Chapter 22

P-methods and hp-methods

Introduction

P-methods and hp-methods represent solutions to mesh adaptation which provide,
in some sense, an alternative to h-methods. In brief, a p-method, in contrast to
a h-method (Chapter 21), consists in varying the degree p in the approximation
while keeping the mesh sizes h unchanged. In this way, the quality (the richness)
of the approximation is adapted to the way in which the solution varies.

Well established for some model problems, particularly when the geometry of
the domain is relatively simple, p-methods are somewhat delicate to implement
when the geometry is really complex. The fact that the size is constant while the
degree of the approximation is the sole parameter results in a strong constraint
which is not simple to overcome. Therefore, hp-methods have been introduced
which combine a p-adaptation with a h-adaptation and thus offer the advantages
of both methods while avoiding the unflexibility mentioned above.

*
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This chapter is organized in two distinct non symmetric parts. The first part
concerns the construction of finite elements other than straight (linear) elements
(P! type elements) which are naturally obtained by using automatic mesh gener-
ation methods. The second part discusses p and hp-methods, mainly with regard
to an adaptive process.

This last aspect will only be dealt with briefly. In contrast, we discuss in greater
detail some possible approaches for the construction of finite elements other than
P!, which are used in p-methods (where p varies) and also in all calculus with
finite elements with a (constant) degree p other than 1. This type of construction,
mostly seen in the case of P? triangles leads us firstly to consider how to mesh a
curve (assumed to be planar for the sake of simplicity) by means of parabola arcs.
Then, we turn to the creation of P2 elements using this curve mesh as input data.
In this context, we present several approaches which essentially involve adequate
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post-processing a P! type mesh. As will be seen, various technical difficulties can
be expected. Some examples of such problems are given in three dimensions.

Let us recall that we are mostly concerned with the impact of the solution
methods on mesh generation techniques. Therefore, we mainly focus on this par-
ticular aspect and less on using p-methods for solution control from an adaptive
point of view.

22.1 P? mesh

We consider here a mesh where the elements are P2. For the sake of simplicity,
we limit ourselves to a problem in two dimensions. First, we discuss how to mesh
a curve (a domain boundary in this case). In other words, our concern is to show
how to obtain a polygonal approximation where the elements (the segments) are
parabola arcs. Then, we show how to construct P? elements.

22.1.1 Meshing a curve (review)

Let us consider a parametric curve I' whose equation is v(s), where s is the curvi-
linear abscissa. In addition, we assume that the curve has the required regularity
when needed. In Chapter 14, we saw how to discretize such a curve by means of
line segments (a P! mesh), in such a way as to control the gap between the curve
and its discretization. Now, we return to the same problem in the case of a P2
discretization, say one composed of parabola arcs.

Local behavior of a curve. We give again, with the same notations, the ex-
pansion of Relation (14.4), say, in some vicinity of ¥(so) and for small enough As :

As? As?

—
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The curve can be approximated using the first three terms in its expansion at ¢,
if we take As = a p(sp) such that (Relationship (14.7)) :
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4 /T+ p/(s0)?
Also in Chapter 14, we saw that replacing the parabola for approximation (of the

expansion) by means of a line segment discretization leads to a gap between this
discretization and the curve in the order of :

- evbe n 3e )p(s)
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In this estimate, the first term controls the gap related to the approximation by
the expansion while the second term controls the discretization gap.

Y(s) = ¥(s0) + As T+ )Q(p’(so)ﬁ + 7))+ ...

P-METHODS AND hp-METHODS 727

An approximation of type P? consists of discretizing the parabola! by means
of of parabola arcs, thus by itself. The mesh element in the discretization is then
the portion of parabola passing through the three points ¥(sg), ¥(so + %) and
¥(so + As). The above relation is then :

P A L +0 | p(so)
4/1+ p/(s0)2 PLSo
and therefore the total gap has the order of the first terms (as the gap in dis-
cretization is now null). This gap is then :
evbe (s0)
D ——————— S .
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Thus, for a given relative tolerance of €, the result obtained in this way is much
more precise than in the case of a P! approximation. As a consequence, the
analysis may be based on a coarser approximation of the expansion. Indeed, one
can look for a value of ¢’ such that :
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which means :

eVbe e,
An easy computation gives :
! 3 52
¢~ 3 (22.1)

To give an idea, a tolerance value ¢ = 0.01 leads to & = 0.025 while ¢ =
0.001 leads to &’ = 0.0055. Therefore, one can take a larger tolerance value while
obtaining a nice control. In the case of a circle, for ¢ = 0.025 we find a = 0.391,
this shows that about 16 mesh entities are necessary to obtain a control in 0.01 (in
fact, somewhat better), while in comparison, such a control in P! requires using
26 mesh elements (Chapter 14).

Exercise 22.1 Let us consider the circle of radius p (centered at the origin, for
simplicity). Discretize it by means of 16 P2 mesh elements such that each of these
parabola arcs has its endpoints A and B and its midpoint M in the circle. Then,
compule :

o the gap between the chord AB and the circle,
o the gap between the chord AM and the circle,

o the gap between the parabola arc and the circle (thus, this value at the mid-
point of the mid-arc, the arc related to AM ).

1One could conceive a method where the expansionis pushed one order higher and construct as
a discretization parabola arcs lying on the curve defined by the first four terms in the expansion.
In this case, it would be necessary to return to the entire discussion, as in Chapter 14.
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Conclusions ? (Hints : find the value o associated with the mesh element AB,
deduce the value of ¢ giving the gap as a ratio of p, repeat this for the mesh entity
AM and do the explicit calculus for the arc). Observe what is obtained by changing
the number of mesh entities, for example, for a number like 8 or 32.

Remark 22.1 In terms of continuity, the P? discretization thus-obtained is rather
good.

Remark 22.2 The above reasoning analyzes the behavior of the curve using an
expansion between sg and so + As. It is clear that a similar study can be made
between sy and so — As, thus leading to the same conclusion about the resulting
gap. As a consequence, for the same gap, it is possible to create a mesh entity
twice as large (2 p(so)) by centering it at the point Y(s0). As previously seen,
the accuracy remains in €. Nevertheless, the continuity from mesh entity to mesh
entity is slightly modified.

Geometric mesh of a curve. By analogy with Definition (14.1), a P? geomet-
ric mesh can be defined as follows :

Definition 22.1 A P? type geometric mesh at a qwen € of a curve I is a parabolic
precewise discretization of this curve whose relative gap is in the order of ¢ at any
point. If As 1s the length of an arc of the curve and if h is the length of the
corresponding parabola arc, then, h tends towards As with As.

Hence, we return to the same definition as for P! meshes and thus the same
characterization of this property.

As seen for Definition (14.1), notice that this is a reasonable definition, Le.,
related to the difference in lengths or, similarly, related to the relative gap to
the curve. This definition is only one possible formulation of the notion of a P2
geometric mesh. Indeed, another definition may be, for example, to observe the
value if the surface area comprised between the arc of curve the the arc of parabola
which approaches this curve.

After the previous discussion and with regard to the proposed definition, con-
structing a geometric mesh of a smooth curve is made by computing the length
of the curve using the metric of the main radii of curvature weighted by adequate
coefficients . As a corollary, meshing a curve leads to :

e finding the inflection points in this curve together with the singular points
(corners),

¢ imposing these points as mesh vertices,

e splitting the curve into parts, each of which is bounded by to such consecutive
points,

e meshing each part by using the previous principle.
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Remark 22.3 Identifying the points with a maximal curvature and prescribing
them as arc midpoints enables us to have a nice regularity in these points. Ney.
ertheless, a reasonable result is also obtained when the points of inflection are not
explicitly considered.

As a conclusion, we have briefly described a method that allows the analysis of
P? meshes for curve meshing (in R?). This analysis can be followed to give idea
about how to conceive a mesh generation method. Here is only one of the possible
approaches and clearly other methods may be envisaged. Moreover, the actual
implementation of the above principles is not necessarily obvious. Nevertheless,
the remarks given in Chapter 14 may serve as a source of inspiration.

Meshing a curve. For this problem, the mesh construction of a curve with or
without a metric map (not necessarily of a geometric nature), we refer the reader
to Chapter 14. When no metric specifications are known, a nice variation in size
for two neighboring mesh elements is a natural target. On the other hand, when
a specification of a physical nature (i.e., related to the physics of the problem
in question) is given, it is important to make sure that the sizes specified by the
physics remain compatible with those related to the geometry.

22.1.2 P? finite elements

For the sake of simplicity, we consider a planar case (in two dimensions) and
we consider the construction of P? type triangles. We assume the domain to
be meshed to have a curve (a series or a number of curve parts) as a boundary.
The question is then to define, specifically for the triangles having at least one
boundary edge, the nodes of these triangles together with their edges (other than
the boundary edge(s)). In terms of mesh construction method and a priori, there
are two ways of addressing this type of problem :

e a type P! mesh with step h; (see the remark below) is available which is
then transformed in a P2 type mesh with step hy where hy = h;;

¢ a type P? mesh is constructed directly. This approach initially requires
meshing the domain boundaries by means of P* mesh elements, as above,
and then creating the P? triangles which form the final mesh of the domain.

The second approach implicitly implies the construction method to be P2. The
problem is no longer, for a given edge, to find the point suitable for the construction
of a P! triangle (thus with a purely geometric nature) but to deduce from a P2
edge, the three points and the two other edges required to define a P? triangle.

Keeping in mind the discussions about the main mesh generation methods, it
is then clear that the corresponding algorithms (guadtree-octree, advancing-front
or Delaunay, for example) are in essence purely of a geometric nature. Develop-
ing methods directly resulting in P2 type elements is then probably possible but
presumably not so obvious.



730 MESH GENERATION

Following these remarks, the first approach is more reasonable in practice. Thus
we ask the mesh generation method to produce a geometric mesh (thus a P! mesh)
and then, this mesh is modified into a P? type mesh by means of post-processing.

This way of processing merits some comments, the first regarding the sizes of
the mesh elements that are to be taken into account.

Remark 22.4 Let hy be the size of a P! mesh element and let hs be that of a
P? mesh entity, then fizing hy = h, implies that the number of P? nodes (the
element vertices and the edge midpoints) is the same as the number of P! nodes
(the element vertices) in the P! mesh obtained by subdividing into four the P2
triangles. Following what we saw about the geometric approximation of a curved
boundary, it is then possible to take, for a similar accuracy, a step hy twice as
large as step hy. Therefore, in this approach, one can take, when constructing the
P! mesh, a relatively large step and, in particular, start from a mesh which is a
relatively coarse approzimation of the boundary geometries.

Doing so, a P! mesh is available whose steps may be large. It is easy to see, for
a boundary edge, that if the difference with the geometry is relatively small, there
1s no major difficulty in finding the mid-node required to transform this segment
into a parabola arc. After which, in such a case, the difficulty when constructing
the other edges is related to the local configurations.

A second remark must be made about this approach based on the modification
of a P! mesh so as to complete a P? mesh. The local aspect of the approach
implies that it is not strictly identical to a curve mesh construction method.

Remark 22.5 Processing by means of transformation considers the boundary edges
element by element while the curve meshing problem considers the entire curve.
Therefore, the processing by element approach does not a priori see what happens
in some vicinity of the element in treatment. This may result in a possible lack of
smoothness of the curve thus-obtained. To overcome this trouble, it is necessary to
have access to some global information such as tangents, normals, etc. Moreover,
the two endpoints of the edge under examination are prescribed while these points
are not necessarily optimal with regard to the meshing problem applied to the entire
boundary curve.

Despite this, up to now, it remains realistic to follow the local approach. In-
deed, if the useful geometric information is known at each point (by means of
queries to a geometric modeler or to a mesh assumed to give a suitable geometric
definition, the geometric support, to some extent, it is possible to give a global
aspect to the local process. The only negative feature nevertheless remains the
constraint regarding the two edge endpoints that are imposed at the extremities
of the arc of the curve to be constructed.

Nevertheless, in the following, we follow this principle, i.e., the construction
of P? elements by local transformation of P! elements. But, before going further,
we make some comments on the second approach, i.e., what a P2 type mesh
generation method could be.
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Figure 22.1: Construction of a P? finite element. Top, the P! element as con-
structed by using a mesher is such that the construction of the corresponding P2
element is “emmediate”. Note that the gap in P! is relatively poor while the gap
in P? is rather better. Bottom, the constructed elements must be processed by a
more sophisticated process if we wish to transform them into P? elements.

