
 68

A Local Grid Refinement Algorithm 
on Modern High-Performance Computers 

 
Martin Maihöfer*, Albert Ruprecht 

 
Institute of Fluid Mechanics and Hydraulic Machinery 

University of Stuttgart 
10, Pfaffenwaldring st., Stuttgart, 70550, Germany 

 
 

Introduction 
The numerical prediction of turbulent flow in industrial applications is essential today. In 

technical applications complex flow problems have to be solved. This requires great resources in 
computer power. To obtain a reasonable response time these simulations have to be performed in 
parallel on modern high-performance computers. Because of the increasing complexibility of 
modern parallel computers, CFD-Codes have to be adapted in order to get the full performance 
on all types of architectures. Therefore aspects of vectorization, shared- and distributed-memory 
parallelization have to be taken into account in order to guarantee a certain flexibility on modern 
computers.  

But from an engineering point of view the use of more and more computer power is often 
not enough to find a solution in a reasonable time. Many times only special effects or regions of 
the considered flow domain are of interest so that the computational grid has to be fine enough in 
those regions. In such cases, like flows with thin vortex structures or boundary layer flows, the 
use of local grid refinements is a very efficient tool to reduce the overall computational time. The 
local grid refinement algorithm presented in this paper is realized with non-matching grids. 
Under the aspect of grid quality and automatization of the method with hexahedral elements, this 
is the most promising way to do. But the use of non-matching grids normally leads to significant 
changes in the underlying algorithm which are often not very suitable for parallelization or 
vectorization. Therefore the main focus of this paper  is the description of the presented 
nonmatching grid algorithm on modern high performance computers. At first we describe the 
numerical scheme of the finite element flow simulation program FENFLOSS [1-2], developed at 
the Institute of Fluid Mechanics and Hydraulic Machinery of the University of Stuttgart, and 
consider aspects of parallelization and vectorization. As application the tip vortex flow of a 
rotating ship propeller is studied.  

 
Grid refinement method 

Local grid refinements are useful to augment the resolution of the computational grid in 
certain regions of the flow domain. The elements to refine are normally identified by a user 
specified criterion that is applied to a previously calculated solution. Instead of refining all 
element, this approach is much more efficient. Local refinements can either be done with 
matching or non-matching elements, whereas the matching approach normally leads to a loss of 
grid quality. Especially in complex geometries, where some elements of the original grid are 
already deformed. Maintaining the quality of the original mesh can only be achieved by using 
embedded non-matching grids. 

The following local grid refinement algorithm is based on a domain decomposition 
method with non-overlapping elements. In this special case the method is referred as a Schur-
complement method. An overview of several domain decomposition methods is given in [3]. 

Those methods are normally used for solving linear systems of equations in parallel. 
Thereby it is usually assumed, that all subdomains consist of approximately the same number of 
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unknowns. In opposite to locally embedded grids, this requirement is fulfilled when automated 
grid partitioning tools like Metis [4] are applied. Before explaining the procedure to overcome 
this problem, the underlying Schur-complement method is presented. Therefore two non-
matching  subdomains, shown in figure 1 are considered. 

 

 
Fig. 1. Domain decomposition with two non-matching grids. 

 
As a result of the non-overlapping approach, there are to many degrees of freedom along the 
nonmatching interface. Therefore the interface is divided into so called leading and restriction 
nodes. In opposite to the restriction nodes, the leading nodes are treated as degrees of freedom. 
Coupling of  the two subdomains is achieved by introducing a Lagrange multiplier λ for each 
restriction node ( )K i . The procedure is similar to optimization problems with constraints. The 
resulting linear equation system can be written in the form 

11 1 1 1

22 2 2 2

1 2
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    =    

        

A 0 B x b
0 A B x b
B B 0 λ 0

,                (1) 

with the matrices A11 and A22 of the two subdomains, the unknowns x1 and x2 and the vectors of 
the right hand side b1 and b2. The restriction operators B1 and B2 are obtained by expressing the 
restriction nodes in terms of the leading nodes. Thus, system (1) is completely defined and has to 
be solved. Applying the Schur-complement method, system (1) is transformed into 

