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Introduction 
The processes which have place inside the atmospheric boundary layer (ABL) and ocean 

boundary layer (OBL) are similar to each other in many respects. It’s known that along with 
small-scale isotropic turbulence the large-scale (compatible with the layers thickness) coherent 
motions are usually observed inside both ABL and OBL. These eddies can be induced by con-
vection and by surface wind stress. They play significant role in momentum heat and moisture 
(salinity) transport near surface and thus in atmosphere-ocean interaction. 

Deardorff (1973) suggested the large-eddy simulation (LES) approach which is based on 
the decomposition of the flow into large-scale and small-scale motions. The three-dimensional 
structure and the time evolution of large eddies are directly simulated, whilst the feedback effect 
of small eddies on the large-scale flow is parameterized. Now this approach is widespread for the 
modelling of ABL, but the LES models of BLO are still rare. 

It seems to be attractive to compose the coupled LES model of two interactive boundary 
layers, as the large-scale eddies in ABL and OBL have the close spatial scales in some cases and 
are directly connected due to surface fluxes.  

The number of grid points N in LES models are significantly less then in the case of di-
rect modelling. It is found (Agee and Gluhovsky, 1999) that the 50-m grid simulation includes a 
significant portion of the inertial subrange, and therefore, for the domain 10 × 10 × 2.5 km3 the 
value of N is of order 106. Modern computers (even not parallel) allow to simulate successfully 
the ABL with such resolution. The same estimation of N takes place for the OBL LES model too, 
but here the size of domain is approximately 10-30 times less, since one needs to simulate OBL 
with the more precise grid to satisfy the demand of the resolution of some part of inertial 
subrange. The coupled modeling requires the same horizontal sizes for the both models. So the 
number of grid points in coupled model should be 102-103 times increased. Taking into account a 
number of prognostic variable (7 for each model in our case) and peculiarities of numerical 
scheme (multi-layer explicit schemes are often used) the total value of on-line storage in coupled 
ABL-OBL LES model can reach 10-100 Gigabytes. 

It’s clear that the single way to realize such model is using of the computers of parallel 
architecture, because we have the significant requirements both for storage and computer run 
time. 

Here we present the short description of ABL and OBL LES models and some specialty 
of the parallel realization. 

 
Models description 
a. Basic equations 

The LES models used in this work are based on equations of the Reynolds type. The set 
of governing equations is derived by a space averaging of the Navier-Stokes equations for in-
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compressible fluid expanded by the heat transport equation and moisture (salinity) transport 
equation. The systems of equations for ABL and OBL are almost identical except the state equa-
tions, which express the dependencies of the air and water densities on potential temperature, 
pressure and moisture and on temperature and salinity correspondingly. These equations are 
simplified, using the Boussinesq approximation, and are written in the tensor form as follows: 
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Using Reynolds equations (1) and equation of continuity (4) one can get Poisson equation for 
pressure: 
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were Qi is the left side of (1) except the term including pressure p. 
The nonlinear state equation (Bryden et al., 1999) was used for sea water: 
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Correspondingly, the air density aρ  is given by: 
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were (1 0,61 )vT T q= + - virtual temperature. 
 

b. Subgrid closure 
Equations (1), (2) and (3) contain the Reynolds subgrid stresses jiu u′ ′ , subgrid heat flux 

ju θ′ ′  and salinity moisture flux ju s′ ′  which are responsible for the feedback effect of subgrid 
scales on resolvable motion. To parameterize these terms, the methodology proposed by Sma-
gorinsky (1963) is used: 
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where Km is the eddy viscosity and Kh is the eddy diffusivity. They are assumed to be functions 
of the subgrid turbulence kinetic energy 2 / 2iE u′=  and dissipation rate of turbulence kinetic en-
ergy ∈  (the consequence of Kolmogorov hypothesis): 
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Two additional prognostic equations for E and ∈  are introduced (Monin and Yaglom, 1965): 
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Here B and S are buoyancy and shear production of TKE correspondingly. 
The equations (12,13) should describe the turbulent motions with the subgrid spatial 

scales, so the dissipation rate of TKE is limited as follows: 
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Here the value of lmax is determined by the value of grid cells. 
 

c. Boundary conditions 
The calculations are performed in rectangular domains [ ]0 xx L≤ ≤  x 0 yy L ≤ ≤   x 

[ ]0 zz z L≤ ≤ , where z0 is the roughness length. 
Horizontal boundary conditions are assumed to be periodic. 
The vertical velocity ω  at the bottom ( 0z z= ) and the top ( zz L= ) are prescribed to be 

zero. 
The momentum, heat and moisture (salinity) fluxes are set to zero at the top of ABL and 

the bottom of OBL. 
The Monin-Obukhov similarity formulation (Monin and Yaglom, 1965) and Businger-

Dyer empirical formulas (e.g., Sorbjan, 1989) are employed to calculate the momentum, heat and 
moisture fluxes near surface. This procedure is included only in ABL model. In OBL model the 
surface fluxes are prescribed by the constant values (in the case of modelling of OBL only) or 
are taken from ABL model in the case of coupled modelling. 

 
d. Numerical scheme 

A finite-difference approach is employed to perform numerical experiments. For the 
space approximation a full staggered grid with the uniform spacing is used. Partial differential 
equations of the model are approximated in space using a finite-difference technique with the 
second order of approximation. Matsuno scheme was used for the time approximation. The Pois-
son equation (5) is solved by multigrid method. Parallel code of this method written by Bernard 
Bunner was taken from http://www.mgnet.org 

 
Parallel realization 

Message Passing Interface (MPI) is used for the data exchange between processors. 3-D 
decomposition of area was applied. The most exchanges were based on nonblocking communi-
cations. The parallel version is oriented to supercomputers with shared memory. The codes of 
the models are written using the memory allocation faculties of Fortran 90. The on-line memory, 
used for the storing of prognostic variables of the models, is dynamically shared among the 
processors. So the memory restrictions are removed (in case of sufficient amount of processors). 
The testing of parallel model was carried out using cluster MVS-1000M of Joint Supercomputer 
Center. 

The acceleration strongly depends on the ratio of numbers of boundary and inner points 
in the subdomains. For example if the total domain contains 96×96×32 grid cells the computer-
run time of parallel version of LES model (32 processors in use) is in 15-16 times less than the 
run time of sequential code. This acceleration is not so big and grows slowly with increasing of 
number of processors. But on the other hand the acceleration of sequential version of the model 
with a small number of grid points wasn’t the main goal of our work in this direction. The sev-
eral numerical experiments were carried out with large domains. For example the parallel ver-
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sion of ABL LES model permits to use the domain containing 768 × 768 × 256 points (spatial 
resolution - 10 × 10 × 10 m3). In this case we used 576 processors (decomposition - 12 × 12 × 4). 
Here the exchanges between processors take only 5-6% of run time. This experiment requires up 
to 15 Gigabytes on-line storage and a quite big run time, so it is unattainable with the help of se-
quential technique. 
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