Remarks about direct construction of a P2 mesh. For simplicity, we focus
on a triangular mesh and we assume that the boundaries of the domain to be
meshed have been previously discretized using the curve meshing method described
above.

Therefore, the vertices of the boundary meshing entities are assumed to be
adequately located. In other words, the domain boundaries are suitably approxi-
mated.

The problem in question is then the direct construction of P2 triangles using
this discrete data input as information. The immediate question is the following :

“What is the pertinent quality criterion that must be used to govern the P?
mesh construction 27

For “classical” mesh generation methods (from Chapter 4 to Chapter 8), while
limiting ourselves to a isotropic situation, we know that the optimality criterion
is the fact that the triangles are equilateral. What becomes this criterion in the
present case 7 Before giving some ideas about this, let us mention that the liter-
ature is rather weak on this point. Since abstract results (about convergence and
error estimates) make use of the fact that parameter h, the element size, tends
towards zero, they fail to give particular indications about realistic cases where
this value is not necessarily small.

It seems evident (and intuitive) that if the gap between the boundary edge (lin-
ear approximation of the boundary curve) and the boundary itself is small enough,
then the reasoning used in P! can be followed and the optimality criterion remains
unchanged. The case of interest is when this gap, for a linear approximation, is
relatively large and when this gap, in P2, is Judged good enough (the geometry
is suitably approximated). This implies that the optimal point related fo the Pl
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edge which allows the creation of an equilateral P! triangle is not necessarily op-
timal when a P? triangle must be defined. This depends on the curvature of the
boundary in the region of interest. In other words, given a curved edge suitably
meshed is not sufficient, some other conditions must be considered.

By analogy with the equilaterality criterion held in Pl we can say that a P2
triangle is satisfactory if the angle bounded by the two tangents in its three vertices
1s close to 60 degrees. If the edge is a curved edge, the tangent in question is the
tangent to the curve, if the edge is a line segment, the tangent is the edge itself.

It is easy to see that this criterion results in a restriction on the length of the
curved edge and makes it possible to find a reasonable position for the third vertex
whatever the local concavity may be.

This being satisfied, the vertex we are seeking can be located at the intersection
of the two line segments which form the above angle with the tangents to the curve.
Then, the two other edges are defined using these line segments. Either the edge
in construction belongs to the adequate line segment or it must be curved and
this line segment is only its tangent. In such a case, it is necessary to construct a
portion of a parabola using as the input data one of its endpoints, the tangent at
this point and the length.

The example in Figure 22.2 shows, in comparison with a classical P! mesh
(left-hand side) the P? mesh obtained by a direct construction method (see the
curved boundaries).

Figure 22.2: P! and P? planar meshes. On the left, a P! triangular mesh with
a uniform element size and, on the right, the P? mesh resulting from a direct
construction with twice the element size.

22.2 P-compatibility

The above discussion and the simple examples in Figure 22.1 allow us to make
the notion of p-compatibility more precise. In the following and for the sake of
simplicity, we only consider the case where p = 2.

Definition 22.2 A geometric element (a P! element) is said to be 2-compatible
if the distance between its boundary edge(s) and the boundary curve is such that
there exists a point in the boundary for each of this(these) edge(s) that makes it
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possible to construct a valid P? element by a simple post-processing of the given
P! element.

This s a naive definition (somehow a tautology) which indicates that the sim-
plest construction (find a point on the curve and construct a portion of parabola
Joining the two edge endpoints and passing through this point) results in a valid
element. This means that there is no interference in the various edges (curved or
straight sided). This implicitly implies that the new points (the “midpoints”) re-
main close to the initial straight-sided segment and thus don’t create any problem
for the elements neighboring the element under consideration.

Note that the theory about error estimates and convergence issues (Chap-
ter 20), deliberately considers a situation of this type. From a practical point of
view, a 2-compatible (straight sided) element is easy to transform into an element
of degree 2. Nevertheless, this does not mean that an element not in this case
cannot be transformed into an element of degree 2 (as will be seen below).

22.2.1 P-compatibility a prior:

Such a case is ideal. The mesh generation method completes P! elements which
are 2-compatible. Then, it is sufficient to find the edge “midpoint” and to define
the corresponding parabola arc. If the straight edge - boundary edge distance is
small and if the curve is close to a parabola (or enjoys a certain symmetry with
respect to the perpendicular bisector of the straight segment), the point we are
seeking can be simply chosen as the projection of the edge midpoint onto the
boundary.

In the case where the boundary curve does not satisfy this property regarding
regularity and symmetry, the sought point is not the projection of the edge mid-
point (return to the section about how to mesh a curve by means of parabola arcs
while minimizing the gap).

Keeping this in mind, how can we ensure that a P! mesh satisfies a prioriall the
underlying requisites ? The simplest idea is to construct a mesh whose elements
having a boundary edge(s) are such that this(these) edge(s) is(are) close to the
boundary and, moreover, are such that the third vertex leads to an element which
is almost equilateral. This is exactly the objective of classical mesh generation
methods. Most of the elements must be equilateral. The immediate question that
occurs is to know if any geometry can be approached with such triangles 7 The
answer is probably yes when a fine enough mesh is used, and probably no if not.

Remark 22.6 Imposing a rather small size so as to obtain such a mesh s, as
previously seen, not strictly necessary. The resulting P2 mesh is, in general, too
fine and thus dealing with such a mesh requires an unnecessarily high cost.

Following these remarks, it is possible to replace the criterion about equilat-
erality by a similar criterion related to the angles formed by the tangents to the
edges. Thus, given a boundary edge (a straight sided segment as we are in P1),
its angle with the next edge in the triangle is measured by taking into account
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the underlying boundary curve. Note that this criterion is not one of the criteria
usually considered in classical mesh generation methods.

In conclusion, it is far from certain that this approach is the most suitable in all
cases. In the following section, we propose another way to address this problem.

22.2.2 P-compatibility a posterior:

We consider here that we have an arbitrary P! mesh and we want to transform it
into a P? mesh. The simplest idea consists in returning to the previous case. All
edges (all situations) leading to a difficulty in the desired construction are modified
so to suppress this difficulty. The possible modifications (here in two dimensions)
that can be used are those described in Chapter 18. Thus they are based on an
adequate combination of tools for mesh optimization such as point relocations and
edge swaps.

The local configuration (an element and its neighboring elements with regard
to the boundary edge under examination) to be dealt with is analyzed. Several
situations may be found :

e the point in the curved edge to be added remains close enough to the cor-
responding straight sided edge and falls within the triangle having this edge
or, again, falls outside this triangle (based on the local concavity) but has
no influence with any of the neighboring elements,

e this point falls very close to one of the other edges in the triangle dealt with
or again falls within a triangle other than the current triangle (one of its
neighbors or, more delicate, an element that is not directly a neighbor of the
triangle under examination).

In the first case, constructing a P? element is obvious. In the second case, we
propose modifying the local neighborhood so as to return to a standard situation
while observing that the present situation is related to the fact that a P! mesh
too coarsely “violates” the geometry. Figure 22.3 depicts three examples of such
situations.

As concerns how the local context must be modified so as to remove the diffi-
culty during the construction, first, notice that in case 1) and, to some extent, in
case ii) an operation like an edge swap is not useful. In the first case, the resulting
situation is similar to the initial configuration. In the second case, the new situa-
tion leads to having the node to be created very close to one of the other edges in
the triangle (which results in a bad quality P? element or even a negative Jacobian
for a very close configuration). A small change in the node position (by means of
a moving point process) is then one possible way to move the new node away (by
increasing the distance between this node and the edge). For the configuration
shown in case iii), it is also possible to find a local strategy that suppresses the
problem. First, it must be observed that using a local modification (point reloca-
tion or edge swap) does not allow us to remove the parasite point located outside
the P? domain while being inside the P! domain. Thus, we propose (Figure 22.4),
after [Dey-1997], :
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i) ii) iii)

Figure 22.3: Three local configurations where the transformation of a P! mesh
into a P* mesh is not immediate because the geometrical approrimation is too
poor. In 1) and ii), the point to be created falls outside the initial triangle, in 1)
the situation is far more dramatic, the point to be defined is outside the triangle
and, moreover, there are several “parasite” triangles (and even a point) which
certainly impede the process.

¢ constructing the desired node M,
¢ constraining the two edges oM and M in the P! mesh,

e classifying the resulting triangles according to their positions with respect
to boundary I' and classifying the mesh entities (points and edges) in in-
ternal entities and boundary entities. This classification is made using the
inheritance based on the classification of the entities in the initial mesh while
preserving a coherent result,

* suppressing the exterior triangles (in this way, the parasite point disappears),

¢ analyzing the new context again.

iii)

Figure 22.4: The initial configuration and the predicted point M. This point is
located in an element other than the triangle supposed to be a boundary element.
The two boundary edges formed after inserting M are enforced. Consequently, the
mesh is modified and the resulting elements are classified so as to find the new
triangles that have a boundary edge.

Notice that we encounter here an edge enforcement problem (as described
in Chapter 7) and that the proposed method leads to what is expected while
the resulting situation is not optimal. Indeed, if iterating this process, it could
be necessary to subdivide the presumed boundary edges several times and, as a
consequence, obtain an unnecessarily fine P2 mesh. Note also that applying this
heuristic is not trivial in three dimensions (as also seen in Chapter 7).
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An example of a temporary pathology. When there are thick regions or
when several boundary portions are close to one another (Figure 22.5), which are
frequent situations in realistic cases, a difficulty may arise, which may be only
temporary (this is not known a priors).
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Figure 22.5: Two local configurations where there is a thick region. The P! mesh
is correct but, when constructing the P? mesh, auto-intersections at the boundary
level are created, which may only be temporary. In fact, dealing with edge af3 leads
to an intersection with edge & whereas, if this edge is processed first, dealing with
the other edge becomes possible.

As the boundary is assumed to be correct (not self-intersecting), there exists
necessarily a suitable geometric mesh of this boundary. The problem is then to find

the value of the threshold € which ensures an accurate approximation and avoids ‘
self-intersections. The difficulty in finding the proper value of this threshold results |
from the fact that the points or the elements which are geometrically close to each
other are not necessarily close in terms of the topology. One way to detect such a
situation is to make use of a global structure like a neighborhood space Chapter 1)
previously constructed in a proper way. Indeed, in this structure, it is demanded
to store the mesh entities so as to, for a given entity, retrieve at a low cost the set
of mesh entities falling in some neighborhood.

Given such a tool, the data structure is queried when constructing an element
and the possible conflicts are detected. The strategy that may be used is then of
a purely heuristic nature. Indeed, it is possible :

e to accept a temporary collapsing while maintaining the list of the entities
concerned, prior to re-processing (i.e., subdividing) these entities. As the
solution exists, it will be found (at least, we hope so);

e not to construct such a situation (which means we temporarily ignore the

entity concerned) in the hope that the pathology will disappear when dealing
with some other entities.

As a conclusion, obtaining p-compatibility a priori or a posteriori makes sense
only in cases which are already relatively close to the solutions and, in practice,
the interesting cases are precisely those which are pathologic and, due to this, are
bad candidates for such processing. Also, we have seen that looking for proper
compatibility may lead (after some heuristics) to a valid result but one which is
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probably not optimal (in terms of the number of mesh entities). Therefore, other
methods must be investigated (see below).

22.3 Construction of P? elements

We first restrict ourselves to a planar situation.

22.3.1 Element 2-compatible

Following the definition of the notion of compatibility, the transformation of a P!
mesh into a P? mesh reduces to locally modifying the initial mesh, i.e., element
by element.

22.3.2 Other elements

In such a case, a purely local processing, since the processing only of the boundary
edge is not sufficient, does not lead to a solution. In particular, it is necessary,
for “curving” the boundary edge under treatment, to curve one or several other
presumably internal edges. Intuitively, this consists in “defining” the empty region
necessary to obtain a suitable construction. In practice, this approach can be seen
as an optimization method in which a certain propagation (a deformation between
the neighboring entities) from entity to entity is necessary so as to achieve the
desired result.

i) ii)

F_igure 22.6: A local configuration where it is necessary to curve an a priori straight-
sided edge so as to have enough space for the boundary edge which is to be processed.