11 1 1 1

22 2 2 2

T

T

    
    =    

         λ

A 0 B x b
0 A B x b
0 0 S λ b

,                (2) 

with the Schur-complement matrix S. After solving the Schur-complement system 
= λSλ b                    (3) 

for the Lagrange multipliers λ , the unknowns ix  can be calculated in parallel without further 
communication. As previously mentioned in this section, this solution procedure requires that all 
subdomains consist of approximately the same number of unknowns. Otherwise severe load 
balancing problems will occur. While using locally embedded grids this requirement is not 
necessarily fulfilled. Furthermore the local grid refinement should also be applicable within a 
serial computation with only one processor. Under those circumstances the Schur-complement 
method necessitates to administrate the matrices of several subdomains within the serial code. 
But normally CFD-Codes are designed to administrate the systems of only one computational 
domain. Hence this approach would require severe changes in the already vectorized and 
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parallelized code. Therefore the presented solution procedure of the original Schur-complement 
method is not suitable for local refinements with non-matching grids. Concerning the code 
structure, it would be straightforward to store system (1) in only one single matrix. But solving 
this system with Krylov subspace methods is impossible because of the zero entries on the 
diagonal. Krylov subspace methods require that all diagonals are present with non-zero values. 
In order to avoid this problem, the entries of the matrices 1

TB  and 2
TB  in system (1) are 

eliminated by simple operations with the corresponding rows. The rows and columns of the 
restriction nodes are treated similar. The described procedure leads to the following system 

* *
111 12 1

* *
221 22 2

    
=    

    

xA A b
xA A b

,                 (4) 

As a result of the elimination process, the matrices 11A  and 22A  and the right hand vectors 1b  
and 2b  of the original system are modified and therefore denoted *

11A , *
22A , *

1b  and *
2b . The 

matrices 12A  and 21A  are representing the coupling information of the two subdomains. In 
opposite to system (1), system (4) is suitable for the Krylov subspace methods. The advantage of 
the presented method is, that system (4) can formally be treated like one single matrix resulting 
from a completely connected mesh. Beside the elimination process no other changes are 
necessary in the code. Therefore the code arrangements concerning vectorization, shared-
memory and distributed-memory parallelization can be maintained without further restrictions. 

In order to show the numerical behavior, the flow over a backward facing step with two 
local refinements in the recirculation zone is considered. The geometry and the and the 
embedded grids are shown in figure 2.  

 

 
Fig. 2. Backward facing step with local refinements. 

 
The calculations are carried out on a coarse grid a fine grid and the grid shown in figure 

2. The coarse and the fine grid are completely connected whereas the density of the fine grid 
corresponds to mesh surrounded by interface 2. The density of the coarse grid is conform to the 
outer mesh shown in figure 2. 

The calculations are carried out at a Reynolds number of Re=11000 with a k-ε model. 
The obtained velocity profiles at / 6x H =  are shown in figure 3. In can be seen that the profiles 
of the fine and locally refined grid are almost identical. Especially in the region of the local 
refinements are no differences between the two grids. Furthermore can be seen that the profile 
obtained with the locally refined grid is completely smooth. The non-matching interfaces at 

/ 0.5y H =  and / 1.5y H =  are not detectable. 
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The convergence behavior is investigated in figure 4 where the residuals of the continuity 
equation are presented. It can be seen that the local refinement does not have any influence on 
the convergence behavior. The characteristics of all grids are similar and the solution is reached 
within almost the same number of nonlinear iterations. 

 

 
Fig. 3. Velocity profiles at  6 / = H x                        Fig. 4. Residual of the continuity equation 

 
 

Application 
In this section the tip vortex flow field of a marine propeller is investigated. Tip vortex 

flows are complicated three-dimensional viscous flow phenomena and still a challenging 
problem in the field of computational fluid dynamic [5]. The tip vortex cavitation is the major 
source of noise and therefore of high interest. In order to avoid or reduce tip vortex cavitation the 
underlying flow field has to be studied in advance. 

 

 
Fig. 5. Local embedded grid in the tip vortex region. 

 
In order to investigate the influence of the grid resolution in the tip vortex region a local 

refinement is used. Based on the coarse mesh simulation the tip vortex is detected and the grid is 
refined along the tip vortex line. The resulting mesh respectively the locally embedded grid is 
presented in figure 5. The results will be discussed is the final paper. 
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