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Introduction 
The term "magnetic field line reconnection" or simply "magnetic reconnection" refers to a 

broad range of problems that are of great interest for space and fusion plasmas. Magnetic recon-
nection is accompanied by an ultra-fast release of magnetic energy which transforms into different 
forms such as internal plasma energy, radiation and fast particles. For this reason re-connection 
processes are important for numerous applications and are used in order to explain different phenom-
ena such as the disruptive instability in tokamak plasmas, solar flares and sub-storms in the earth's 
magnetosphere. The problem of magnetic field line reconnection is closely related to the problem of 
the structural stability of vector fields [1]. A system is structurally stable if, for any small variation, 
the resulting system is equivalent to the initial one. 

The main goal of the present paper is to consider the regimes of driven magnetic field 
line reconnection in three-dimensional magnetic configurations with two null points using the 
parallel programming methods. 

 
Mathematical model 

We describe the magnetic reconnection processes by the system of the MHD equations 
for the plasma density p, velocity v, the temperature Τ and the vector-potential A [2]: 
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We also assume for simplicity that plasma transport coefficients: magnetic viscosity vm, elec-
tric conductivity σ, thermal conductivity k, parameter β, adiabatic index 7 are constant. The mag-
netic field is defined as = ∇×B A . The system is completed by the boundary and initial conditions 
that correspond to the current sheet formation. To describe magnetohydrodynamics waves we 
choose the vector-potential at the boundaries x = ±1 and y — ±1 of the form 

( ) ( ) ( )1/ 2, , , , , , 0 1/ 1z zA x y z t A x y z t r t r= = + − +F , (2) 
where Az(x,y,z,t) is the z-component of the vector-potential, r2 = x2 + y1. The function F (ξ) is 
equal to 
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and is chosen so as to impose the electric field gradually. The boundary conditions for the re-
maining variables are defined in accordance with the MHD equations. In the region where the 
plasma  enters the computational  domain the density  and the  pressure are set  equal to  ρ = 1 ,  
ρ = 1, while the conditions of free outflow are imposed on the part of the boundary where the 
plasma leaves the computational domain. 
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All the results of the numerical simulations presented below are obtained for constant 
magnetic viscosity vm = 0.006, pressure corresponding to β = 0.012,  thermal conductivity  k = 
0.01, dimensionless electric field 1E  = 0.06. 

The system of equations (1) has been solved numerically inside the computational box 
which has the form of the cube: —1 < x < 1 , — 1 < y < 1, —1 < z < 1. In this paper we used the 
explicit finite-difference scheme which is more convenient for the numerical realization than 
the semi-implicit and more effective Schnak algorithm [3]. 

 
Multiprocessor implementation of computational algorithm 

The system of equations contains 8 independent functions (3 components of velocity and 
vector-potential, temperature and density) which we call primary functions. Also we introduce 9 
other functions (pressure, 3 components of magnetic field and current density, module of current 
density and velocity divergence) to reduce number of calculation. We call them secondary func-
tions. 

Suppose we have n processors which we can enumerate in the sequential order from 0 
to  n-1  and the grid size is  1N  * N2 * N3.  We can assume for simplicity that 1N  = kn  
where k ∈  N. Usually 1N   is much greater than n. Our calculations are equally distributed 
among η processors. We also distribute the primary arrays among n processors and each part of 
the whole array we consider as a circular buffer. 

Let us consider the array structure at the initial time step. The first two cells are empty, 
the others N\ slices store the initial values of function. The value at a new time step can be cal-
culated as follows. All the cells shift circularly by two to the left. So at the first time step func-
tion values located in cells Ο... 1N  — 1 at the second time step are placed into cells 1N , 1N  + 1, 
O.. 1N  — 3 and so on as a result we can get the set of formulae: 

tf (cur_new) = G(H nf (prev, cur, next)) 
where { }1 2 17, ,...,t t t tf f f=f  consists of 8 primary functions and 9 secondary functions at a new 

time step, nf  is an analogous vector at the preceding time step, n = t — 1 for the primary 
function, n = t for the secondary function, Η is a diagonal matrix which components jjh  = 1 if 

the calculation of t
if  requires the information about components n

jf  and jjh  = 0 otherwise. In our 

case jjh  = 1 if t
if  is the primary function and i = j, jjh  = 0 if t

if  is the secondary function and i 

= j. G is an operator which calculates functions t
if   i = 1..17, j = 1..17, 

cur_new = (first + k)mod( 1N  + 2), 
prev = (first + k + l)mod( 1N  + 2), 
cur = (first + k + 2)mod( 1N  + 2), 
next = (first + k + 3)mod( 1n  + 2), 

where first is an index of zero two-dimensional slice at a new time step, k ranges from 1 to HI 
— 2 (values t at the boundary two-dimensional slices are calculated with the use of boundary 
conditions). 

For calculation of the boundary two-dimensional slice value we must use slice values 
from the adjacent processors. So process 0 send the last two dimensional slice, the process with 
the number ranging from 1 to n — 2 send two boundary slices, process n — 1 send the first slice. As 
a result we get the number of messages at each time step which is equal to 2(n — 2) + 2 = 2n — 2. 
The size of array that stores the primary function values is ( 1N /n + 3) * 2N  * 3N  for process 0 
and n — 1 and ( 1N /n + 4) * N2 * 3N  for the other processes. Additionally we use 3 two-
dimensional slices to store pressure and 8 separate variables to store other secondary functions. 
The multiprocessor implementation algorithm which we described in the section allows us to 
expect that the calculations will be really concurrent with a small latency for transfer. 
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Result of the computer simulation 
We consider configurations with two regular null points connected by a separatrix. This 

system is structurally unstable. This configuration is the analogy of the "spontaneous" solar 
flares. Here we consider a structurally unstable current-free magnetic configuration with two 
connected null points. An example of such a magnetic configuration is given by a magnetic 
field of the form 

( ) ( ) ( ) ( )2 2 2 2 2 2, , 2 2 2x y zB x y z xy z x e yz x y e zx y z e= − − + +∈ + − − + +∈ + − − + +∈  (4) 
with 0∈≠ . 

In the simulations we take ε  = 0.16. 
We consider initial magnetic configuration with two null points connected by the separa-

trix line directed the diagonal. 
As the result of the evolution of the perturbation exited from the boundary, this configu-

ration transforms into the structurally stable one. The system with two null points connected by 
separatrix is destroyed and transform into configuration with separate null points. The electric 
current is localised near the null point. As the result of this transformation the part of the energy is 
rested. 

The multiprocessor implementation algorithm which we describe allows us to expect 
that the calculations will be really concurrent with a small latency for transfer. The calculation is 
carried out on the cluster in Science Research Computer Center. The configuration of cluster as 
follows: 36 processors - Pentium HI/550 MHz/ RAM 500 MB. 
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