This meshing problem is a problem with constraints (Figure 22.6). Edge af
(parabola arc) having been constructed, it is necessary to construct a curved
edge,a P, as far as possible (in accordance with the local configuration) so as
to obtain a P? element of reasonable quality. It should be noted that this mesh
deformation may lead to processing some other edges in the neighboring elements.
Here, we can also use the tangents to the relevant edges.
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22.3.3 Dealing with a surface element

We turn now to the same problem for a surface mesh. The targeted application is
clearly the construction of surface meshes but also the construction of the “curved”
faces in three-dimensional meshes of type P2.

Following an observation already given, meshing a surface or transforming
a (planar) triangular face into a curved triangular face (belonging to the same
surface) are not, stricto sensu, identical problems. In the first case, the surface is
globally considered, in the second case, the process is a local one.

Figure 22.7: Anisotropic meshes of a molecule of cyclohexane. Left-hand side,
mesh with P! triangles controlled by an angular tolerance of &, right-hand side,
a P% mesh for a tolerance of 32°.

Meshing a surface by means of P? triangles. In this case, the principles
of mesh construction described in Chapter 15 may be used. The method involves
finding the (curved) edges of the triangles that ensure that the thus-created sur-
face mesh is a suitable approximation of the real surface. We have seen that
this problem does not reduce to ensuring that the curved edges are adequately
close to the surface. Indeed, controlling the gap between such an edge and the
surface does not automatically imply that a triangle with these edges as sides is
adequately close to the surface, for the same given threshold value. In addition,
the interface between two adjacent triangles must have, in some cases, a certain
extent of smoothness thus implying, at least, that the edge discretization must not
only take into account the gaps (in terms of distance) to the surface but must also
consider a control regarding the gaps related to the variation of the tangent planes
or even consider some other geometric properties (variation in the curvature, radii
of curvature, etc.). ‘
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As fqr a planar P2 triangle, one must control the size and the direction of the
edgeg using the tangent plane at each vertex (the effect of the tangent in a planar
case 18 now replaced by these various tangent planes).

An example of a P2 surface mesh is depicted in Figure 22.7, right-hand side
(software BLSURF).

Transforming a P! surface mesh into a P? mesh. In such a case, the
geometry is assumed to be known (via a modeler, a mathematical description or a
representative mesh) and, in addition, that a P! mesh is available. The question
is then to transform this mesh in a P? mesh.

N
V\ AN
SETRY,

oK

Figure 22:8: Pl an'd P? meshes of a Boeing 747. The mesh on the left results from
a mesh simplification at 85% of a very fine surface mesh (original data provided

by Boeing). The mesh on the right is the transformation of the P! triangles into
P? triangles.

Figure 22.9: Enlargement of part of the P! and P? meshes of the previous figure.
[tzzs easy to see the quality of the geometric approzimation of the surface in the
P* mesh as compared with the linear approrimation seen in the P! mesh.

We return to the above discussion. If the P! mesh follows the right properties
(control by the tangent planes) then the transformation is of the same natiire
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The construction is indeed relatively easy to do. The examples in Figures 22.8
and 22.9 are courtesy of H. Borouchaki. Otherwise, it may be necessary to refine
the P! mesh based on the local curvatures so as to obtain a mesh that is easy to
transform.

22.3.4 Volumic case, example of the P? tetrahedron

We now give some indications on the construction of tetrahedra of degree 2. We
only focus on elements having one or several entities (edge or face) lying on the
boundary. Obviously, the most interesting case is when this portion of the bound-
ary 1s a curved region.

Element 2-compatible. As in two dimensions, a 2-compatible tetrahedron is
relatively easy to transform into a curved tetrahedron with 10 nodes (see Chap-
ter 20). The boundary face is curved (let us assume that there is only one such
face) and, for the position of the three nodes to be defined, we return to a curve
meshing problem, now in three dimensions. Note that meshing these curves, edges
shared by several elements, must be such that the curved face and its neighboring
faces form a discretization as regular as possible of the real surface (when this lat-
ter is regular). In other words, meshing a curve in this context requires considering
the underlying surface.

It must be noticed that obtaining a 2-compatible mesh for a straight sided tet
mesh forming a not necessarily close approximation of the real geometry is a non
trivial problem and, in particular, may lead to unnecessarily small elements. On
the other hand, the technique based on edge or face enforcement, local modification
of the resulting mesh and classification of the new mesh entities (vertices, edges
and faces) with respect to the boundary is in this case rather delicate (Chapter 7).
The alternative approach, based on the control via the various tangent planes to
the faces gives better results (in specific, it is not necessary to refine too much the
initial mesh and thus the number of elements remains reduced while the quality
of the approximation is still within the desired range).

Other elements. An element (resulting from an automatic mesh generation
method) which is a coarse approximation of the real geometry may, as in two
dimensions, not be suitable for such an immediate construction. In particular,
this may lead to curving some face a priori not in the boundary so as to obtain a
region which is large enough to allow the construction of an element of adequate
quality.

22.4 Elements of higher degree

The p-methods basically lead to modifying the degree p of the underlying poly-
nomials until obtaining some values rather larger than 2. In this respect, we find
some examples where the value of p could be 5, 6, or more. Therefore, for example
if p=3,4,...,1t 1s of interest to discuss, for the curves, how to construct arcs of
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cubics, quartics, ... and, for the faces, how to construct some surfaces with the
corresponding degree.

Let us just mention a few remarks about the case of a P3 mesh entity, an arc
of cubic, for a curve meshing case in the plane. We start again from a limited
expansion until the term of degree 3. Then, assuming adequate hypotheses about
As, the error due to stopping this expansion at this order can be appreciated by
looking at the following term (at the order 4). This being done, we can follow
the method described in Chapter 14 and we construct an arc of cubic so as to
approximate the curve defined by the three first terms in the expansion, namely :

As3 , L
2p(s0) 6/7(80)2(,0 (50)7 4 7).

For a P? triangle, we find a construction similar to that used for a P? triangle
while now controlling the tangents at the endpoints of the edges of the elements.
In particular, one condition that must be verified is to ensure that the arc of cubic
the P3 edge which approximates the curve, retains the same concavity between’
these two endpoints (thus implying a restriction on the length in the case where
this concavity changes).

As a conclusion about these ideas of methods able to construct elements of
an order higher than 1, it is clear that this topic is still a topic of interest which
remains to be really well addressed (apart from the case where the curves or the
surfaces remain smooth enough).

22.5 About p-methods and hp-methods

In this short section, we briefly return to mesh adaptation methods based on a P
or a hp approach.

22.5.1 P and hp-methods

Essentially, a p-method allows, according to a criterion (resulting from an adequate
error estimate), us to predict the degree of the approximation which is appropriate
with regard to the way in which the solution varies. Note that this degree changes
during the computational process and also may vary from one element to an-
other in the mesh. The literature about p-methods is extensive and, in particular,
one can refer to [Babuska,Guo-1988], [Babuska et al. 1989], [Babuska,Suri-1990],
(Dey et al. 1997], (among many others).

Constructing a finite element of order P 1s not done as in the classical case.
In other words, when p varies, we don’t consider the set of finite elements (their
basis polynomials) with the corresponding order p but a finite element which is
hierarchically defined. This being assumed, changing the degree involves adding
the contributions of some shape functions whose degree is less than or equal to
the chosen value and ignoring the contributions related to higher degrees.
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22.5.2 An adaptation scheme

A possible (reasonable) scheme for an adaptation loop in terms of h or p comprises
several steps, as for an adaptation in h only (as seen in the previous chapter).
First, an initial mesh is completed using a classical method, while trying to obtain
a mesh that is reasonably suitable for further use while, at this time, no precise
information can be used regarding the order or the size of the elements (an error
estimate a priori or some knowledge about the physical behavior may nevertheless
be helpful in this construction). An initial solution is then computed using this
mesh as a spatial support and an error estimate a posteriori analyzes its quality so
as to estimate the sizes (h) or the degrees (p) adequate for the elements in the mesh
of the next iteration step. The adaptation process then consists in constructing
this mesh by taking these requests into account. Note, as for an h-method, that
this adaptive process may be a local or a global process (nevertheless, the available
examples are mostly local).

The new spatial support then serves to compute a new solution and a new
error estimation is made and, until a given stopping criterion has been achieved,
the iteration steps are continued.

The actual implementation of such a process includes two aspects which are
slightly different. First, if the size parameter is affected, we return to the discussion
in the chapter devoted to h-methods which describes various approaches that allow
the construction (or the modification) of a mesh while following a given size map.
Then, if the size remains unchanged, changing the order in the solution method
results in two new problems :

e the construction of the “curved” entities in the mesh that are affected by the
current step,

e the construction of the finite elements with the desired order p.

The latter aspect is out of the scope of this book, thus we advise the reader to
return to the brief comment previously given and to the ad hoe literature (includ-
ing the above references), while the first aspect leads us back to the preliminary
discussion given in this chapter. Note that only the elements having a boundary
entity located in a portion of the boundary which is curved are delicate to handle
and that this may lead to processing some other a priori internal elements, in some
neighborhood.

Chapter 23

Parallel computing and meshing issues

Introduction

Parallel computing is a key-issue for various categories of numerical problems. In
practice, a numerical simulation may require a very fine mesh (i.e., one containing
a large number of elements) and/or may be costly in terms of CPU time (when the
computation is done in a serial way). Parallel computing! is an efficient solution
for large size problems (i.e., with a large number of unknowns) that are impossible
to carry out using classical facilities due to size requirements and/or CPU cost.
In fact, parallelism consists in spreading (distributing) the computational effort
and/or the memory requirements over the different computers available.

The notion of a parallel computing process can be conceived at various levels
but, here, we will mainly focus on two of these levels. Obviously, the computational
stage is concerned with parallelism. In such cases, a preliminary stage consists in
partitioning the domain by means of sub-domains prior to dispatching these to
different processors (each of them taking charge of one sub-domain). On the other
hand, it could be of interest to see what degree of parallelism could be required at
the mesh generation step itself.

At the solution step, a domain decomposition method requires a partition of
the domain into several sub-domains. In these, the mesh that must be constructed
must have certain properties. The solution method makes use of communication
processes from one sub-domain to the others. At the meshing step, a parallel com-
putational process consists in partitioning the domain into different sub-meshes
in order to distribute the computation effort over several processors, each of them
being responsible for computing the solution for one sub-domain. The global solu-
tion is then achieved, when all the sub-solutions have been completed, by merging
all of these partial solutions.

Constructing a suitable domain partition, as well as constructing each of the
corresponding sub-meshes, can be achieved in many different ways. These ap-
proaches can be broadly classified into two categories. Either a posteriori or a

IFor the sake of clarity, we are concerned here with a multi-processor architecture using a
distributed memory system.
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priori partitioning methods can be considered. A posteriori processing starts from
a mesh of the entire domain while a priori processing uses the domain itself and
not a mesh of it. Note that a posteriori methods have received considerable at-
tention and are widely used in practice whereas a priori methods are still a field
of intensive research (particularly in order to automate the partitioning process).

When concerned with the mesh construction aspect, it is not easy to decide
where precisely the parallel aspect should be included. In particular, a question
could be : is it necessary to include parallel concepts in the mesh generation
method or should the construction method remain serial and used in parallel 7 The
following remark may throw some light on this. There exist at present various mesh
generation methods which are reliable, fast and able to complete several million
elements within only a few minutes. Therefore, one may think that constructing?
several million or hundred million elements can be done in an indirect way by
using a classical method (for constructing, say, one million elements) included in
a parallel process. In other words, the global generation process is parallel but the
construction method remains serial. This leads to distributing the computational
effort over different processors and, this being done, sequentially considering one
distinct task in one processor. Thus, following this approach, the parallel aspect
acts at the global meshing level and not at the mesh generation method level.

Nevertheless there have been a number of papers on parallel mesh generation
methods. The aim here is to construct the mesh in parallel, usually using a classical
meshing method which has been modified in order to incorporate some degree of
parallelism. Despite the above remark, it should be noted that although this type
of approach is possible, its interest seems more theoretical or academic.

