmits the values of neutron fluxes at the boundary for each group
and each direction in the group to the neighboring regions. For this purpose, blocking-free
operators of array transmission are used, i.e. execution of the operators does not block the
other code operations, so the code continues its work, which does not need the boundary
conditions from the neighboring regions – calculation of norms, etc.

2. To calculate norms for the whole system, each processor with the help of special MPI-
operator sums up the norms obtained for each computational region. After that each proc-
essor has full information needed to check the convergence of iterations and, if necessary,
to estimate the current value of Keff. Practice shows that this redundant work is many times
more effective than collection of all data on one of the processors, calculation of the norm
and Keff and follow-up transmission of these values to the other processors.

3. Paralleling by groups is done for each region, computations of each region being then se-
rial. On all nodes the internal iterations for each region group are done independently from
the other groups. After the transport equation is solved for each group of the region, the
obtained values of the neutron fluxes needed to calculate the source in each group are
transmitted from each node to all other nodes where new source values are calculated and
then used during the next internal iteration. The blocking-free operators of array transmis-
sion are again used for transmission. In this case there is no need to transmit the norms
since each node has all values needed to calculate the norms by the end of the region com-
putation cycle.

2.2 Paralleling with PTHREAD tools

There is a set of special procedures in FORTRAN, which implement paralleling of com-
putations on the shared memory. The fewer the parameters to be transmitted to each processor,
the higher the speed of execution. In our case we managed to distribute data so that each proces-
sor works only with its own memory and makes no requests for reading or writing to its neigh-
bors.

3. Estimate of paralleling efficiency

We present simulations for the problems with few groups only since there are only four
eight-processor SMP Power Challenge L nodes available for us. Multi-group problems use the
code version where paralleling is implemented only on shared memory, therefore speed-up factor
cannot exceed the number of processors within the node, i.e. eight. We estimate the speed-up
factor of the code only by a ratio of the real execution time of its parallel version to that of the
sequential version. To assess the performance of the computer complex, we also estimate the
speed-up of transport equation calculation since the parallel code version gives a bit more solu-
tions to the equation and this was discussed above.

Assume, К is a speed-up factor for the problem, Р is efficiency of the code paralleling:

 265

К=
пар

посл

Т
Т , where Тпосл is execution time of the serial code version, Тпар is execution time

of the parallel code version.

Р=
N
K , where N is a number of parallel processes.

K1 and Р1 are a speed-up factor and efficiency of paralleling for a transport equation, re-
spectively:

К1=
пар

посл

t
t , where tпосл is execution time of one transport equation with the serial code ver-

sion, tпар - is execution time of one transport equation with the parallel code version.

Р1= N
K1 , where N is a number of parallel processes.

The code efficiency can be illustrated by the results of 2D calculation of a steady-state
transport equation in multi-group statement for a multi-layered cylinder.

A grid for angular variables consisted of 160 directions (ES16 - quadrature). The system
contained 24 000 points. There were 10 computational regions. Within the computational regions
the grid consisted of regular quadrangles. There were 6 moments of anisotropy.

The problem was solved in 3-group and 4-group statement (using 3 and 4 eight-processor
computers, respectively). The table shows the execution time of the problem in seconds, speed-
up factors and efficiency of the problem paralleling.

Table 1.

Number of groups 3 4
N – number of processors 24 32
K –speed-up factor of the problem 16.56 21.76
K1 – speed-up factor of one transport equation 18.36 24.05
P – efficiency of the problem paralleling 69% 68%
P1 – efficiency of paralleling of one transport equation 76% 75%

Conclusion
Different methods of paralleling were studied which can be applied to solve the steady-

state neutron transport equations. Methods of paralleling by groups and particle directions were
shown to be most effective. Geometry decomposition method can also be rather effective but for
large systems with well-balanced number of points in the computational regions. Paralleling is
done on distributed memory. If paralleling is by the particle directions, shared memory can be
used also.

We also paralleled the solution of non-stationary neutron transport equation. We neither
faced any difficulties nor introduced significant changes in the paralleling algorithm described
above.

References
1. A.D.Gadzhiev, V.V.Gadzhieva, S.N.Lebedev, V.N.Pisarev, et al. Software package SINARA

for simulation of the dynamics of emergency processes in nuclear-power fast-neutron facili-
ties at the nuclear power stations. Issues of Nuclear Science and Engineering. Ser. Tech-
niques and codes for numerical solution of the mathematical-physics problems, 2000, iss. 3,
pp. 25-35.

2. V.M.Gribov, A.O.Ignatiev, A.V.Kim, E.M.Romanova, et al. Software package SINARA for
simulation of the dynamics of emergency processes in nuclear-power fast-neutron facilities at
the nuclear power stations. Implementation of parallel computations in LAN connecting dif-
ferent types of computers. Preprint of Russian Federal Nuclear Center – VNIITF N131,
1998.

3. G.J.Bell, S.Glasstone. Nuclear reactor theory. Van Nostrand Reinhold Company, 1970.

