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The Burgers' turbulence (BT) is known as the simplest model of real turbulence [1] and 

includes its main mechanisms - nonlinear interaction of disturbances, their spectral transfer and 
viscous dissipation on the small scales. BT is described by Burgers' equation (BE) for the 
velocity field with appropriate choice of initial conditions and/or external driving forcing: 

0( ) ( , ); ( , 0) ( ).ν+ ∇ = ∆ + = =tv v v v f x t v x t v x               (1) 

Here ν  is the kinematic viscosity coefficient. 
The properties of BT are of great interest in many aspects: for  the general theory of 

nonlinear partial differential equations, for development of methods of their effective numerical 
solution, for the statistical theory of turbulence, as well as for numerous applications in various 
scientific fields, including such problems as the formation of the large-scale structure in the 
Universe, nonlinear acoustics and optics, formation of structures on the surface in 
inhomogeneously heated fluid, interface growth, traffic current etc. [1, 2]. In spite of the fact that 
Hopf-Cole transform gives the solution of BE directly for the current time, its solution using 
time forwarding is also of great interest, as a good test for developing effective numerical 
methods for wider class of nonlinear equations with sharp gradients. 

In the present report few numerical methods are described, which have been implemented 
for solution of BT problems with random self-similar initial conditions. The realization of 
parallel versions of these methods on multiprocessor systems of SIMD and MIMD classes is 
discussed. It is assumed that external force is absent, 0=f , and the initial velocity is determined 
by scaling exponent h [3, 4]: 

0 0 0 0( ' ) ( ') ( ( ' ) ( '))hv x x v x v x x v xλ λ+ − = + −    0, , ',x xλ∀ > ∀ ∀  

where the equality is valid in statistical sense, i.e. the probability distribution of both sides of 
equality is the same. Values 1 1h− ≤ ≤  correspond to random functions of different types, 
particularly self-similar 1D signal is Brownian motion for 1/ 2h = , and white noise for 

1/ 2h = − . The solution of (1) without external forcing ( 0=f ) at vanishing viscosity reads: 
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where ( , )a x t  is the inverse Lagrangian function, defined as the coordinate where the maximum 
is achieved for the function 
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The numerical determination of function ( , )a x t  in the inviscid limit is based on the 
possibility to formulate the solution of (1) at 0ν →  for the velocity potential ( , )Ψ x t  in terms of 
Legendre Transform: 
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and the right hand side of (5) is the 

Legendre transform of 0( , )Φ a t . 
For the numerical solution of Burgers' equation in the inviscid limit recently developed  

algorithm of Fast Legendre Transform (FLT) is used, realised in both variants for sequential one-
processor computers [4] and for parallel multiprocessor SIMD supercomputers [5]. The FLT 
algorithm is based on the important property of the inverse Lagrangian function, which 
determines the solution of Burgers' equation in the inviscid limit [4]: 

(( ( , ) ( ', ))( ')) 0.− − ≥a x t a x t x x                 (6) 
In the 1-D case (6) is equivalent to the monotonic (non-decreasing) dependence  of the 

inverse Lagrangian function from the space coordinate, and in the multidimensional case it 
means, in particular, that each component of this function is a non-decreasing function of the 
corresponding coordinate. 

When realised on the Connection Machine CM200 parallel SIMD computer, the parallel 
FLT algorithm was based on binary tree parallel search of maximum in (4), using "send" and 
"segmented scan" operations. The estimate of computation speedup in an ideal case of 
hypothetical parallel SIMD computer with number of processors equal to number of mesh points 

N as 
2logSIMD

NS
N

∼ , and in a real case of computer with SIMD
physN  processors we get 
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N
∼ . In the present study another form of this parallel algorithm is developed, 

suitable for the MIMD type parallel computers and realized on 16-processor parallel cluster 
MVS-1000. For the common case of MIMD computer with MIMD

physN  processors we yield the 
estimate of the speedup as 
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The ratio of speedups on SIMD and MIMD computers is therefore 
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and we have 1r >  for reasonable values of parameters. For instance, for the cases considered 
202N = ; 8192SIMD

physN =  for CM 200, and 16MIMD
physN =  for MVS-1000 we could obtain 

410phys
SIMDS ∼  and 1.25phys

MIMDS ∼ , so 300r ∼ , and it is required about 300 times growth of CPU 
performance to reach on the MVS-1000 system the computational time of FLT algorithm 
comparable with that reached at CM200. 

In the case of nonzero viscosity one of the most interesting and promising modern 
methods of numerical solution of nonlinear partial differential equations is using of wavelet 
bases. 

The decay of the wavelet coefficients depends upon the local smoothness of the function. 
Therefore if function is smooth everywhere except several regions of sharp transition 
(``singularities''), then the wavelet coefficients are sufficiently large only in the vicinity of the 
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singularities of the function. It allows decreasing number of the coefficients to represent 
solutions with sharp transitions. 