*
* ok

This chapter is subdivided into three parts. It successively discusses the differ-
ent issues mentioned in the above introduction. Hence, at first, we recall the main
domain partitioning methods. Several a posteriori methods are presented and then
some a priori methods are described. We then turn to a parallel meshing process
and, In particular, we discuss how to conceive a parallel loop of computation. To
end, we give some indications about the possibility of mesh generation method
parallelization.

23.1 Partition of a domain

Constructing a partition of a given domain consists in subdividing it into several
disjoint sub-domains whose union forms a covering-up of the entire domain. In
fact, we are not so much concerned with the domain or the above sub-domains but
more with the meshes of these domains. First, we give some general indications
about the question under investigation, then we discuss the different partitioning
methods in greater detail.

2If this is strictly necessary. In fact, the concern is not to necessarily construct a “large” mesh
but more probably to have such a mesh available.
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23.1.1 Overview of partitioning methods

Partitioning or mesh splitting methods fall into two categories. 4 posteriori meth-
ods split a fine mesh (i.e., a large size mesh) into sub-meshes of a reduced size
and a priort methods construct the meshes related to sub-domains that are di-,
rectly obtained (i.e., without having to construct a global fine mesh, but directly
using the domain geometry or even a rather coarse mesh, which is easy and fast
to complete and requires little memory).

Partitioning a posteriori. In such approaches, we are given a mesh of the
entire domain and the partition method involves splitting this mesh into sub-
meshes which define the partition. Several types of methods allow such a task.
For details, the reader is referred to the ad-hoc literature (see [Simon-1991] or
[Farhat,Lesoinne—1993], among many others) and, in what follows, we simply out-
line some of these methods.

It is obvious that the weak point in such a direct way of addressing the prob-
lem is the problem of memory requirement. In fact, the required memory size
is about the sum of the resources needed to store the complete mesh plus the
resources required to store at least one of the sub-meshes. Moreover, classical
problems inherent to the partition process must be considered (as they will be
present whatever the chosen method). Among these, we find :

e the issue of regularity or smoothness. This mainly concerns the shape of
the sub-meshes and thus includes the shape of the sub-mesh interfaces. A
certain degree of smoothness is indeed required to guarantee a relative nu-
merical accuracy (convergence) for the partial solutions with regard to the
global solution. Indeed, some methods, such those using the Schur comple-
ment, lead to the solution of local problems coupled with a problem at the
interface level. These methods require well conditioned local problems in
order to guarantee the proper global convergence. Connexity or not of the
sub-domains is therefore an important factor for this local convergence,

e the question of interface size. The size of the interface between two sub-
domains directly influences the amount of data that must be exchanged and
thus on the degree of saturation (bottleneck) in the network used to carry
these messages. This size also affects the number of potentially redundant
operations,

e concern about the number of connections from sub-domain to sub-domain,
e concern of balancing between the sub-meshes. The size of these meshes must
be distributed in such a way as to balance the effort of each processor at the

solution step,

e concern about the interface sizes (the number of nodes on these interfaces),
etc.
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Also, we do not consider the memory resources necessary to construct the initial
mesh and those needed to store it (not to mention the CPU time required in the
i/0).

Different classes of partition method are encountered. Among these, some are
based on graph partitions and some are purely geometric methods directly based
on mesh partitions. All these methods apply to finite element type meshes since a
vicinity graph can be constructed based on the connections between the elements
in a given mesh.

Before presenting some of the most frequently used algorithms, it is useful to
consider the type of entities (vertices (nodes) or elements) on which the decompo-
sition is applied. This point is of importance since it is related to the numerical
software or the solution method that will use this decomposition. This choice may
also have some effect on the splitting algorithms. Nevertheless, we do not go into
more detail about the positive features or the weaknesses of these two approaches.

Element based decomposition. This is the most frequent case. The mesh is
partitioned by distributing the elements among the sub-domains. In other words,
one element is logically associated with one and only one sub-domain. One can see
an example of such a decomposition in Figure 23.1, left-hand side. This partition
has an interface consisting of vertices (nodes), edges and faces.

Node based decomposition. In this case, the mesh is partitioned by distribut-
Ing its vertices among the sub-domains. In other words, one vertex is logically
associated with one and only one sub-domain. One can see an example of such
a decomposition in Figure 23.1, right-hand side. This partition has an interface
consisting now of elements (nodes, faces and segments), which are shared by the
sub-domains while maintaining the initial connections.

Before describing these methods in greater detail, it may be noticed that this
approach is probably the worst way to go about mesh parallelism. Indeed, for a
large-scale problem, the construction of an initial mesh of the entire domain3 may
even be impossible. Nevertheless, this type of method, when suitable, gives nice
results and is probably the most pragmatic (in fact, simply the only possible) way
to address the parallel problem. To end, note that the creation of the initial mesh
does not take benefit from the assumed advantages of parallelism.

Partitioning a priori. To avoid this memory requirement problem, it is natural
to examine the a prior: approaches, when they exist and can actually be imple-
mented. In this case, it is not necessary to construct a large mesh thus limiting the
amount of memory available and, moreover, the parallel aspect directly appears
in the construction, thus avoiding the main weakness of the previous methods.
Thus we first create a partition of the domain. This step may start from a
reasonable mesh (i.e., a relatively coarse mesh) of the entire domain. Several sub-
domains are then identified and meshed, each on one processor. Thus parallelism

3In our experience, at this time, we are limited to 10 million tets constructed by a Delaunay
type method, mainly due to the memory resources available in a classical workstation.
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Figure 23.1: Element based decomposition (EQD, element oriented decomposition),
left-hand side and node based decomposition (VOD, vertex oriented decomposition),
right-hand side.

plays a part from the mesh generation step. Another strategy consists in extracting
the various sub-domains (their boundaries) starting from a mesh of the boundary
(the surface) of the entire domain. Then, the same method applies.

Actually, the balancing between the sub-domains together with the smoothness
of the interfaces may be considered by using the information now available (the
coarse mesh in the first case or the surface mesh in the other approach).

In the first strategy, there are two ways of obtaining a coarse mesh : either an
empty mesh (¢.e., without any internal vertices) as defined in a Delaunay based
method (Chapter 7) or a mesh with a limited number of internal vertices con-
structed by one or the other of the possible methods.

In the second strategy, the meshes are constructed using the meshes of the -
surfaces that constitute the interfaces between the sub-domains extracted from
the given boundary mesh.

23.1.2 Partitioning a posterior:

In this section, we describe some a posterior: partitioning methods. Specifically,
there are four types of methods and some approaches based on the combination,
to some degree, of two or more of these methods.

Greedy method. This approach makes use of a graph partition algorithm and
1s both very simple and quite intuitive. Its principle is similar to those of the
node renumbering methods developed to limit the bandwidth of a finite element
matrix (such as the Cuthill-McKee [Cuthill,McKee-1969] method, for instance,
Chapter 17).
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Given a neighborhood graph G, a starting entity nl, a number of expected
sub-domains ndsd together with a targeted distribution (the number of expected
entities in each sub-domain), the algorithm takes the following form :

set the parent entity to nl,
WHILE the number of sub-domain is less than ndsd, DO
(4) initialize the front line to be one element, the parent entity
FOR ALL entities in the current front line
FOR ALL neighbors of the entity
If the entity has not been previously marked, THEN
put it into the current sub-domain
add it to the list of the entities in the new front line
under construction
increment the number
END IF
END FOR
END FOR
If no entity is detected
search for a new parent
go to (A)
IF the targeted number is that of the sub-domain
IF the sub-domain is the last, END
ELSE
construct a new number 1
return to WHILE
END IF
the current line is the so-constructed line
return to FOR ALL
END WHILE

This algorithm is very fast but its main drawback is the generation of non-
connected sub-domains. Various variations exist, for instance based on a recursive
bisection, with adequate parents. This algorithm may also serve to construct a
pre-partition used at a later time as the entry point of another partitioning method.

Partition by a spectral method. This graph partition method, described for
example in [Simon-1991], [Gervasio et al. 1997] or in [Natarajan-1997] also referred
to as the Recursive Spectral Bisection (or R.S.B.) is based on the properties of the
eigenvalues and eigenvectors of a positive definite symmetric matrix.

For instance, let us consider the Laplace matrix associated with the graph dual
of the mesh, then the matrix coefficients a; ; are defined as :

—1 if (n;,n;) are connected
a;; =< deg(n;) if i=j
0 otherwise

This matrix is useful when computing a separator between the nodes, as explained
in [Donath,Hoffman-1972], [Donath-1973] or [Pothen et al. 1990]. One can prove
that the eigenvector related to the second smaller eigenvalue of A (the so-called
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Fielder vector [Fielder-1975]) corresponds to minimizing a constraint about the
number of connections.

If the vector components are partitioned in increasing order and if the graph
is partitioned in this order, one obtains two sub-graphs with a close size in which
the number of connections from one to the other is minimal. The corresponding
algorithm may be written as follows :

J=1

WHILE the number of sub-domains j is less than the target
construct the Laplace matrix of the dual graph
compute the second smallest eigenvalue and the corresponding
eigenvector (the Fielder vector)
sort the graph according to the components of the Fielder vector
distribute the entities between the two graphs
J=2j

END WHILE

This method is time consuming. Indeed it requires the solution of numer-
ous eigenvalue problem for sparse matrices. Iterative methods are generally cho-
sen as being better adapted to such problems (for instance the Lanczos method
[Cullum, Willoughby-1985], [Chatelin-1993]).

Nevertheless, this algorithm has two drawbacks related to memory require-
ments and the necessary CPU cost. A number of variations can be developed, for
instance, based on a multi-level approach that allows an improvement in costs.

Recursive partition using the inertia axis. The approach for partitioning
is here related to the domain geometry. It is based on an analogy of the initial
mesh with a mechanical system consisting of discrete points (i.e., the vertices) with
which mass are associated. This mechanical device has various inertia components
including a main component that corresponds to minimizing the rotation energies.

Intuitively, the main component gives the axis along which the set is the thick-
est. This idea, as applied in a partitioning problem, simply leads to trying to
split the set of entities into two parts along this axis. Indeed, this is the place
where the interface will be minimal. This algorithm is more efficient if the mesh
is homogeneous (in terms of element sizes) (and, a contrario, is less efficient when
there is large variation in these sizes).

Computing the main inertia component involves finding the eigenvector associ-
ated with the largest eigenvalue of matrix Z = {44 where A has as its coefficients



e

750 MESH GENERATION

the a; ;’s* by :

aij = zj(i) — gj,
with z;(¢) the coordinate of index j of the node of index i and g; the j-coordinate
of the centroid G defined by :

gj:% PEZIOR

1=1n

n being the number of entities under consideration (the nodes, for instance). Then
Z is a d x d matrix where d is the spatial dimension. This matrix, in three
dimensions, takes the form :

I»L‘11‘1 I.rlz';, Irlx;,
1= Il::ﬁ Il‘zél‘2 szxs (231)
11‘31‘1 Iical‘z Il‘3$3

with :

Tojee = 3 (25(5) — g5) (24 (5) — gi),

i

4To establish what the coefficients are, one turns to a minimization problem. If X (i) stands
for vector P(i) ~ G, where G is the centroid of the P(:)’s and if V is an unknown unity vector,
one considers the problem of minimizing the square of the distances between the P(7)’s and G to H
a line segment aligned with V passing through G. This corresponds to the following problem :

m\ng(X(i),V)g

LA

under the constraint :
(V,\V)y-1=o0.

