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The numerical weather prediction (NWP) was always the field where high-performance 

computers are required. To make use of them, the program implementation of the model should 
be well suited for parallel architecture of these computers. In this paper, parallel implementation 
of the global 3D semi-Lagrangian NWP model developed in the Institute of Numerical Mathe-
matics, Russian Academy of Sciences (INM RAS) is presented. 

The approaches to parallelization described here can be also applied to the problems of 
incompressible computational fluid dynamics. 

The governing equations of the model are essentially the Navier-Stokes-type equations 
on the rotating sphere with some additional simplifying assumptions (i.e.  hydrostatic assump-
tion). These equations for moist atmosphere can be written as 
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where ( ), , , , ln Tu v T qϕ π=  is the vector of state of the system, u, v are the components of the 
horizontal velocity vector, T is the temperature, q is the specific humidity, and π is the surface 
pressure, A is the 3D advection operator, B represents all other terms of equations without forc-
ing. In the forcing term ( ), , , ,0

T

u v T qF F F F=F , each component describes the sources and sinks 
of the corresponding quantity due to subgrid-scale processes (horizontal and vertical diffusion, 
shortwave and longwave radiation, deep and shallow convection, planetary boundary layer, grav-
ity wave drag). 

The forcing term F  can be computed independently for each point of the horizontal grid, 
since the computations of this term involve only the points from given vertical column of the 
grid. The main difficulty in parallelization of atmospheric models lies in the “dynamics” calcula-
tion, i.e. time stepping algorithm for the discretized Eq. (1). This is because atmospheric models 
normally use the semi-implicit treatment of fast gravity waves to increase the time-step. This re-
sults in a set of discrete Helmholtz-type equations on the sphere to be solved at each time step. 

The semi-Lagrangian  method (backward characteristic method) for advection allows to 
use the time step, which is several times greater than determined by the CFL condition. In this 
case, the advection operator vanishes in the discretized form of Eq. (1), as the material derivative 
is discretized as the derivative along the trajectory (see [1] for details). The model under consid-
eration is presented in detail in [2], and numerical methods used for horizontal discretization are 
given in [3].  The distinct features of this model are the application of the fourth-order compact 
finite differences on the unstaggered grid for approximation of nonadvective terms combined 
with the use of the vertical component of the absolute vorticity and the horizontal divergence as 
prognostic variables. 

The system (1) without forcing is discretized using the two-time level scheme with ex-
trapolation of wind and the nonlinear terms to the time level n+1/2 as 
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where L is the linear part of the operator B, which is responsible for fast gravity waves, L+N=B, 
( ) 1n+⋅  denotes the value of the corresponding equation terms at the arrival point of the trajectory 

at the new time step, ( )*

n⋅  - the value at the corresponding departure point (which is determined 
by the 3D trajectory). Arrival points are always points of the grid, while the values at departure 
points are obtained by interpolation using the surrounding points of the grid. 

One solves the implicit part of system (2) with the help of a direct solver. To do this, the 
corresponding part of  system (2) is reduced to the single discrete 3D  Helmholtz-like equation 
with respect to the single variable D. 

( )21 1n nD t D R+ +− ∆ ∇ =2G , (3) 
where D is the horizontal divergence on the model σ-coordinate surface, G is a K x K matrix (K - 
is the number of vertical levels in the model), 2∇  is the discrete analogue of the horizontal 
Laplace operator in spherical coordinates, R combines all known quantities from system (2) at 
time levels n and n-1. The periodical boundary conditions in longitude are imposed on (3) as 
well as on system (2).  The diagonalizing transform applied to matrix G allows to uncouple (3) 
in the vertical and solve it independently for each vertical level by a direct method involving 
Fourier transforms in longitudinal direction and block-tridiagonal Gaussian elimination in the 
meridional direction. The necessity to use 2x2 block-tridiagonal inversion is originated from the 
application of compact finite differences. 

