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The present report addresses to the uncertainty estimation for the set of flow-field 

parameter jε  using sensitivity coefficients ij f∂∂ /ε  calculated via adjoint equations. If we need 
to get uncertainties for m parameters (density, temperature etc) in k checkpoints, we should 
simultaneously solve n=m*k practically identical adjoint problems. The uncertainty propagation 
by adjoint equations can be efficiently calculated by parallel approach. At first step we compute 
the flow-field, at the second we may parallelly run n adjoint tasks having approximately the 
same time of computation. The fields of adjoint “temperature”, adjoint “density” etc. depend on 
flow-field, estimated parameter, checkpoint location and do not depend on the set of input data, 
which have an uncertainty. So, they are universal and permit the calculation of considered 
checkpoint uncertainty caused by any parameter of the system of equations. 

 
Fig. 1. 

 
We consider the uncertainty estimation in supersonic viscous flow (Fig. 1). The flow 

parameters are calculated by the finite-difference approximation of parabolized Navier-Stokes 
[2]. The march along X coordinate was used. 
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   P= ρRT; e= Cv T; (X,Y)∈Ω=(0<X< Xmax; 0<Y<1); 
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The entrance boundary ((X=0)) conditions follow: 
e(0,Y)=e∞ (Y); ρ(0,Y)=ρ∞ (Y)); U(0,Y)=U∞ (Y); V(0,Y)=V∞ (Y);                                   (5) 

the outflow conditions ∂f/∂Y=0 are used on Y=0, Y=1. 
Let the inflow parameters to contain the uncertainty. We assume the discrete analogues 

of these parameters to contain a normally distributed statistically independent error with standard 
deviations eVU σσσσ ρ ,,, . 

Let we seek for total flow-field and the accuracy of certain parameter (let it be 
temperature) in some check point T(test,xest), more precisely: a dependence of the temperature 
standard deviation from the input data deviations ...),,( VUT f σσσσ ρ= . 

Note ),( estest YXT  as Re)),(( Yf∞ε . If the estimated parameter is located on the 
outflow boundary we may express it as 

dyYYYXY est )(),())(( max −= ∫∞ δε Tf               (6) 

If ),( estest YXT  is located within the field we write 
dxdyXXYYYXY estest )()(),())(( −−= ∫

Ω
∞ δδε Tf             (7) 

The input data dispersion is transformed to the result dispersion by gradients [1], in our 
case: 
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The most efficient way for gradient calculation is based on adjoint equations. For these 
equations inference we introduce the Lagrangian )),(( Ψ∞ YfL , composed of the estimated value 
and weak statement of problem (1-5). Consider the influence of inflow data variation )(Xf∞∆  
and coefficient variation Re)/1(∆ . By subtracting the undisturbed solution we get the linear 
tangent model. Integrating Lagrangian variation by parts with the account of linear tangent 
model allows estimating the variation of target parameter in dependence on the disturbed 
parameters. 
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Eq. (9) is valid if the remaining terms of ),),(( Ψ∆ ∞ ff YL  equal zero, i.e. on the solution of the 
adjoint problem (10-15). 
 

Adjoint problem 
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The source term in equation describing eΨ  (13) corresponds the checkpoint location 
within the flow-field. Initial conditions are 

C (X=Xmax): ;0max

,, =Ψ
=XX

VUρ  ;0)()1( =−+Ψ−+Ψ est
Ue YYU δκ           (14) 

Expression for eΨ  in (14) corresponds the checkpoint location on the inflow boundary Xmax.. 
Boundary conditions are 

B,D (Y=0; Y=1):
∂Ψ
∂

f

Y
= 0;                (15) 

The statement (10-15) differs from the adjoint equations used in Inverse CFD problems 
by the form of the target functional and, respectively, by the source term form in (13,14). The 
adjoint problem is solved in the reverse direction along X. It’s statement is determined by the 
forward problem, check point position, and the choice of the estimated parameter. The adjoint 
problem does not depend on the choice of parameters containing the uncertainty. So, the same 
field of adjoint parameters may be used for the calculation of uncertainty propagation from any 
parameters (initial, boundary conditions, coefficients, sources). The gradients used for the 
uncertainty propagation have the following form: 
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The calculation of the gradient implies the consequent solution of the direct and adjoint 
problems. So, the time for uncertainty calculation of the single parameter in the single 
checkpoint equals approximately two times of the flow-field calculation. The uncertainty 
estimation of every additional parameter needs the solution of additional adjoint equation. 

The singular source in (13) is integrated over the cell and thus transformed to the finite 
source term )/( YXij ∆∆δ , if check point is located within flow-field, and Yij ∆/δ  if the 
check point is on the boundary (14), where ijδ is the unit matrix. 

The flow-field parameters and their gradients form sources and coefficients of adjoint 
equations. So, the tests are conducted for non-uniform flow corresponding to underexpanded jet 
with the temperature ratio Tj/T=3 (density isolines are provided in Fig. 2). Adjoint “temperature” 
field is presented in Figure 3. The uncertainty propagation is calculated by the adjoint equations 
and Monte-Carlo method (averaged over 100 trials) for the comparison. The inflow parameters 
contain the normally distributed error with the standard deviation in the range of 0.01-0.1. 
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Fig. 2. Fig. 3. 
 
Generally, the results of both approaches (Monte-Carlo and adjoint) correlate, while the 

consumed computer time differs by two orders of magnitude for these tests. 
 

Conclusion 
The computation of the uncertainty of single parameter at the single checkpoint needs 

calculation of the flow-field and the adjoint field. The estimation of the uncertainty of another 
parameter (or the same in another check point) needs calculation of the new adjoint field for the 
same flow-field. The calculation of the uncertainty of n flow parameters needs the calculation of 
n+1 fields (flow-field + n adjoint fields). All the adjoint fields are calculated by the same 
algorithm with the slightest differences in form of sources and their location. 

We should run n independent samples of adjoint codes when calculating the uncertainty 
of n parameters. The adjoint problem is similar to flow-field calculation problem as to computer 
memory and the time of computation. 
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