The solution corresponds to the case where the gradients of these two expressions are aligned.
Then, one looks for a coefficient \ such that :

qu)(xu), Vy= AV

x
g

In terms of the coordinates z;(i)’s of the X(4)'s and v;’s of V, this leads to :

(Z(.’L‘l(L)z - )\) v + le(i)l‘g(i)vg + 21‘1(2)1‘3(1) vy = 0,

le(i)m(i) v+ (Z z2()% — A) va + _ aa(i)zs(i)vs = 0,
le(z)xg(z) v + ng(l)rg(t) vy + (Z xg(i)2 — /\) vs =0,

which, in a matrix form, is :

Tini()? =N Yim()e(i) X, @1 (i)ws () vg
> z2(d)x (1) Y w2(i)? - A > 2(i)za(s) vy =0.
Yiza(iar(i)  Liws(dea(d) X, ea(d)? -2 vz

This system has a non null solution if its determinant is null. Thus, XA is an eigenvalue of the
previous matrix 7.
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thus, in particular, we have as diagonal coefficients :

. 2
Ixj,zj = Z ($J(Z) - g]) .
i
In three dimensions, the problem reduces to computing the largest eigenvalue
of a 3 x 3 matrix and then computing the corresponding eigenvector. This task is
easy for instance by means of the power method. The partitioning algorithm then
takes the form :

set =1 (initialization of the number of members in the partition)
WHILE j is less than the target
FOR ¢ = 1,7 where ¢ denotes a sub-domain
compute the centroid G of sub-domain :
compute the main inertia component of sub-domain 3.
(This involves computing 7 for the entities in i and then
picking the largest eigenvalue and eigenvector)
project the entities in i following this eigenvector
sort the projected entities
partition into two the sub-domain i according to the
sorted projected entities
END FOR 1
3=2y
END WHILE

This algorithm can be easily adapted to obtain an arbitrary number of sub-
domains. To do so, it is sufficient to modify the way in which the partition into
two sub-domains is made by partitioning not in a homogeneous way but following
a distribution which is proportional to the number of sub-domains expected when
dealing with the current sub-domain, in one side or the other of the partition.

Remark about the inertia matrix. The above method makes use of the ma-
trix defined in Relationship (23.1) which is not the inertia matrix widely used in
mechanical engineering. The latter is written as follows :

lel'l IT11’2 II;J:3
I = 11‘2371 Zx;rg Ia:z:s;;' (232)
Z»""azl Zfaxz Ifaxs

but, now, with :
Tojon = = D (2(0) = 95) (2 (i) = g4),
i
and, for the diagonal coefficients, expressions of the form :

Toje; = 9 ((@ia1() = gj+1)? + (2j42(d) - 9i+2)%)

i

with obvious notations about the indices j 4+ 1 and j + 2, for a given j.
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Clearly, in two dimensions, the eigen elements of matrices (23.1) and (23.2)
are the same. The same is true in three dimensions (or for higher dimensions).
To be certain of this, just remark that the sum of these two matrices (in three
dimensions) is :

YD) —g5)? | Is,
i J
in other words a diagonal matrix. A simple examination of the eigen elements of
the two matrices (while using this relationship) allows for the proof.

K-means method. Initially developed in a different context (classification prob-
lems, [Celeux et al. 1989]), the aim is still the same, we try to balance in a certain
number of classes the entities in a given set, here a mesh.

Let us consider S a cloud of points (the mesh points, in a vertex based algorithm
or the element centroids, in an element based algorithm). An outline of the K-
means method is as follows :

¢ choosing, using one method or another (random choice, inertia axis, octree
type structure, etc.) k seeds (or kernels) where k is the number of classes to
be constructed,

* (A) - associating the points in § with a seed based on a given criterion (for
instance, a proximity criterion). This points-seeds relationship then defines
k classes,

e computing, for every class, a new seed (for example, its centroid), then return
to (A).

The interesting feature in this method is, after some adequate assumptions,
its convergence. Indeed, it builds a set of k stable classes. In addition, these
classes satisfy (maximize) a criterion meaning that the classes and their seeds are
in adequation and that the classes are well aggregated and well separated from
one another.

Convergence results from observing that a series associated with the process
is a decreasing series and thus the algorithm implies that a criterion decreases at
each step until stability which, in turn, ensures that the solution is complete.

A few examples of partitioning output. We now give (Figures 23.2 to 23.5)
some application examples resulting from the above methods. More precisely,
Figure 23.2 (i-iv) shows the partitioning of two dimensional domains as obtained
by a greedy method with VOD or EOD choices.

Figure 23.3 depicts two partitions of a domain, in two dimensions, using Recur-
sive Spectral Bisection methods, one vertex based (VOD), the other element based
(EOD). We can see in this example that the (greedy) bisection method produces
a rather similar result.
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iii) iv)

Figure 23.2: Partition of a sub-domain in two dimensions using a VOD greedy

method into, respectively, two i), four i) and eight 1ii) sub-domains. Partition by
a multigrid-greedy EOD method ).

Figure 23.3: Partition of a sub-domain into eight sub-domains, using a VOD RSB
type method, left-hand side and a EOD RSB method, right-hand side.
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Figure 23.4 (i-iv) shows, for the same case, some partitions into two, four and
eight sub-domains as completed by an inertia axis method.

Then, the case of a three dimensional domain is depicted in Figure 23.5. The
domain has been split into eight sub-domains using a VOD spectral method and
an inertia axis EOD method.

iii) iv)

Figure 23.4: Partition of a sub-domain by an inertia axis method (in the VOD
case) into two i), four 1ii) and eight i) sub-domains and in the EOD case in the
case where four sub-domains are desired, iv).

23.1.3 Partitioning a prior:

In what follows we discuss two particular a prior:i partitioning methods. After-
wards, some remarks about other methods will be given.

Method 1. In this approach the entry point is a relatively (or a really) coarse
mesh of the entire domain. The technique may be classified as an a prior: method
in the sense that it is not necessary to mesh the domain with the fine mesh. t'hat
will be the support of the envisaged computation in order to define the part¥tlon.

The coarse mesh, the basis of the partition, may be easily obtained using a
Delaunay type method (Chapter 7), based on the discretization of the boundar.y
of the entire domain. The meshing process is then stopped when the domain
is covered, i.e., once the boundary points have been inserted and the boundary

PARALLEL COMPUTING AND MESHING ISSUES 755

Figure 23.5: Partition into eight sub-domains by a Recursive Spectral Bisection
VOD type method, left-hand side and by an inertia axis FOD method, right-hand
side (data courtesy of Renault).

integrity step has been completed. In other words, no (or a few) internal vertices
exist inside the domain.

One uses a splitting algorithm based on this mesh, for instance, by a greedy
type method (see above). This results in a partition of the domain into several
sub-domains. However, it is tedious to balance this partition. In particular, two
questions must be carefully addressed that concern the well-balancing aspect and,
on the other hand, the shape and the smoothness of the interfaces.

A simple idea to obtain a nice balancing (say an equidistribution of the ele-
ments) is to introduce a weight to the vertices such as the average of the volumes
(surfaces in two dimensions) of the elements sharing these vertices. In this way,
we implicitly assume that the number of elements in the final mesh is proportional
to the size of the initial elements. This choice is a reasonable idea when a uniform
density is expected, but less reasonable in other situations. Thus, in such cases,
1t is necessary to adjust the weights with information of a metric nature. In other
words, two initial elements of identical size do not necessarily lead to the same
number of elements after meshing.

For a domain in two dimensions, the interface between sub-domains is basically
formed by line segments which separate the domain from one side to the other.
In three dimensions, the interfaces are composed of a series of triangular facets
and the angles between two such facets may be arbitrary : thus the geometry is
likely to be badly-shaped (disturbed) resulting in a rather peculiar aspect at the
interface levels. ’

Then, the method includes the following :

e interface meshing,

¢ sub-domain definitions and balancing these over the different Processors,
* serial meshing for each sub-domain (one sub-domain in one processor).

Relationships between the different meshes are established at the end of the process
in order to allow the transfer of data at a later stage.

Method 2. Following this approach, a mesh of the domain is not required and
only a mesh of the domain boundary is used. The idea is then to directly build
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one or several separators (lines or curves, planes or surfaces) so as to define several
sub-domains based on these boundaries.

The method primarily proposed by [Galtier,George-1996], [Galtier-1997] is
based on the inductive Delaunay triangulation notion (termed projective Delaunay
triangulation in the above references). To introduce this notion, let us recall that :

Vi={P suchthat d(P B)<d(P, Pj), Vj#1}

allows us to define the Voronoi cell associated with point P;, a member of a given
cloud of points (Chapter 7). The dual of these cells (that constitute the so-called
Voronol diagram) is the Delaunay triangulation of the convex hull of the points in
the cloud. This triangulation satisfies the empty ball criterion.

By analogy, we now consider a plane II and we define the set :

VW = (P eIl suchthat d(P,P)<d(P,P;), Vj+i}, (23.3)

which is a polygon in R3. The dual of the different cells defined in this way 1s a
set of triangular facets in R® obtained by joining the points whose cells share a
common edge. This set of facets (triangles) satisfies a criterion similar to that of
the empty ball, referred to as the inductive criterion hereafter. This set of facets

is denoted by FT.

Figure 23.6: The inductive empty ball criterion. The ball centered in the plane I1
passing through the three vertices of facet P, P; Py is empty.

In [Galtier-1997] it is proved that the facets constructed in this way form a
separator in the domain (here, the convex hull of the cloud). Thanks to this
result, it is possible to split this particular domain into two parts. The principle
of this partitioning is to use this idea and to apply it to a domain in R3 (and not
only to the convex hull of a set of points).

The proof is based on some assumptions that simplify the problem (for instance
about the point positions). First, one shows that the set of facets FI is a planar
graph. Then one notices that a triangle P; P; Py is a facet in F! if and only if the
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three Voronoi cells, after Definition (23.3), are not empty and share a vertex. Then
one establishes that these faces are Delaunay-admissible (following the deﬁnition’
in Chapter 9) and therefore will be formed in every Delaunay triangulation. One
deduces in addition that the facets in FU define a separator in the convex hull of
the domain.

The principle of the partitioning method is then to apply these issues to an
arbitrary domain in R3 (and not only in a convex hull problem) and, in particular
to remove the above assumptions, which were made for the sake of simpliﬁcatioxi
(the points are now assumed to be in an arbitrary position and not in a general
position). The main steps of the splitting method are as follows (in the case where
the separator entity is constructed from a plane) :

® a polygonal line (a set of edges among the triangle edges in the mesh of
the domain surface) is found such that this set of segments is Delaunay
admissible for the inductive empty ball criterion,

e the points on this line are inserted using a Delaunay type algorithm. Thus
providing a mesh of a surface whose boundary is this line.

In this way, an initial mesh of a surface that separates the domain into two parts
is obtained. Then :

¢ some points are created on this surface (for instance, as in Chapter 7, by
using the edges as a spatial support),

e these points are inserted.

On completion, we have a mesh of the separator surface. Thus, it is possible
to define two sub-domains (through their boundary meshes) whose boundaries are
composed of the union of the separator mesh with the adequate parts of the surface
mesh of the entire domain.

By repeating this process, it is possible, step by step, to cut the initial domain
into several sub-domains. As the interface between two sub-domains is defined in
a unique way, a classical mesh construction algorithm (i.e., such that boundary
integrity is maintained) can be suitably applied in each sub-domain®.

Notice, and here is our concern, that the serial mesher is used in parallel
meaning that the global meshing effort has been distributed over several processors
(one per sub-domain).

A few remarks may be given. In specific, questions arise about the way in
which plane IT mentioned above must be chosen and, this being done (a separator
surface being available) about how to discretize this surface so as to obtain a mesh
whose density reflects the desired element sizes. Also the recurrent problem of
well-balancing the task must be addressed.

As concerns this last question, notice that if it is possible to evaluate, even in
a rough way, the volume of the sub-domains (with regard to the density of the
points in their boundaries, which is the only data available at this time), then it

5 X L.
Thus, due to the required properties, it seems natural to use a Delaunay type meshing
method.
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is possible to predict the number of elements (its order of magnitude) that will
be constructed within each sub-domain. For more details about this method, we
refer the reader to the already mentioned references.

Other methods. Multi-block type methods (Chapter 4) as well as methods
based on a space decomposition (Chapter 5) are also essentially decomposition
methods. Other methods can also be considered, for example, at the level of the
CAD system (thus, before any meshing concerns).

The most favorable and automated method is most probably the quadtree-
octree type method which is based on a recursive decomposition of a box enclosing
the domain of interest. The decomposition here is directly connected with the
underlying tree structure.

This approach will be discussed below, seen as a parallel meshing method, in
the sense where the same principle applies even if some modifications are made.

23.2 Parallel meshing process

Throughout this section, we will consider two cases. First, we are concerned with
the design of a static process of parallel meshing, i.e., used once. Then, we will see
the case of a computation loop. The computational process is then a dynamic task
where at each iteration step of the loop, the issue of parallelism must be examined.

23.2.1 One-step process

The load balancing between the members in the partition must be ensured at the
beginning (z.e., when constructing the partition) or, this having been constructed
as well as possible, before using the resulting meshes (2.e., before any actual compu-
tation). Thus, we can distinguish between two types of load balancing approaches,
a priori load balancing and a posteriori load balancing.