For the broad class of differential and pseudo-differential operators, in particular for 
Laplace operator, contained in BE, wavelet bases yield the sparse block-band structure of their 
representation. 

Another advantage of the wavelet expansion is enough simple implementation of the 
dynamical adaptation of the space resolution, i.e. automatic following singular structures of the 
solution and increasing resolution in their vicinities [9]. 

Moreover wavelets allow to implement efficient parallel algorithms of the numerical 
integration of evolution equations, in particularly to compute the parallel multiplication of a 
matrix by a vector [8]. To do the parallel calculations we separate each scale (represented by a 

2nN =  points) in 2 pj  parts of equal size. If we have N points and 2 pj
pN =  processes, the 

computation complexity is 2(log ( ) / )pO N N N⋅ . Accounting that complexity of this algorithm on 

one-processor system is 2( )O N  the estimate of speedup is 2( / log )pO N N N . 
For the numerical integration of BE we used compactly supported Daubechies wavelets 

[7]. Moreover we develop biorthogonal compactly supported wavelet 1D and 2D bases adapted 
to linear differential operators (in particular, for Laplace operator), yielding their diagonal 
representation, as for the Fourier basis. 

Numerical solution of BE is fulfilled for  initial conditions with ( 0.75 0.75)h− ≤ ≤  up to 
the time characterized by formation and interaction between multiple discontinuities. 
Realizations with lengths up to 17 202 2÷  points have been used and the structure functions of 
velocity, averaged over several decades and few hundreds of  realizations are calculated. 
Structure function of the velocity field ( )u x  of order q and its scale invariance in the inertial 
range, expressed by power law, can be written as follows 

0

1( ) | ( ) ( ) | q

L
q q

q l qS l u u x l u x dx C l
L

ζδ=< >= + − =∫   for all q,             (7) 

where qC  are some numerical constants, qζ  are scaling exponents. 
The use of parallel forms of Fast Legendre Transform algorithm in case of vanishing 

viscosity and wavelet bases for non-zero viscosity allows to decrease sufficiently computational 
time for gathering required statistics, and to made it possible to investigate self-similar properties 
of ( )qS l  in BT. Particularly, we have checked the existence in BT the important property of 
extended self-similarity (usually referring as ESS) which is found recently and investigated 
theoretically and experimentally for rather wide range of real 3D turbulent flows, including 
isotropic 3D turbulence, thermal convection and MHD-turbulence [3]. ESS allows to determine 
with significantly improved accuracy the scaling exponents qζ  due to extension of the interval in 
which power laws obey. The existence of some kind of extended interval of scaling behaviour 
for velocity structure function in BT was confirmed numerically for both viscous and inviscid 
cases for the medium and large scales. More detailed study indicates however  that in the viscous 
subrange the ESS property possibly not hold. This violation of ESS become more significant, 
and is more expressed for random initial conditions of fractal Brownian type ( 0h ≥ ), and 
relatively weak for fractal white noise initial conditions ( 0h ≤ ). These numerical results could 
mean that  existence of ESS is not universal for any kind of random process, but is somehow 
connected with the mechanism of the energy dissipation, differing sufficiently in Navier-Stokes 
and Burgers' turbulence. The results indicate that for the case of BT the analysis of ESS for 3D 
Navier Stokes turbulence [10] seems to be also valid, giving more expressed deviation due to  
more strong intermittency of BT as compared with isotropic Navier-Stokes turbulence. It could 
be measured by the deviation from Kolmogorov law of scaling exponent for second structure 
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function of velocity, which is relatively small in the last case, 0.03δζ ≈ , and for BT is much 
greater and depends  sufficiently from h [3, 4]. 

Thus, the presented methods, implemented  for investigation of statistical and scaling 
properties of Burgers' turbulence, are useful tools, promising for generalizations to other 
nonlinear amplitude equations, which haven't generally simplified alternative methods of 
solution, like Hopf-Cole transform. When used for the solution of the BT problem, these 
methods allow to reach an effective resolution of the regions of sharp transitions. In the inviscid 
limit using FLT algorithm, in parallel variants in the extreme, allows to reduce sufficiently the 
computation time and gives the possibility to gather enough large statistics for Burgers' 
turbulence. We could see also, that for parallel form of the FLT algorithm using SIMD 
computers with enough large number of processors is preferable. In the case of finite viscosity,  
wavelet bases allow to implement the algorithm combined all advantages of  the such 
representation: the nonlinear compression of the solution, sparse representation of the differential 
operators and dynamical adaptation of the space resolution. In comparison with traditional 
spectral and finite difference methods, wavelet bases allow to decrease essentially the number of 
the degrees of freedom that is needed for obtaining  the solution with a given accuracy. 
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