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In this paper we define modified algorithms for general Krylov methods, that will be 
adapted to perform for the computing on the grid. 

 
Motivations 

Grid computer architecture are characterized by slow communication networks and high 
latencies [1]. Improvment of the communication network technology, may expect that standard 
numerical methodologies will be performant. Nevertheless, if the available networks are non 
dedicated, same problems of communication network with fluctuate bandwidths and high laten-
cies will certainly appear. Indeed, as shown by the behavior of internet users, more great is the 
network capability, more great is the number of users and their needs. 

From the numerical point of view, the Krylov methods became one of the key component 
of numerical solvers for large sparse linear systems coming from the discretisation of linear and 
non linear partial differential equations (see for example the Newton-Krylov-Schwarz method 
[3]). The two main components of a Krylov methods arc Matrix-vector product and dot 
products. 

Renumbering techniques usualy lead to algorithms of matrix-vector product of PDEs 
problems with local communication pattern. Some, data distribution tools such as [2] allow to 
distribute the task computation with local communication pattern in order to minimize the 
communication between processes. 

For the dot products, the situation is totaly different. They involve global 
communications between processors (at least d-1 messages for 2d processors with an hypercube 
topology). Thus, the dot product is the bottleneck for the performance of the Krylov methods 
implementation on the grid architecture. 

The main idea of this paper is to modified the Krylov method algorithms, in order to 
delay as far as possible the dot products computation without destroying the Krylov method 
properties and convergence. For this purpose, with symbolic calculus software, we define induc-
tion formula for a Krylov method in order to go directly from the kth iterate to the (k+ p)th iterate. 

 
Conjugate Gradient Algorithm 

For example, we consider the Conjugate Gradient (CG) Krylov method. The CG method 
is based on the minimisation of functional J on the Krylov space x 1  + Kr = x 1  + {d 1 ,..., dr} with a 
scalar product (.,.)φ  to define the relation of orthogonality between the Krylov vectors. The 
problem to solve Ax = b with A symmetric is equivalent to the problem: 

Find rx K∈  that minimize 1( ) ( , ) ( , ),
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where (.,.) represent the usual scalar product. 
In the GC algorithm the new direction of descent at iterate p is computed in order to 

belong to the Krylov space Kp and to be orthogonal to the previous directions of descent with the 
scalar product φ . At each time step, GC performs 3 scalar products (with the third is dependant 
of the result of the two firsts). This is totally inefficient in the grid computing context with high 
latencies. 

 
Conjugate Gradient adapted to the grid 

We develop, a Maple code to program the fortran induction formula. The bilinear 
property of the scalar product φ  is helpfully in this computation. The process to go directly from 

1x  to 1px + , is decomposed in three steps as follows: 
1. Construct a Krylov space starting from 1x , compute 1 1 1d r b Ax= = −  and generate the 

space { } { }2 1
1 1 1 1 1 2, , ,..., , ,...,p

p pd Ad A d A d K ω ω ω− = = . 
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3. compute the minimum of J(x) on 1x  + Kp 
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The problem is to generate recursively the ,i jβ  and jα  with only the scalar product 

, ( , )i j i jH ω ω= . One can then computed once and for all at the beginning this scalar product with 
only one global communication of size 2*p-1 (see remark 3) or (p — l)p/2. 

Let us examplify with CG algorithm and p—3. The induction formula lead to: 
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Remark 1: The formula generated by the symbolic only involve operations with scalars. 

Only the ,i jH  terms and matrix vector products to compute iW  are operations with vectors. 
Remark 2: These formula seem quite complex, nevertheless they are very cheap 

compared to operations with vectors for problems where the grid architecture is used. 
Remark 3: The symmetry property of the matrix A allows to reduce the total number of 

scalar product to 2p—1. We have , 1, 1i j i jH H + −= . Without taking in account this symmetry 
property, the number of scalar product should be p+p(p-l)/2. Nevertheless, the principle to 
compute once and for all the scalar product at the beginning still available. 

Remark 4: The methodology developed here for the CG can be applied to any other 
krylov method. The knowledge of the functional J and the scalar product definition for the 
orthogonality constraint on the Krylov vectors are the only needs. 

 
Preliminary Conclusions and Future work 

We will present at the conference some tests of parallel efficiency of this method on a 
grid computing architecture. The meta-computer target consists in several beowulf systems, 
linked by the standard Ethernet network delivering between 3 and 5 Mbit/s. The numerical 
stability of theses computation will be investigated. 
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