A priori load balancing. When the processors used at a later stage for the
computation have comparable speed-up, the effort balancing can be done a pri-
ori by distributing identical numbers of vertices (elements) to each processor. In
contrast, when the speed-up varies (from processor to processor) or when some
processors are busy with other tasks, an equidistribution is not the optimal solu-
tion. It is then necessary to re-balance the loads during the computation.

As a general rule, such a load balancing is tedious to obtain. To realize this, one
only has to keep in mind the different partitioning approaches previously discussed.
Hence, for example, the key-idea to ensure a good load balancing is to introduce
some weights during the partitioning stage. This idea implicitly assumes that the
number of elements in the final mesh is proportional to the size of the initial mesh.
When the element density is not uniform (which, in practice, is frequent), such an
assumption is obviously wrong. Then, the weights have to be adjusted to take into
account metric specifications, which makes the load balancing stage more delicate.
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A posteriori load balancing. The load balancing per processor is basically
obtained by migration. The migration step consists in moving one element or a
set of elements from one processor to another (or to several processors), if the load
from one processor to the others is rather different [Coupez-1996]. Moreover, the
migration step may serve some other purposes such as obtaining a nice smoothness
at the sub-domain interfaces and can also be used as a way to deal with non
connected sub-domains.

The goal of the partitioning algorithms is to minimize data exchange between
the processors and to balance the computational effort in each processor. The data
migration actually consists in collecting and updating the links between the mesh
entities and the processors when some entities are assigned to one (or several)
different processors. This is generally done in three steps :

® a source processor sends some data items to a target processor,

e the source and target processors update the information related to the trans-
ferred data items,

e the source and target processors indicate this change to all the processors
with access to the data items that are exchanged (see below).

The efficiency of the migration procedure then greatly depends on the volume of
the data items exchanged as well as on the data structure used in this task.

Data structures. (Adaptive) mesh generation methods for unstructured mesh
construction when used in distributed memory architecture require specific data
structures suitable for efficiency queries and data item exchanges from processor
to processor. In particular, information about adjacency relationships must be
considered.

At a given mesh entity level, it is necessary to know all the relationships (links)
between this entity and the different processors. In principle, only a single proces-
sor really possesses this entity but several other processors may have some links
to it (thus, this information is not duplicated in each processor). The edges and
faces of the sub-domain boundaries are then shared by several processors.

[t is clear that in the first step of the migration process the amount of data
item exchange is proportional to the number of entities exchanged (thus, to np
the number of vertices). On the other hand, the two other steps depend on the
number of entities in the sub-domain boundaries (thus typically in @(np?)).

23.2.2 Parallel adaptation loop

Here, load balancing is a dynamic task that must be adapted at each new iteration
step (or, at least, when the sizes of the members in the partition become rather
different). This load balancing is a fundamental issue since a physical problem
with a solution that has a large variation may, during the iteration in an adaptive
computational process, lead to a large variation in the number of elements in a
given region (thus in a given processor). However, in contrast to the previous
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case, it is possible to collect some information from the current partition and the
behavior of the solution related to it in order to deduce the next partition in the
iterative process in progress.

Without mentioning here the probabilist style methods, some algorithms may
use a defect function that reflects the difference in the load balancing between
neighboring elements [Lohner, Ramamurti-1993], in order to govern data exchanges
between processors. One may also use some variations of the partitioning algo-
rithms previously described that operate on distributed data. Typically, the par-
titioning algorithms are either of a geometrical nature (inertia axis based method
for instance) or of a topological nature (using the adjacency relationships of a tree
structure, see below).

23.3 Parallel meshing techniques

First, it could be observed that the parallel aspect can be present at the input
data level, the data being distributed between the processors, or at the level of the
tasks (which are then distributed) or, again, in a combination of these two levels.

Distributing the data (without task exchange) involves making the task in each
processor independent of the others. Distributing the tasks leads to sending some
requests from processor to processor when dealing with an entity (located in one
processor), and implies some processing from the proprietary processor but also
from some neighboring processors.

Various classical techniques for mesh generation may be performed in parallel.
Among these, the Delaunay method is a potentially interesting candidate. Indeed,
this method widely uses a prozimity criterion, namely the empty ball criterion.
Given a set of points, one may consider separating these points into several disjoint
sub-sets and thus make the point insertion procedure uncoupled. In other words,
the mesh can be completed in parallel.

In practice, this point separation could either be decided a priori, which is in
general a tedious issue, or prescribed by means of a constraint about edges (resp.
faces) in a coarse triangulation used as a separator. Once this separator has been
defined, the problem turns to meshing with consistency the sub-domains identified
in this way, while their interface (i.e., the separator) could be meshed :

o before constructing the mesh of the sub-domains,
¢ at the same time as the sub-domains,
o after constructing the mesh of the sub-domains,

which, in fact, leads to three classes of parallel meshing methods.

Another class of methods for parallel use is based on the spatial decomposi-
tion of a box enclosing the computational domain. Methods like quadiree-octree
(Chapter 5) are then natural candidates since they make use of a hierarchical tree
structure and thus could be used for domain partitioning purposes.

i
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Are any other meshing methods candidates for parallelism ? The answer is not
so trivial. In particular, it is of interest to examine whether an advancing front
type method (Chapter 6) may include some degree of parallelism.

Within this section, we give some indications about these various approaches
and briefly examine their ability to include some parallel aspect.

Remark 23.1 Note that the concern here is to construct a mesh in parallel and
not to define a parallel mesh construction or computational process. In the present
context, the wish is to have a complete mesh available (after merging together the
sub-meshes) while in the other case, it is not strictly necessary (see the previous
sections) or we do not want to have, at a given time, the complete mesh of the
domain.

23.3.1 Delaunay-type method

Let us recall that the key-point of a Delaunay style method is the point insertion
process, the Delaunay kernel as introduced in Chapter 7. This process is a local one
in the sense that it involves the cavity of the point to be inserted. Depending on
whether the elements in this cavity all belong to the same Processor or are common
to two or more processors, it is easy to imagine that the degree of parallelism could
be different. Simply remark, in addition, that finding this locality could be a non
trivial problem (or, at least, a time consuming task).

Various ways to implement the Delaunay kernel have been proposed based
on the various possible configurations (in this respect, [Okusanya,Peraire-1996],
[Chrisochoides,Sukupp-1996] or [Chew et al. 1997] can be consulted, for example).

General principle. For the sake of simplicity, let us consider a domain § in
two dimensions, provided through a discretization ['(©2) of its boundary. Using
this sole data, an initial mesh is constructed by inserting, one at a time, the points
in I'(2), and then by enforcing the boundary entities that are missing, if any®.

In this way, an empty mesh is obtained (i.e., without any internal points) whose
internal edges join one domain side to another. We pick one of these edges, say
AB, which separates Q into two sub-domains, €; and 2, of approximately the
same size. Each of these two domains is then assigned to one processor. Now, let
us look at a condition to ensure the independence of a point with respect to the
sub-domains :

e cvery point P inside §; is independent of Q5 if the cavity Cp is entirely
included in @y : Cp C Q; and Cp Z Q,,

e on the other hand, if Cp N Qs # @, point P depends on Q; and €2, and its
insertion affects the mesh both in 2, and in Q,.

Note that a (sufficient) condition for independence is that the circle of diameter
AB is empty (Chapter 9). After this assumption, the mesh is carried out in parallel
without any exchange of tasks.

8Thus, the case of a constrained Delaunay mesh (Chapter 7).
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Meshing the separator. It is easy to see that, in general, the output completed
using the previous algorithm will be rather poor because the constraint implies
that there is no point in some vicinity of AB (i.e., its open ball) and only some
post-processing may be able to fill up this region (and thus to split AB).

Using a constrained Delaunay algorithm by prescribing AB as a constraint
leads to the same issue and the global process remains “processor-independent” .
The presence of points in some vicinity of AB necessarily gives a bad quality mesh
and some post-processing is again required in order to enhance this result (and,
in particular, to split AB).

At last, a “classical” meshing is possible, while using data and task exchanges.
This can be done in two ways. On the one hand, we maintain AB as a constraint
but we may even split this segment (by means of point insertion) in such a way
as to preserve the global quality of the mesh. In such a situation, the processor
responsible for this point creation indicates this request to the other processor in
order to make the mesh construction synchronous at the interface level (then a
delay must be expected for the simultaneous updating of the two meshes because
the interface must remain coherent).

The other way to proceed is more tedious. Edge AB (or any interface edge)
1s no longer a constraint and may disappear. The interface is then modified dur-
ing the processing which impedes the global process in terms of data and task
organization.

After this discussion about the principles, one may observe that there are only a
few examples of implementations of these ideas in two dimensions, for architectures
with a limited number of processors (actually, from 2 to 16). The extension of these
approaches to three dimensions remains a relatively open problem. In particular,
constraining a mesh (Chapter 7) is a tedious problem which, in practice, is widely
based on heuristics. Moreover, identifying a separator is not obvious because even
a face joining two “opposite” sides of the domain does not in general separate this
domain into two parts.

23.3.2 Quadtree-octree-type method

Here two approaches will be discussed. The first, mainly of academic interest,
assumes the tree structure to be known and, using this information, simply seeks
to balance the terminal cells (the leafs) in the available processors. The second
one, which is more interesting from a practical point of view, considers the tree
structure construction in parallel.

Distribution of the nodes in a given tree. For the sake of simplicity, we
assume the tree to be balanced by means of the [2:1] rule (Chapter 5), thus every
cell edge is shared by at most three cells, in two dimensions, while a cell facet is
shared by five cells at most in three dimensions. Following on from this, one could
observe the natural link between the number of terminal cells and the number of
elements in the resulting mesh?.

"In fact, we saw in Chapter 5 that the cell sizes are locally compatible with the element size
distribution function.
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Therefore obtaining a nice load balancing in the processors involves partitioning
the tree in such a way that the number of leaves assigned to each processor leads
to the same number of elements. Meshing each sub-domain is then performed in
parallel, with no communication between the processors. Since a quadrant bound-
ary edge (resp. face) may belong to several processors, special care is necessary
regarding the meshing algorithm used to mesh these interfaces (as the resulting
meshes must be conformal). On the other hand, if the leaves in the interface are
inside the domain, predefined patterns (or templates) can be used. The adjacency
relationships between the tree cells must be enriched with information about the
processor to which the cell belongs [Saxena,Perucchio-1992].

Following these remarks, the general scheme of a tree partitioning method
simply consists in the following :

ne < 0
FOR each leaf ¢ in the tree
compute the number of elements that must be created ne(c)
ne < ne + ne(c), (increment the total number of elements)
END FOR

compute the load per processor : cpp = ne

nbproc
traverse the tree

nep < 0
pe1
FOR each leaf ¢
IF nep < cpp
nep < nep + ne(c)
assign the ne(c) elements to processor p
OTHERWISE
pep+1
END IF
END FOR

To take advantage of the adjacency relationships in the tree (and thus obtain
sub-domains that are as connected as possible), one may traverse the tree at first
(using a pre-order as seen in Chapter 2).

Distributed construction of the tree. A more interesting problem is the
design in parallel of the whole meshing process, t.e., the tree construction and its
use to form the mesh elements.

The method proposed in [deCougny et al. 1996] constructs an octree which is
balanced in parallel. The entry data in this algorithm is a discretization of the
domain surface. With each vertex in this triangulation is associated a size (that
corresponds to the average of the lengths of the incident edges), thus defining a
discrete size map. This scalar value h is then modified in an integer value related
to a level [ in the tree (i.e., the level of the cell within which the vertex falls), by
means of the formula (Chapter 5) :
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I = logs (%) ,

where b is the length of a side of the enclosing box.

Conceptually, the tree construction includes two stages, the construction of
local sub-trees and the refinement of these sub-trees. The four (resp. eight) initial
cells are assigned to four (eight) different processors. Then, all the terminal cells
are iteratively subdivided once or more (if necessary) and the cells resulting from
the decomposition are assigned to the different processors according to the load
they imply. This effort approximatively corresponds to the number of vertices to
be inserted (i.e., this is the stopping criterion of the process, Chapter 5) inside the
volume related to one cell. Notice that the non-terminal cells are then replaced by
the leaves. In this way, on completion of the construction (once all the processors
have been assigned an equivalent load), each terminal cell corresponds to the root
of a sub-tree and exists in only one processor. The sub-tree construction is in this
way balanced in a natural way , each processor having approximately the same
number of vertices to be inserted.