Let us consider the computational structure of the model. First the forcing term F  is 
computed (Eq. 1) using the values of state variables at time level n. This includes the calculation 
of prognostic variables tendencies due to parameterizations of subgrid-scale processes (solar ra-
diation etc.) One should note that these computations represent 61 % of all computations in 
terms of the CPU time and can be done in parallel for all points of the horizontal grid. Then the 
terms L at time level n and N at time level n+1/2 from (3) are calculated. These calculations for 
a given grid point (i,j,k) require the values from the domain [i-4:i+4]x[j-4:j+4]x[1:K]. The rela-
tively large size of the horizontal stencil is caused by the use of fourth-order compact finite dif-
ferences to calculate the gradient and divergence operators. They are implemented with the ap-
proximate inversion of the corresponding tridiagonal operators. 

The next step is to find departure points and interpolate the calculated terms to them. This 
part is responsible for about 30 % of CPU time per time step. Typical half-width of the depend-
ency domain in our model for the horizontal resolution of 1.5 degrees is 5 points in each horizon-
tal direction. 

We restrict ourselves by the 1D partitioning of the computational domain so that  each 
processor performs computations in some band of latitudes (Fig. 1). Note that unlike most Eule-
rian methods, in the case of 2D partitioning, one would need 8 (and not 4) data exchanges be-
tween processors, involving also “corner” processors. In future, we will use OpenMP to increase 
the degree of parallelism. 

Once interpolations and direct fast Fourier transforms in longitude are finished, we have 
to redistribute data for Fourier space calculations. The calculations  for each longitudinal 
wavenumber require the values of all latitudes (Fig. 1), so we need to provide each processor 
with the corresponding data using data transposition. 

The computations in Fourier space involve the calculation of the RHS and solution of 
Helmholtz-type equation (3), implicit horizontal fourth-order diffusion and calculation of hori-
zontal velocity components from divergence and vorticity. These computations  are performed in 
parallel for each longitudinal wavenumber. After Fourier-space calculations we again  transpose 
data since we need all longitudinal wavenumbers to perform inverse Fourier transforms. 
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Figure 1. Domain partition in the grid-point and Fourier space computations. 

 

 
Figure 2. Parallel speedup of semi-Lagrangian NWP model: speedup of the dynamics (left), 
extrapolated speedup of the whole model with the forcing term (right) for different resolu-
tions of the model 

 
The MPI (Message Passing Interface) is used to handle communications between proces-

sors. We use the single program -- multiple data (SPMD) approach with the master process also 
carrying out I/O and some additional computations. Whenever possible, asynchronous commu-
nications are used that permit to overlap the computations and data exchanges. 

The benchmarking computations were carried out on the MBC 1000M system installed at 
Joint Supercomputer Center in Moscow. It consists of 384 biprocessor Alpha21264A 667 MHz 
nodes connected via Myrinet network having peak output of 210 Mbytes/s and latency time 14 
µs over MPI. The peak performance of MBC 1000M is 1 TFlops. Three resolution of the model 
were tested: 2 degrees in longitude and latitude with 20 vertical levels (this corresponds to the 
dimensions 180x90x20 in longitude, latitude and vertical coordinate, respectively), 1.5 degrees 
with 20 levels (240x120x28), and 1.5 degrees with 28 levels (300x150x28). The parallel speedup 
of the dynamics of the semi-Lagrangian NWP model on MBC 1000M systems is presented in 
Fig. 2 (left). The right panel of Fig. 2 depicts the theoretical parallel speedup calculated for the 
whole model with forcing terms. 

Finally, one can note that modern atmospheric models apply more and more sophisticated 
algorithms to calculate the components of forcing term in Eq. (1). This means that parallel effi-
ciency of the models will be further improved without additional efforts, since forcing terms 
computations do not require additional exchanges between processors. 
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It is expected that the results for other parallel systems will be available at the time of 
conference. 
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