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The understanding of the dynamics and kinematics of the 3D unsteady separated 

homogeneous and stratified viscous fluid flows around the bluff bodies is very important both 
from theoretical and from practical point of view. The laboratory investigations of such flows are 
difficult and in some cases impossible. With the development of high-performance computers 
and especially cost effective massive parallel computers with a distributed memory the 
numerical simulation becomes one of the more effective approaches for such investigations. At 
the present paper for the investigation of the 3D unsteady separated homogeneous and stratified 
viscous fluid flows around the bluff bodies (sphere and 3D circular cylinder) at 200 ≤ Re ≤ 1000 
the direct numerical simulation is used. (Re = Ud/v, where U is the free-stream velocity, d is the 
diameter of the sphere or cylinder, and v is the kinematic viscosity). For this simulation the 
Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit 
finite difference scheme (second order of accuracy in space, minimum scheme viscosity and 
dispersion, capable for work in wide range of Reynolds numbers and monotonous) based on 
Modified Central Difference Scheme (MCDS) and Modified Upwind Difference Scheme 
(MUDS) with special switch condition depending on velocity sign and sign of first and second 
differences of transferred functions was developed and successfully applied [1-2]. Some 
applications of SMIF for solving of different problems are described in [3]. The Poisson equation 
for the pressure was solved by the Preconditioned Conjugate Gradients Method. The 
parallelization of the algorithm was made and successfully applied on massive parallel 
computers with a distributed memory such as PARAM 10000 (based on Ultra Sparc II 
processors (400 MHz) with Paramnet) and MBC 1000M (based on the processors Alpha21264 
(667 MHz) with Myrinet 2000). 

 

 
Fig. 1. Re=200. Vortex structures (the zero 

isosurface of the second eigenvalues 
of the S2+Ω2 tensor). 

 
Fig. 2. Comparison of the speed ups for Paramnet 
(Param 10000) and Myrinet 2000 (MBC 1000M). 
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For the investigation of the 3D unsteady separated homogeneous viscous fluid flows 
around the sphere the spherical coordinate system (O-type grid) is used: x= r sinθ cosϕ, y= r sinθ 
sinϕ, z= r cosθ, where z, x, y are streamwise, lift and lateral directions, accordingly. The 
following number of grid points (r, θ, ϕ) is used: (120 x 60 x 120) (see Fig. 1). The number of 
grid points in the boundary layer in radial direction is 10. The vortical regions for Re=200 in the 
Fig.1 were identified by using the definition of vortex core as a connected region containing two 
negative eigenvalues of the S2+Ω2 tensor (where the rate of strain Si,j and rate of rotation Ωi,j 
tensors are Si,j=(ui,j+uj,i)/2, Ωi,j=(ui,j-uj,i)/2) [4]. (In Fig. 1 one quadrant of the vortex structure was 
cut away in order to see the sphere surface.) Jeong and Hussain [4] provide number of examples 
to illustrate the advantages of this definition of vortex core over others, indicating a more robust 
and precise elucidation of the vortex regions. 

The code was parallelized by using a domain decomposition in radial direction. We 
divided the computational domain into spherical subdomains corresponding to the parallel 
processor units. The Speed Ups for PARAM 10000 (based on Ultra Sparc II processors (400 
MHz) with Paramnet) and MBC 1000M (based on the processors Alpha21264 (667 MHz) with 
Myrinet 2000) are practically same (see Fig. 2). This comparison was made for Re=500 on the 
grid 80x50x100 (150.17<t<150.67, dt=0.0004). This calculation on the one processor takes 55 
minutes for PARAM 10000 and only 19 minutes for MBC 1000M. 

At the present paper the classification of the 3D separated homogeneous viscous fluid 
flow regimes around the sphere at 200 ≤ Re ≤ 1000 was refined. For 20.5 ≤ Re ≤ 270 the 
separated fluid flows around a sphere are steady. For 20.5 ≤ Re ≤ 200 the axisymmetrical 
separated fluid flows around a sphere was observed (see Fig. 1). For 200 < Re ≤ 270 the main 
axisymmetrical bubble is deformed through a normal bifurcation in more topologically stable 
form (double-thread wake, Fig. 3). (In Fig. 3 (right) a half of the vortex structure was cut away in 
order to see the sphere surface.) These flows are characterized by the existence of non-zero 
lift/side and torque moment coefficients [5]. 