Then, the sub-trees are constructed independently in each processor by subdi-
viding their terminal cells until a level related to the desired local size is achieved.

The meshes of the sub-trees are then completed in parallel (with no commu-
nication between the processors) by using in each sub-tree a technique similar to
that described in Chapter 5.

Remark 23.2 In three dimensions, a tree re-balancing step may be made after
the mesh of the terminal cells inside the sub-domains has been completed. This is
due to the fact that an advancing front type algorithm is often used to mesh the
boundary leaves (the number of elements in these cells being tedious to evaluate a
priori ).

Complexity. The complexity in time of the construction process is of the order
of O(np/nproclog(nproc)), where np/nproc is the load per processor and where
the term in log(np) corresponds to the number of iteration steps in the algorithm
(thus to the number of refinement levels in the tree). While the sub-tree refinement

. . n n
is of a complexity O (H—mec log (—P——))

nproc

23.3.3 Other methods ?

The third category of automated mesh generation methods not yet discussed is
that of the advancing front type methods. At present, we have no knowledge
of developments or specific issues for this type of approach. We may just men-
tion that the advancing front strategy may be used for a parallel mesh construc-
tion of sub-domains while the underlying decomposition is completed using a tree
structure or a Delaunay type empty mesh (with no internal point), see, for in-
stance [Shostko,Léhner-1992] or [Lohner-1998]).
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A short conclusion

Parallelism appears to be a practical solution to handle systems with several million
(or dozens of millions of ) unknowns®.

The impact on meshing technologies seems to be, as we have seen, more about
the parallelization of the meshing processes (partitioning, load balancing and com-
munication) than the parallelization of the meshing methods themselves. It is
likely that such parallel methods will be subjected to important developments in
the coming future and, as a consequence, significant advances are expected. Thus
this subject appears to be both open and very promising.

8Such systems are nowadays used in computational fluid dynamics where the order of mag-
nitude of the physics varies greatly.
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a priori, a posteriori B-Rep ... see boundary representation
classification ................... 306 B-spline ..................... 437, 445
error estimate .................. 130 curve, NURBS .. 412, 413, 421, 441
partitioning ............... 133, 134 patch ............. ... ... ..., 445
adaptation .... 130, 200, 233, 264, 354 background mesh ........ 43, 220, 259
scheme ..................... 41, 131 balancing rule ... see quadtree, octree
adjacency ball (of a point) .......... 86, 238, 601
graph, matrix ................... 77 barycentrage ................ 188, 641
relationship ..................... 48 barycentric coordinates ............ 28
advancing-front .............. 112, 201 base (Delaunay cavity) ........... 250
candidate vertex ..... 115, 223, 228 basis function .................... 659
classical technique ............. 203 behavior of an algorithm .......... 49
combined approaches .......... 227 BERNSTEIN polynomial(s) ... 406, 441,
convergence issues ......... 115, 215 446
field point creation ............. 208 BEZIER
front management ......... 207, 216 CUTVE .. ...iviiiinnnnnn., 406, 409
general scheme ................. 204 patch ..................... 441, 445
point filtering .................. 211 triangle, quad ............. 443, 445
validation ...................... 211 bilinear interpolation ............. 435
AITKEN’s algorithm .............. 397 binormal .................... 362, 633
algebraic degree of a problem ...... 82 blended function(s) ............... 439
algebraic interpolation ............ 100 blending approach ...... see algebraic
algebraic method ....... 135, 387, 495 method
alternative toan - ............. 149 block definition see multiblock method
blending approach ............. 102 boolean matrix (assembly) ....... 681
sequential mappings ........... 101 boundary
angle condition(s) ...... 39, 153, 232, 413
criterion ........... ... . ... 733 CUTVE o\ iiiiiiinnnnnnn, 442, 491
IMeasure ................... 286, 592 discretization .................. 107
anisotropic mesh ........ 230, 262, 466 enforcement (Delaunay) ........ 250
approximation of a curve .... 363, 478 mtegrity .............. 107, 202, 250
arc layer .......... ...l 710
rectifiable .......... ... ... 357 boundary representation (B-Rep) 165,
regular, simple ............ 358, 359 166, 550
area (surface) .................... 374 bounding box ................ 166, 497
arithmetic filter ................... 83 BoOwYER-WATSON’s algorithm .... 117
array .............. see data structure BST ............... see data structure
aspect ratio ....... see element quality bucket sort ..... see sorting algorithm
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C
CAD. ............. 108, 165, 429, 433
C.8.G. (Constructive Solid Geometry)
550
cache default ...................... 84
candidate vertex .. see advancing-front
canonical basis ................. .. 356
Cartesian parameterization ....... 370
CATALAN number ................ 605
CAuUCHY identity ............ 404, 441
CAUCHY-SCHWART?Z inequality .... 329
cavity ..... see Delaunay triangulation
CEA’slemma ..................... 665
cell(s) ... 165
adjacent ....................... 168
classification ................... 169
leaf (terminal) ................. 165
level, size ................. 166, 168
quadrant,octant ................ 168
center of curvature ............... 379
centroid ..................... 114, 144
CGM ......... see interchange format
circumscribed disk, ball .......... 259
CLOUGH-TOCHER patch .......... 449
coefficient(s)
curvature-related ............... 529
diagonal ........................ 77
coloring scheme .......... 91, 186, 251
comparison ..... see sorting algorithm
complexity (of an algorithm) .. 55, 56,
227
amortized ....................... 58
optimal, worst, average case ..... 57

composite curve, surface 400, 410, 450
computational geometry .. 20, 80, 235
computational model (paradigm) .. 64

conforming finite element ......... 666
conformity (of a mesh) ........ 33, 636
connectivity ................... 34, 35
constrained
entity (Delaunay) ......... 242--244
triangulation ............... 33, 242

control polygon, polyhedron (curve and
surface modeling) . 392, 403,

440

control space .. 41, 108, 176, 191, 220,
259

convergent family (of approximations)
665

convex hull ... 27, 28, 33, 81, 118, 128,
241, 247, 756

Coons
cubic basis ..................... 400
patch ..................... 149, 438
(o) 4 4 1C) P 517, 637
COVETING-UP «...vurevvninn.. ... 28, 29
crack ............. Ll 565, 581

criterion (Delaunay, empty sphere) 30,
117, 237, 240

critical node(s), value(s) ..... 313, 523
curvature(s) ................. 359, 527
absolute, algebraic ............. 359
center, radius of ...... 360, 366, 628
Gauss ... 379
geodesic, normal ............... 377
principal ............ ... ... 627
curvature-based refinement ....... 110
curve definition ................... 391
geometric support ......... 482, 717
curve meshing . 197, 470, 490, 726, 729
curved element .............. 662, 667
curvilinear abscissa ............... 358
cylindrical topology .......... 268, 271
D
dangling curve(s) ................. 487
DARBOUX
formulas ....................... 377
frame ............... ... . ... 376
data structure ......... 39, 4749, 636
ALTAY ottt it e 50
Binary Search Tree (BST) ...... 66
dictionary ....................... 65
grid ... 34, 72
linked list ....................... 51
mesh ....................... 40, 681
objects, pointers ................ 54
priority queue ................... 71
quadtree, octree ................. 72
stack ... 52
table ......... ...l 50
tree ... i 168, 172
tree (AVL) ..., 67
winged-edge ............... ... 78
DE BoOOR spline curve ............ 412
DE CASTELJAU
algorithm ........ 408, 418, 443, 447
form of a Bézier curve ..... 408, 421
decimation .... see mesh simplification

|
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deformation technique (algebraic method)
149

degenerated element .............. 269

degradation (of an element) .. 590, 619

degree (valence) of a vertex .. 607, 648

degree elevation (Bézier curve, surface)

410, 444, 447
degree of freedom ............. 38, 660
DEHN-SOMMERVILLE relation ...... 29
DELAUNAY
anisotropic meshing ............ 262
boundary enforcement .... 246, 250
boundary integrity ............. 250
combined methods ............. 258
conforming boundary mesh .... 250
criterion .............. see criterion
field point creation ............. 251
general lemma ................. 238
general scheme ............. .. .. 248
point insertion method ......... 257
simplified method .............. 249
surface meshing ................ 264
DELAUNAY triangulation .. 27, 30, 116,
236
cavity ...l 238, 241
criterion ..., 313
incremental method ............ 238
kernel ........... 118, 196, 238, 542
theoretical issues ............... 237

DELAUNAY-admissible
boundary discretization ... 295, 302

boundary enforcement ......... 309

Seb L 296
deviation of a surface ............. 623
diagonal swapping . see edge swapping
diameter (of an element) ...... 34, 666
dichotomy .... see searching algorithm
dimensional reduction ....... 295, 322
direct method (quads) ............ 289
direct surface meshing ....... 128, 232
DIRICHLET tessellation ............ 31
discrete surface ................... 516
distance ..................... 329, 332

distortion measure (of an element) 271
divide and conquer

algorithm ............ 388, 480, 543

paradigm ....................... 64
domain

of definition ............... 441, 530

of the parameters ......... 510, 532

domain partitioning 133, 156, 290, 319

consistency requirements ... .. .. 157

cut line ........... ... .. 319
dot product ............. 330, 332, 356
DuPIN’s indicatrix ........... 380, 630
dynamic coloring ............... ... 95
E
edge

collapsing ...................... 606

enforcement ............ ... .. . .. 309

length . 193, 222, 260, 262, 464, 503,

635

splitting ....................... 643

swapping, flipping ......... 604, 644
efficiency index ......... 596, 619, 712
eigenbasis ........................ 338
element 2-compatible ............. 732
element P-compatible ............ 732
element quality ................... 253

aspect ratio ............... 111, 590
ellipse, ellipsoid ..... 43, 334, 381, 506
empty sphere criterion ... see criterion
enumerating (a set) ................ 90
error control (of interpolation) .... 326

error estimate (theorem) . 34, 44, 108,
200, 233, 265, 733, 741

Euclidean norm .................. 330
EuLER
characteristics ................... 29
relation ........................ 380

EULER-POINCARE’s characteristics 356
existence, uniqueness (of a triangulation)

29

explicit curve, surface ........ 391, 433
extremum (of a function) ......... 523
extruded surface .................. 435
extrusion method ................. 271
F
family of finite elements .......... 662
field (of metrics) ................. 463
FIELDER’s vector ................. 749
fillet ........... ... ... L. 323
filtering ..................... ..., 111

effect ... L. 192, 221

of the points ................... 253
finite differences ................... 42
finite element

definition ...................... 660
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mesh .......... ... L 38
Finite Octree .... see quadtree, octree
form

linear and bilinear ............. 326

polar, quadratic ................ 328
FRENET

formulas ............. 362, 366, 524

frame ............. ... 362
front management see advancing-front
function (behavior of a) ........... 55

function representation (F-Rep) .. 550
fundamental quadratic forms 373, 378

G
G-mesh .............. . . 636
maximal ................ . L 348
GAUSS curvature ................. 379
generalized edge swapping ........ 244
genus (of a surface) ................ 30
geodesic ..................... 332, 376
normal ........ ... ... 383
geometric
attribute .......... ... 39
criterion ............... 203
mesh ...................... 470, 728
geometric approximation 110, 347, 617
control of the — ........... 129, 198
geometric mesh ................... 197
geometric modeler ...... see modeling
system
geometric support .. see curve/surface
definition
geometry simplification ...... 319, 322
global numbering ....... 159, 161, 561
global smoothing ................. 603
governed advancing-front method . 220
gradation (of a mesh) ........ 120, 512
gradient ..................... 343, 538
approximation ................. 343
GREEN’s formula ................. 353
GREEN-SIBSON’s algorithm ....... 117
GREGORY’s patch ....... 449, 517, 638
grid ... 34, 499
grid superposition ................ 289
grid-based method ............... 273
H
h-adaptive method ............... 685
h-method ........................ 685

hash function ...................... 68
hash table ......................... 78
hat function ...................... 660
HERMITE
cubic form ............... ... ... 399
finite element .................. 661
interpolation .............. 399, 438
method ........................ 149
polynomial ..................... 439
Hessian ....... 132, 347, 354, 523, 527
hex meshing ................. 291, 321
hexahedral
analogy ......................L 146
topology ...............lLl 271
hexahedron ........................ 37
hierarchy of uniform grids ......... 73
homogeneous projection .......... 419
hp-method ....................... 725
hybrid
mesh .................... L 35
methods ....................... 120
I
ideal control space ................. 41
IEEE-754 (standard) .............. 80
IGES ......... see interchange format
implicit
curve, surface ... 126, 371, 391, 433,
521, 522
function (for modeling) ........ 550
function theorem .......... 371, 523
SIZE MAP ..ot 192
in-Circle (predicate) ............... 81
in-circle criterion ................. 117
inscribed circle, sphere ........... 666
interchange format ................ 79
CGM ... 79
IGES ... .. .. 79
SET . 79
STEP ..o 79
VDI oo 79
interface curve (between patches) 491,
512
interpolation error ................ 666
interpolation-based
methods ....................... 394
surface .................... 435, 437
intersection check(s) ......... 212, 219
intrinsic properties (of a surface) . 125,
517

