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Introduction 
The problem of crystal growth into an undercooled melt has attracted much interest 
for decades because of its importance in industrial applications such as castings, ingots 

and weldings. Many mathmatical models and numerical applications have been developed in this 
area. Among those widely-used models in recent years, the phase-field model provides a 
convenient basis for the numerical solution of complicated solidification problems with many 
morphologies. In the phase-field model, in addition to the customary thermal energy, an 
additional variable, phase field φ, is introduced to explicitly label the liquid and solid phases. In 
this approach, the phase-field takes on a constant value in each bulk phase; e.g., φ = 0 in the solid 
phase, and φ = 1 in the liquid phase. The transformation from solid to liquid occurs over a thin 
transition region through which φ varies smoothly from zero to one. Since significant changes in 
the phase-field variable only occur over a very small part of the whole domain, the algorithms 
must allow the interface width to be very small, in order to capture the small-scale features such 
as liquid trapping and tip splitting. Hence, the mesh sizes must be small enough to resolve these 
phenomena and obtain accurate solutions. One drawback of phase-field model is its CPU 
intensity. To solve this problem, it is necessary to apply parallelization to phase-field model 
algorithms in order to decrease wall-clock time. 

We introduce the phase-field model in the first part of this paper. Numerical solutions 
corresponding to growth of dendrites are also given in this part. Finally we discuss the approach 
to parallelization and the speedups obtained. 

 
Governing Equations of Phase-Field Model 

In this section we present the equations of the phase-field model along with the scalings 
employed to render them dimensionless. Boundary and initial conditions required to formulate a 
well-posed mathematics problem are also prescribed. 

The coupled thermodynamically consistent dimensionless governing equations for the 
phase field and temperature (Chen [1]) can be written as: 
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In the above equations, φ is the dimensionless phase value. By introducing the length scale w 
(the geometric size of the domain) and the reference time scale 2 /w α  (the thermal diffusion 
time, where / pk cα ρ=  is the thermal diffusivity of the liquid-assumed to be a constant), 
dimensionless temperature θ , spatial variable x , time t are defined by: 
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where T is temperature; mT  is the equilibrium melting temperature; 0T  is the initial temperature 
of the domain; X  and τ  are the spatial and temporal variables, respectively. 

In addition, the four dimensionless parameters of this isotropic phase-field model are 
defined in the following form: 
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where 2/p md c T Lρ σ=  is capillary length; S is the Stefan number; L is latent heat per unit 
volume; σ  is the surface energy; µ  is the interface kinetic coefficient, and δ  is a length scale 
for the interface thickness (see details in [2]). 

In the present study, the domain size 0 0 2.25 2.25X Y× = ×  is chosen so that it is sufficient 
for approximating an unbounded domain. The boundary conditions are: 
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At the initial time dimensionless temperature is set at the melt temperature on a small 
rectangle 1/75 the domain size in the center of the domain. Hence prescribed initial data take the 
form: 
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0 0 0( , , ) 1, ( , , ) 1, ( , ) \ ,x y t x y t x yθ φ= − = ∈Ω Ω             (3b) 
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Numerical methods and results 

The governing equations (1) are a pair of coupled nonlinear parabolic equations. Note 
that the heat equation (1b) is linear in the temperature θ  but contains a source term depending 
nonlinearly on φ , which depends on θ  only in the interfacial region. On the other hand, Eq. (1a) 
contains a quartic nonlinearity in φ . 

A δ -form Douglas-Gunn procedure is employed to solve the parabolic phase-field 
governing equations. Quasilinearization of the nonlinear term ( , )g φ θ  in Eq. (1a) use a Fréchet-
Taylor expansion [3, 4] that ignores terms beyond first order. Figure 1 displays the state of 
dendritic growth at 0.2 units of dimensionless time. 

 
Approach to parallelization and results 

Parallelization of the numerical solution procedure is based on the shared-memory 
programming paradigm using the HP Fortran 90 HP-UX compiler. The program is parallelized 
using OpenMP running on the HP SuperDome at the University of Kentucky Computing Center. 
The maximum number of threads available on the HP SuperDome is 64, and in the current study 
each processor is used to compute one part of the whole domain. The mesh grid is set to be 
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600 600×  corresponding to the domain size 2.25 2.25× , and the time step is 51.25 10−× . To 
study the speed-up of the parallelization, different numbers n of processors (n=1,2,4,8,16) are 
used to execute the algorithm at t=0.2. Figure 2 shows the speed-up factor versus the number of 
processors. It shows that, as the numbers of processors increase, the speed-up factor increases 
sub-linearly. The curve in Fig. 2 also shows that the speed-up factor attains its maximum at a 
certain number of processors for the present problem. 

 
Fig. 1. Dendritic growth from the center at t=0.2. 

 

 
Fig. 2. Speed-up performance of the parallelized phase-field model. 

 
References 

1. Yuqi Chen. A hyperbolic phase-field approach for solidification with supercooling. Master's 
thesis, Mechanical Engineering Department, University of Kentucky, August 1999. 

2. S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, and G.B. 
McFadden. Thermodynamically-consistent phase-field models for solidification. Physica D, 
69: 189-200, 1993. 

3. W.F. Ames. Numerical Methods for Partial Differential Equations. Academic Press, New 
York, NY, 1977. 

4. R.E. Bellman and R.E. Kalaba. Quasilinearization and Nonlinear Boundary-Value Problems. 
American Elsevier Publishing Company, Inc., New York, NY, 1965. 