 

    
Fig. 3. Re=250. Vortex structures (the zero isosurface of the second eigenvalues 
of the S2+Ω2 tensor): oblique view (left) and view in the wake symmetry plane. 

 
For Re > 270 the separated fluid flows around a sphere are unsteady and periodical. For 

270 <  Re < 400 the wake becomes unsteady through a Hopf bifurcation and periodical separation 
of the hairpin-shaped vortices is observed only from one part of the sphere surface (see Fig. 4), 
and the time-averaged lift/side and torque moment coefficients are not equal to zero. Besides for 
360 ≤ Re < 400 the regular rotation of the wake is observed (Strouhal numbers corresponding to 
this rotation are Strot=0.0044, 0.0058 for Re=375, 380 accordingly). (Strot = frotd/U, where frot is 
the rotation frequency.)  

For 400 ≤ Re ≤ 600 the periodical separation of the hairpin-shaped vortices is observed 
from opposite parts of the sphere alternatively, and the time-averaged lift/side coefficients of 
such flows are equal to zero (see Fig. 5). For Re > 600 the irregular rotation of the wake is 
observed (see Fig. 6). The Strouhal numbers: 

St= 0.133, 0.140, 0.145, 0.141, 0.182, 0.174, 0.193, 0.135, 0.112, 0.142  
for Re =  280, 290,  300, 350, 360, 375, 380, 400, 500, 600  
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correspondingly are in a good agreement with experiment [6] (0.15 < St < 0.2) and other 
experimental and numerical results (in [7] St=0.137 for Re=300). (St = fd/U, where f is the 
shedding frequency.) 
 

     
Fig. 4. Re=300. Vortex structures (the zero isosurface of the second eigenvalues 

of the S2+Ω2 tensor): t=775 (left), t=782. 
 

     
Fig. 5. Re=400. Vortex structures (the zero isosurface of the second eigenvalues 

of the S2+Ω2 tensor): t=334 (left), t=335. 
 

 
Fig. 6. Re=700, t=570. Vortex structures (the zero isosurface of the second eigenvalues 
of the S2+Ω2 tensor): oblique view (left) and view in the plane of section of the wake. 

 
Transitional regimes of separated homogeneous fluid flows around a 3D circular cylinder 

were obtained for 200 ≤ Re ≤ 400. For 200 ≤ Re ≤ 300 obtained periodical 3D flows are 
corresponding to known mode A (with periodical structures along the axis of a cylinder equal to 
3.5d ≤ λ ≤ 4d, where d is a diameter of a cylinder) (see fig. 7). The regime with large 
dislocations previously discovered in experiments was obtained numerically for 210≤Re≤260. 
For 300 ≤ Re ≤ 400 obtained periodical structures have length 0.8d ≤ λ ≤ 1.0d approximately, 
what is in agreement with known mode B (see fig. 8). The values of the maximum phase 
difference along the span are approximately equal to 0.1T (for mode A) and 0.02T (for mode B), 
where T is the period of the flow. For Re = 300 obtained both modes A and B are existing 
simultaneously. 
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Fig 7. Isosurfaces of the projection of the vorticity 

on the x axis. Mode A, Re=230, L=7.5D. 

 
Fig. 8. Isosurfaces of the projection of the 

vorticity on the x axis. Mode B, Re=320, L=7.5D. 
 
The separated stratified fluid flows around a 2D circular cylinder for some range of 

Reynolds and Froude numbers (20.25<Re<113.5, 0.13<Fr<0.73) were calculated. All the 
peculiarities of stratified flows around a circular cylinder were modeled with a good accuracy: 
internal waves behind an obstacle, blocked liquid area before it, the size of this area increased 
with Froude number decreasing. 
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