
 52

Parallel Conjugate Gradient Preconditioning via 
Incomplete Cholesky of Overlapping Submatrices 

 
Igor Ye. Kaporin* and Igor N. Konshin 

 
Center for Supercomputer and Massively Parallel Applications 

Computing Center of Russian Academy of Sciences 
40, Vavilova st., Moscow, 119991, Russia 

 
 

Key words: conjugate gradients, parallel preconditionings, incomplete Cholesky. 
 

Introduction 
We consider the Preconditioned Conjugate Gradient (PCG) algorithm for solving linear 

algebraic system 
Ax b= , 

where A is large sparse unstructured Symmetric Positive Definite (SPD) coefficient matrix of 
order n. For the construction of preconditioning, we use the Block Incomplete Inverse Cholesky 
(BIIC) factorization first proposed in [1] and considered in more detail in [3]. For the purpose of 
better parallelism, we use the additive form of this preconditioner given in [3]. 

The BIIC preconditioner is formulated in terms of an s x s block form of the matrix A, 
where the exact Cholesky factorization is used to solve subsystems associated with properly 
augmented diagonal blocks. When aiming at efficient parallel solution of large problems, the 
block size will be approximately n/s, where s is usually taken to be equal to the number of 
processors available. For large problems and with a limited number of processors, these blocks 
may be still too large to be processed with the exact Cholesky. Fortunately, using here an 
incomplete factorization may yield even more efficient preconditioning. We employ the so-
called robust Incomplete Cholesky 2nd order factorization (IC2) method developed in [4]. The 
use of IC2 significantly reduces the preconditioning cost (both evaluation and application) but 
almost does not impair the quality of the resulting preconditioner. 

Such construction results in a purely algebraic procedure which is applicable to the 
preconditioning of any sparse SPD matrix independent of the nature of the underlying physical 
problem and the type of discretization method used. 

 
The conjugate gradient iterations 

We use the PCG iterations in the standard form: 

0 0r b Ax= − , 0 0p Cr= ; 

for i = 0, 1, ... : 

/T T
i i i i ir Cr p Apα = ,  1i i i ix x pα+ = + ,  1i i i ir r Apα+ = − , 

1 1 /T T
i i i i ir Cr r Crβ + += ,  1 1i i i ip Cr p β+ += + . 

Here C is a properly chosen SPD preconditioning matrix, which should approximate, in some 
sense, the matrix A-1. The choice of the matrix C is subject to the requirement that the vector 
w Cr=  be easily calculated for any r. For instance, one of the best choices is the approximate 
Cholesky preconditioning, where 1( )TC U U −=  and TU U A≈  with the upper triangular matrix U 
being much sparser than the exact Cholesky factor of A, cf. [4] and references therein. 
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In order to get a constructive approach to preconditioning optimization, one can use the 
so-called K-condition number 

( )1( ) ( ) / det( )
n

K K CA n trace HA HA−= =  

instead of the standard spectral condition number max min( ) / ( )CA CAλ λ . The underlying PCG 
iteration number bound [2, 3] is 

2 2( ) log log 1/Ki i Kε ε≤ = + , 

where i is the iteration number related to the convergence criterion 1 2 1
0 0

T T
i ir A r r A rε− −≤ . The 

preconditioning described in the next section is nearly optimum with respect to the K-condition 
number minimization, see [9]. 
 

Parallel preconditioning 
For parallel computations, the preconditioner C was constructed using the Block 

Incomplete Inverse Cholesky (BIIC) [3] and the 2nd order Incomplete Cholesky (IC2) [4] 
techniques. Let A be reordered and split into an s x s block form using, e.g. techniques described 
in [5]. For the t-th diagonal block having the dimension nt, the ``basic'' index set 

{kt-1+1, …, kt}, 
is defined, where 1 1 1...t tk n n− −= + + , k0=0, ks=n, and the ``overlapping'' index set is constructed 
as 

{ (1),..., ( )}t t t tj j m n− ,  1( )t tj p k −≤ . 

The BIIC-IC2 preconditioner $C$ is: 

1

1

0 0
( ) ( ) ( )

0
t

s
T T

t t t t
nt

C C VU U T V
I

τ τ− −

=

 
= =  

 
∑ , 

where Vt are rectangular matrices composed of unit n-vectors ej as follows: 

1(1) ( ) 1[ | ... | | | ... | ]
t t t t t tt j j m n k kV e e e e

−− += ,  1,...,t s= , 

and each upper triangular matrix ( )tU τ  is an incomplete Cholesky factor for the t-th t tm m×  
submatrix T

t tV AV : 

( ) ( ) ( ) ( ) ( ) ( )T T T T T
t t t t t t tV AV U U U R R Uτ τ τ τ τ τ= + +  

Here ( )tR τ  is a strictly upper triangular error matrix. 
For each t, the ``overlapping'' index set typically includes indices not greater than kt and 

the most ``essentially'' connected to the basic index set, e.g. in the sense of the sparse matrix 
graph adjacency relations. Here t tm n≥  and, obviously, 1 1m n= , i.e. at least the first overlapping 
set is empty. 

Here 0 1τ<  is the drop tolerance parameter which determines the quality of the 
incomplete factorization. The existence and correctness of such IC2 decompositions is 
guaranteed for any SPD matrix [4]. The recurrences for the calculation of IC2 factorization can 
easily be obtained from the above relation, especially for the case in which the sparsity patterns 
of U and R do not have coinciding nonzero positions and their nonzero elements are subject to 
the conditions ijU τ≥  and ijR τ< , respectively, i j< , see [4]. 
 

Parallel implementation and testing results 
The above described mathematical technique was implemented in a portable software 

with the use of the Message Passing Interface (MPI) library for communications between 
processes. The special structure of the above described BIIC-IC2 preconditioning made it 
possible to run the PCG iterations very efficiently even on workstation clusters. 
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The results of numerical experiments were presented in [6-9]. Due to the additive 
structure of the preconditioner, the parallel overhead of its implementation ( w Cr= ) was 
comparable to the one involved in matrix-vector multiplication ( v Ap= ). On the other hand, the 
preconditioning quality has not deteriorated with the growth of the number of blocks (equal to 
the number of processors), and sometimes it has even enhanced. In numerical tests we typically 
observed parallel speedups varying from almost linear to superlinear. 

As the test problems, we mainly used large-scale two- and three-dimensional Finite 
Element models in linear elasticity as arising in computational mechanics, with the order of 
system up to 58 10⋅ , number of nonzero elements in A up to 78 10⋅ , and the spectral condition 
number of order 1210 . 
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