INDEX 811
intrinsic size (at a vertex) ........ 635 memory handling ....... ... . . . . 83
isoparametric element ....... 662, 667 merge sort ...... see sorting algorithm
merging (of two meshes) ... .. .. .. 561
J mesh
Jacobian ................ 152, 668, 734 conformity ................. .. 33
connectivity .................. ... 34
K gradation .............. 45, 120, 512
kernel ............ see Delaunay kernel modification, optimization 124, 285,
KRONECKER symbol .... 327, 396, 661 553
KUHN’s tetrahedron ............ .. 541 quality, optimality 43, 108, 188, 590
refinement ................ .. .. 110
L simplification .............. . ... 480
LAGRANGE tOpOlOgy .................. 276, 530
approximation .................. 38 validity .......... ... . ... . 279
finite element .............. 39, 661 mesh adaptation ...... see adaptation
form .......... . 398 mesh gradation .............. 169, 230
interpolation .......... 99, 396, 437 meshing process ............. 135, 470
recursive form ............... 397 meshing techniques (classiﬁca.tion) - 98
LANCzOS method ................. 749 metric ... 231, 325, 331
Laplacian correction, smoothing ..... 342, 482
operator ....................... 152 interpolation, intersection . 338, 341
smoothing ..................... 602 of the tangent plane ....... 373, 517
leaf ... see cell(s) MEUSNIERs circle ........... 379, 627
length of mid-point subdivision ............ 290
acurve, an arc ............ 358, 374 mid-surface ........ see medial surface
anedge ............ see edge length migration (a posteriori load-balancing)
linear regression .................. 395 759
linked list .......... see data structure minimization problem ............ 525
load balancing .................... 759 MINKOWSKI’s inequality .......... 329
local behavior mixed mesh .......... i 35
ofacurve ............ 366, 471, 532 modeling system .. 174, 197, 232, 429,
of a surface ........... 376, 380, 539 636
local frame .................... ... 376 modification (of the priority) ...... 71
local numbering ................ ... 36 moving frame .................... 376
localization process ............... 589 multiblock method ...... 103, 155, 758
logical mesh ................... ... 138 block definition ................ 159
composite ...................... 105
M overlapping .................... 104
manifold (surface) ............... . 35 patched ........................ 105
MaPPING ...t 139 multiple-digit . see representation (of a
mapping function . 100, 126, 136, 515, number)
661
matrix N
non-degenerate, invertible ...... 327 neighborhood relationship ...... 78, 94
of a bilinear (quadratic) form .. 327, neighborhood space . 43, 108, 176, 736
331 neutral fiber ...................... 295
of adjacency .................... 77 NEWTON-RAPHSON’s algorithm ... 388
medial axis ........ 122, 290, 295, 311 node (finite element) .............. 38
medial surface (mid-surface) 295, 317, node relocation .............. 603, 640
318 non-linear equation .......... 153, 387
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non-obtuse mesh ................. 608
NOM . ...oiviiiinnneeeaneaa. . .... 329
normal parameterization ......... 358
normal section ................... 376
notch ....... ... .. .. . 323
numerical

ACCUTACY ottt 44

€rror(s) ..., 81, 317
NURBS ........... see B-spline curve

8]

objects, pointers ... see data structure

octant ..................... see cell(s)
octree ........... see quadtree, octree
optimal mesh ........... 518, 529, 598

optimal point (advancing-front) .. 209
optimality (of an implementation) . 83

optimization (of a mesh) ..... 600, 604
optimization-based method ....... 276
local operator .................. 276
synthetic algorithm ............ 278
orientation convention (for a surface) .
206
orthogonal (orthonormal) basis ... 327
osculating circle, sphere . 364, 370, 472
over-connected entity ............. 607
over-constrained mesh ............ 142
P
pmethod ........... . ... ... ... 725
P.D.E.-based method ... 102, 135, 151
elliptic method ................. 102
generation system .............. 151
hyperbolic method ........ 103, 154
parabolic method ......... 103, 154
property of invariance .......... 139
relaxation technique ........... 153
P!, P? approximation ..... 38, 39, 656
parabola, paraboloid ......... 348, 352
paradigm ................ ... 64
parallel meshing, parallelism . 132, 743
parametric

curve, surface ... 197, 232, 264, 289,
372, 391, 433

representation ................. 355

SPACE ... 125, 232

parametric surface ................ 264

partitioning (a priori, a posteriori) ...
133, 134

partitioning methods ............. 122

PASCAL’s triangle ................ 407
patch-dependent surface .......... 512
patch-independent surface ........ 513
pattern-based method ............ 273
pentahedral analogy .............. 148
pentahedron ................. .. ... 37

physical attribute (w/r mesh entity) 39
piecewise linear approximation ... 273

pipe (of an edge) ................. 246
PIVOb ... 59
planar curve ...................... 363
planarity criterion (for a surface) . 541
point(s)
co-circular, co-spherical ......... 31
control ............. ... Ll 403
critical ....... ... L 523
in general position ......... 31, 238
inflection .......... ... 360, 523, 729
preplaced ............. ... ... ... 229
simple ......................... 359
singular .............. 484, 623, 636
point-, PR-quadtree ............... 74
pointer(s) .......... see data structure
polygonal line, segment ...... 357, 483
polyline ................. 393, 400, 426
predefined pattern(s) ............. 175
predicate ...................... 81, 82
principal direction(s) ............. 628
priority queue ..... see data structure
product method ........ 105, 268, 322
basic principles ................ 268
computational issues ........... 269
generation line .............. ... 268
source, target .................. 270
progression method ............... 533
pyramid ........... . L 38
" PYTHAGORUS’s theorem ..... 330, 378

Q

Q', @? interpolation .... 191, 192, 221

quad analogy ..................... 137
quadrant ................... see cell(s)
quadratic form .............. 328, 336
quadrature formula ............... 466
quadrilateral mesh ...... 122, 282, 320
quadtree, octree ...... 42, 74, 165, 497
balancing .............. see rule[2:1]
boundary integrity ............. 190
classical approach .............. 173
construction .......... 110, 176, 198
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Finite Octree .................. 199
intersection check(s) ........... 189
peculiar points ................. 177
point filtering .................. 182
rule [2:1]) ... 111, 169, 180
stopping criterion .............. 178
quality criterion .................. 731
queue (data structure) ............. 53
quicksort ....... see sorting algorithm
R
r-method ........... ... ... ... ... 698
radial mesh ...................... 291
randomization ........... 64, 255, 611
rational curve, patch .... 420, 421, 449
ray-tracing ........................ 76
recursive
bisection ....................... 748
partition ....................... 292
reference element (finite element) . 661
relation of adjacency ........... 48, 77
relaxation ... see degree (valence) of a
vertex
remeshing process ................ 718
representation
explicit, implicit ............... 521
hierarchical ..................... 79
ofamesh ....................... 76
of anumber ..................... 80
parametric ..................... 521
ridge ............ . 517, 637
robustness (of an algorithm) ....... 79
root
ofatree .................... 66, 168
of an implicit function ......... 530
roughness (of a surface) .......... 623
roundoff error ............ 62, 176, 241
rule [2:1] ......... see quadtree, octree
ruled surface ..................... 434
running time profiling ............. 84
S
sampling ......................... 530
SCHONHARDT’s polyhedron ....... 213
searching algorithm ....... 62, 88, 170
dichotomy ............. 62, 467, 480
searching domain .................. 63
seed ..., 540
segment meshing ................. 462
self-centered triangle ............. 610

sentinel (node) .............. ... . .. 58
sequential mappings .. ... see algebraic
method
SERRET-FRENET’s frame ....... .. 365
SET .......... see interchange format
set membership ............ ... .. . . 93
shape
function ................ ... 136, 660
optimization ................. .. 713
shape quality ................ .. . .. 187
shell (of an edge) ....... 244, 322, 604
side-effect(s) .................. ... .. 75
simplex ............ ... ... ... . ... 28
simplicial mesh ............. ... . .. 124
simplification ................. .. .. 480
size
distribution function ... 42, 107, 191
MaP vt 45, 123
optimization ................... 713
quality ............... 111, 624, 625
specification(s) ................. 463
variation ....................... 482
skeleton ..................... 295, 311
sliver .............. ... ..., 261, 599
smoothing technique 395, 602, 603, 641
solid angle ....................... 592
solution method .................. 718
sorting algorithm .................. 58
bucket sort ............ 61, 218, 255
hash function ................... 68
merge sort ...................... 65
quicksort ........................ 59
spatial decomposition ... 108, 497, 758
stopping criterion .............. 166
special node ...................... 313
spline ........ ... .. .. .. .. 412
stack ... ... L see data structure
static coloring ..................... 95
STC .o 289
STEINER point .......... 244, 245, 318
STEP ......... see interchange format
stepsize ........... ... 462
stiffness matrix .............. 668, 670
structured mesh ............... 34, 99
surface
continuity ...................... 451
intrinsic properties ............. 197
orientable ...................... 526
surface definition ............ 445, 449
geometric support ............. 637
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surface mesh ....... 124, 145, 155, 264
surface meshing .... 128, 155, 197, 231
surface of revolution .............. 434
sweeping surface ............. 435, 495
T
table .............. see data structure
tangent ................. 359, 376, 380
indicatrix of the — .............. 368
plane .............. ... ... 442
TAYLOR’s formula ........... 347, 363
template .................... 111, 229
tensor product ................... 436
tet combination .................. 291
tetrahedral analogy ............... 148
tetrahedron ....................... 37
theorem
Delaunay’s ..................... 239
implicit function ............... 356
Pythagorus’s ................... 330
topological ambiguity(ies) ........ 501
topology (of a mesh element) ...... 35
torsion .................. ... 366
geodesic ................... 377, 379
radiusof ............. ... .. ..., 366
transfinite interpolation . 101, 140, 438
transport of solution ............. 718
tree ................ see data structure
" triangle combination ............. 282
triangular analogy ................ 143
triangulation ................... 28, 29
conforming ...................... 29
Delaunay ............ see Delaunay
triangulation
empty ..., 295
trimmed surface .................. 434
U
under-connected point ............ 607
uniform grid ........... ... ... 273
uniform parameterization (of a set of points)
394
unisolvent set .................... 661
unit length .................. 333, 709
unit mesh . 45, 222, 260, 530, 599, 625
unit vector(s) .................... 329
binormal .................. 362, 487
normal .................... 359, 375
orthogonal ..................... 327

tangent ........................ 359

unstructured mesh ............ 35, 106
vV
valence ......... see degree of a vertex
valid (element, mesh) ............. 212
validation criteria ................ 277
variational formulation ........... 657
Variogram ........................ 258
VDI ........... see interchange format
vector computer .................. 580
vertex enumeration ............... 161
vertex numbering ............... .. 561
visualization ...................... 613
VoRronoi

cell ...l 236, 298, 608

diagram .................... 30, 236
voxel(s) ....ooiiini.. 72, 128, 499, 552
A%
WALTON’s patch ........ 449, 517, 638
weighted

barycentrage .............. 188, 254

smoothing ..................... 602
widthless region .................. 581
winged-edge ....... see data structure
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