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The system of differential equations in pressure-velocity variables is often used for 

mathematical modelling of hydrodynamic problems. The elliptic eqiation for pressure should be 
solved. Note, that the main computational costs are addressed to numerical solution of this 
elliptic equation. 

The purpose of this study is to solve the symmetric, positive definite system of equations 
Ay f= ,   0TA A= > ,                (1) 

obtained from difference approximation of the Dirichlet or Neumann problem for the elliptic 
equation 
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on distributed-memory parallel computers. In Eq. (2), m=2 and m=3 for 2D and 3D problems, 
respectively; 0C cαχ≥ ≥ > ; 1,2,3α = ; ( ) 0d x ≥ ; 1 2( , )x x x=  or 1 2 3( , , )x x x x= . The 
computational domain is a rectangle or a rectangular parallelepiped. For two-dimensional 
problems, connected domains of more complex geometry are also considered, such as an 
equilateral triangle. In the case of a rectangular domain, Eq. (2) is approximated on both uniform 
and nonuniform grids or on a locally refined grid. In the case of an equilateral triangle, Eq. (2) is 
approximated on a uniform triangular grid. 3D problems are approximated on a uniform 
orthogonal grid. 

To solve Eq. (1) on a uniform or nonuniform orthogonal grid, parallel versions of 
incomplete Cholesky factorization (ICCG(0)) [1], modified incomplete Cholesky factoriza- tion 
(MICCG(0)) [2], and alternating triangular conjugat e gradient (ATMCG) [3] methods are 
proposed. While the 2D equation is approximated on a locally refined or uniform triangular grid, 
it is suggested to solve Eq. (1) by using parallel versions of VICCG and VMICCG (variants of 
ICCG(0), MICCG(0) mentioned by I.E. Kaporin in the supplement to the Russian translation of 
[1]). 

In VICCG and VMICCG, the preconditioner matrix has the form 
1 1( ) ( )B D A D D A− − − += + + , 

where A−  is the strictly lower triangular part of A, ( )TA A+ −= . The choice of the diagonal 
matrix D is based on the same considerations as in ICCG(0) and MICCG(0). 

 
To solve Eq. (1) on a distributed-memory parallel computer, the computational domain is 

partitioned into subdomains along two spatial directions, which corresponds to computa- tion on 
a two-dimensional processor array. The major difficulty in parallelizing the methods mentioned 
above lies in the recursive procedure used to calculate the inverse of the preconditioner matrix 
and the elements of the diagonal matrix D. To overcome this difficulty, the grid points are 
reordered and the preconditioner matrix is reconstructed. Various orderings of domain 
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decomposition type are used in this study. This approach makes it possible for all processors to 
execute computations simultaneously in the respective subdomains. 

In the parallel versions of ICCG(0), MICCG(0) (implemented on a uniform orthogonal 
grid), VICCG, and VMICCG, the preconditioner matrix has the form 

1 1
1 1( ) ( )TB D A D D A− −= + + , 

where A1 is not a lower triangular matrix under the original ordering of grid points. In the 
parallel versions of ICCG(0) and VICCG, the diagonal matrix D is such that the diagonal entries 
of A and B are equal. In the parallel versions of MICCG(0) and VMICCG, the diagonal matrix D 
is determined by the condition 

AAe D e Beλ+ = , 

where (1,1,...,1)Te = , DA is the diagonal part of A, and λ  is the diagonal matrix with small 
diagonal entries iσ . When the coefficients αχ  ( 1,2α = ) are continuous functions, one should 

use (1/ )i O Nσ =  on the portion of the boundaries between the subdomains where the 
computation starts and (1/ )i O Nσ =  or 0iσ =  at the interior points of the subdomains and on 
the remaining portions of the boundaries between the subdomains (N is the number of grid points 
in the entire two-dimensional computational domain). When the parallel version of MICCG(0) is 
used to solve the 3D problem on a uniform orthogonal grid, one should use, respectively, 

(1/ )i hO Nσ =  and 2(1/ )i hO Nσ = , where hN  is the number of grid points in one spatial 
direction. In the parallel versions of MICCG(0) applied to the approximation of Eq. (2) on a 
uniform orthogonal grid and in the parallel version of VMICCG applied to the approximation of 
Eq. (2) on a uniform triangular grid, the parameters iσ  are determined by minimizing the 
estimated number of iteration steps in computing the Dirichlet problem for Poisson's equation. In 
the parallel version of VMICCG applied to the Neumann problem with ( ) 1d x ≡  implemented 
on locally refined grids, the parameters iσ  employed were determined for the solution of the 
finite-difference Dirihlet problem for Poisson's equation on the uniform orthogonal grid with 
mesh size /S N , where S is the square of the rectangle. 

In the parallel version of ATMCG, the preconditioner matrix has the form 
1

0 1 0 1( (0.5 )) ( (0.5 ))T
A AB D D A D D D Aω ω−= + + + + , 

where the diagonal matrix D and the iteration parameter 0ω  are determined by minimizing the 
estimated number of iteration steps. 

For 2D and 3D Dirichlet problems with ( ) 0d x ≡  solved on an orthogonal grid, it was 
proved in [4,5] that when the coefficients αχ  are sufficiently smooth functions, the parallel 
versions of MICCG(0) and ATMCG are convergent on any particular processor array if the 
number of iteration steps is at least 4( ln(2 / ))O N ε  and 6( ln(2 / ))O N ε , respectively, where ε 
is the admissible relative error. The required number of iteration steps slowly increases with the 
number of processors. For the 2D Dirichlet problem for Poisson's equation approximated on a 
uniform triangular grid, it is proved that the parallel version of VMICCG is convergent on any 
particular processor array if the number of iteration steps is at least 4( ln(2 / ))O N ε . The 
corresponding number of necessary iteration steps slowly increases with the number of 
processors. 

Computations performed for model problems have shown that the asymptotic behavior of 
the required number of iteration steps as a function of the number of grid points is similar to that 
characteristic of the corresponding single-processor versions in all proposed parallel versions 
implemented on all aforementioned types of grids used to approximate Eq. (2) on any particular 
processor array. The required number of iteration steps slowly increases with the number of 
processors. Computations performed on a 32-processor Parsytec CC workstation and on an 
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MVS-1000M parallel computer with a moderate number of processors demonstrated that the 
proposed methods are characterized by a good efficiency. 
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