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This paper gives a review of the lattice Boltzmann method for compressible flows. The 

lattice Boltzmann method (LBM) [1-3] is a relatively new numerical approach for simulating 
complex flow and transport phenomena in cases where direct solution of the Navier-Stokes 
equations is not practical. Unlike conventional CFD method based on macroscopic continuum 
equations, the LBM uses a mesoscopic equation, i.e., the Boltzmann equation, to determine 
macroscopic fluid dynamics. The LBM is flexible, has broad applicability, and may be easily 
adapted for parallel computing. It has been successfully applied to multiphase and multi-
component fluids, flows through porous media, and solid particle suspensions.  

The LBM originated from a Boolean model known as the lattice gas automata (LGA) [4-
5]. In a LGA method, the local equilibrium distribution is described by the Fermi-Dirac statistics. 
As a result, LGA has several shortcomings: high statistical noises, the violation of Galilean 
transformation invariance in their resulting hydrodynamics equations, and the failure in high 
Reynolds number computations. To eliminate noise, the Boltzmann equation was used to 
simulate the lattice gas automata [6-7], however, other problems, i.e. non-Galilean invariance 
and low Reynolds number, remained. These difficulties led to the development of the LB method 
[1-3]. Higuera et al. and Benzi et al. [3] simplified the collision term by a linear operator. Chen 
et al. [1] and Qian et al. [2] used a simpler collision operator of the BGK type [8]. The 
equilibrium distribution was an approximation of the Maxwellian equilibrium distribution. 
Galilean invariance was guaranteed in these LB models. The LB models of BGK type [1,2] have 
only a single ratio of viscosity to thermal conductivity, while the models of linear collision 
operator [3] allow for independently varying viscosities and thermal conductivities. The LB 
models have been successfully applied to various physical problems, such as single component 
hydrodynamics, multiphase and multi-component fluid flows, magneto-hydrodynamics, 
reaction-diffusion systems, flows through porous media, and other complex systems at small 
Mach numbers [9-10]. 

Unfortunately, as a new CFD tool, the general LB method developed in the past suffered 
from the constraint of small Mach number because the particle velocities belong to a finite set, 
and the resulting macroscopic velocity is always much smaller than the speed of sound 
calculated from the microscopic diffusion velocity. 

Efforts have been made to increase the allowable Mach number range and to incorporate 
the effects of temperature into lattice Boltzmann simulations. Choosing a modified equilibrium 
distribution, Alexander et al. [11] replicated the Burger's equation with a controllable sound 
speed. Yu and Zhao [12] introduced an attractive force to reduce the sound speed and to alleviate 
the small Mach number restriction; however, the energy equation was not recovered in their 
formulation. Palmer and Rector [13] formulated a thermal model that can simulate temperature 
variations in a flow, but high Mach number effects were not included in that study.  
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Two schemes related to the LB method, the gas-kinetic theory [14,15] and the discrete-
velocity model [16,17], had been used to simulate the compressible Euler equations. In both of 
the above work, the flux-splitting approach with TVD flux limitation was employed to determine 
the mean flux to neighboring cells. Nadiga [16,17] introduced an adaptive-velocity concept in 
the discrete-velocity model for compressible inviscid flows. Huang et al. [18] similarly use 
adaptive discrete velocities to simulate one-dimensional shock waves. Only under special 
circumstances, the Boltzmann equation used in these methods is equivalent to the lattice 
Boltzmann equation [19], but the lattice Boltzmann equation is much easier to solve.  

Recently, we proposed a locally adaptive LB model on hexagonal lattice [20] based on a 
large particle-velocity set so that mean flow may have a high velocity; however, the support set 
of the equilibrium distribution is quite small and similar to the adaptive velocities of Nadiga's 
Euler solver [17]. This model is suitable for a wide range of Mach numbers and does not 
consume much computer resource. Compressible Navier-Stokes equations including the energy 
equation are derived from the BGK lattice Boltzmann equation; therefore, this model can 
simulate compressible viscous flows that include heat transfer [21,22]. If the viscous terms are 
considered as discretization error and a slip wall condition is employed, the solution can be 
compared with compressible Euler solutions. The numerical simulations showed that the model 
has the capability of solving compressible Euler flows with strong shocks [20,23,24] and has 
high parallel efficiency [25,26]. This locally adaptive LB model has been also formulated on a 
two-dimensional square lattice [27]. All the previous simulations were carried out for periodical 
boundary or flat wall boundary, or a combination of the two. 

In LBM, the boundary conditions have been directly adopted from the lattice gas 
automaton method. A common method of modeling no-slip walls in LBM simulations is to use 
the bounce-back boundary condition in which particles that stream into the walls "bounce back" 
and exit the wall in the direction from which they came. It has been noted that the bounce-back 
boundary condition is 2nd order for walls aligned with the lattice, however, it gives only first 
order accuracy at the curved boundaries [28,29]. Several boundary treatments have been 
proposed for achieving second order accuracy for no-slip velocity conditions on curved walls 
[30-33]. In these treatments boundary conditions for the particle distribution function had to be 
handled with given macroscopic quantities. In complicated fluid flows, boundary conditions 
might include a combination of velocity, density, temperature, and their derivatives. To a certain 
degree, achieving self-consistent boundary conditions with a given accuracy is as important as 
developing numerical schemes themselves. 

We have recently proposed a three-dimensional compressible LB model on a square 
lattice. A large particle-velocity set is used to enable the simulation of high Mach number flows. 
Meanwhile, in order to make the computation more tractable, a small support set for the 
equilibrium distribution is employed. This model can handle flows over a wide range of Mach 
numbers and capture jumps through shock waves. Due to the simple form of the equilibrium 
distribution, the 4th-order velocity tensors are not involved in the calculations. Unlike the 
standard lattice Boltzmann model on square lattice, there is no need of special treatment for the 
homogeneity of 4th-order velocity tensors. Therefore, the Navier-Stokes equation and energy 
equation were recovered with only 6 symmetric particle velocity directions. The second-order 
discretization errors in velocity have been eliminated to improve the accuracy in viscous flows 
simulations. The model is valid for both viscous and inviscid compressible flows with or without 
shocks.  

The present scheme deals only with the equilibrium distribution that depends on fluid 
density, velocity, and internal energy only. We proposed a boundary condition based on an 
extrapolation of the macroscopic variables for curved walls. This boundary condition treatment 
is self-consistent, easy to implement, and suitable for both slip wall and non-slip wall boundary 
conditions. Moreover, it can be easily extended to complex flows with moving walls, mass 
injection from the walls, and heat exchange with the walls. 

References to the abstract will be provided in the full paper. 


