Chapter 21

Mesh generation and adaptation
(h-methods)

Introduction

In this chapter, we consider mesh construction from the perspective of a finite
element style computation. The objective is to introduce some mesh generation
methods or mesh modification methods resulting in a mesh that conforms to some
pre-specified requirements in terms of sizes (isotropic problem) or in terms of sizes
and directional properties (anisotropic problem). The basic principle for adapted
mesh construction is to collect information about the sizes, the directions and the
related sizes using an adequate data structure, a control space (or a background
mesh), and then to use this information to construct a mesh conforming (as far as
possible) to these specifications.

As pointed out in Chapter 20 for finite element convergence and accuracy,
theoretical error estimates involve the parameter h, the size of the mesh elements.
Thus, at least for isotropic situations, the necessity of adapting the h’s in the mesh
1s rather natural!. On the other hand, anisotropic cases are not so trivial. Actually,
numerical experiments (mainly in two dimensions) resulting in nice solutions could
lead us to think that h-adaptation is well suited to the problem, and yet theoretical
proofs are not fully available at this time (except for simple problems).

Hence, we discuss a mesh adaptation method related to the element size (di-
rection), in other words a h-method. This type of method is, as will be seen,
the basic ingredient that makes it possible to compute the solution by means of
adaptive solution methods. In brief, such a method is an iterative process where,
at each iteration step (or after a small number of steps), an adapted mesh is con-
structed which is used to calculate the solution. Then this solution is analyzed in
order to decide whether the iterations should continue or not.

ntuitively, adapting the element sizes, according to the problem, comes down to constructing
elements which are smaller or larger in some regions, the size h then being changed from one
region to another (problems involving mechanics or fluids, etc.) or to adjust this h while keeping
it as constant as possible (for wave propagation problems, for example).
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Several categories of h-adaptive methods may be considered. One class of
methods is based on the local modification of the current mesh so as to fit the sizing
(directional) requirements. Another class of methods involves reconstructing the
whole mesh of the domain from its boundary discretization while conforming to
the sizing (directional) requirements. On the other hand, one can find adaptive
methods that belong to neither of these above classes. For instance, hierarchic
methods, multigrid type methods and non conforming or overlapping methods
are examples of such approaches (and are not covered in this book). Finally,
adaptation methods by means of degree adaptation also exist, the so-called p-
methods which are discussed in the next chapter.

In what follows we discuss the first two types of methods with special empha-
sis on the global approach where the mesh is entirely recreated. Indeed, issues
discussed throughout the previous chapters are now reviewed with the present ob-
Jective in mind. This means that most of the aspects covered in this chapter have
been already discussed to some extent in various parts of the book?2. However, to
keep the chapter as self-contained as possible, some notions will be recalled within
the context of a h-adaptive mesh generation method.

*
L R ¢

To this end, this chapter first recalls what a control space is and how it can be
used to give the information that is required to control the mesh generation process.
In this respect, localization as well as interpolation problems are discussed. Then
we turn to h-adaptation by means of the local modification of a given mesh.
Afterwards, h-adaptation based on the whole construction of a mesh is presented.
Finally, computational schemes suitable for adaptive methods are given, together
with details about the various steps involved in these schemes. The metric aspect
(2., the error estimate problem) is assumed to be known and thus will only be
touched upon briefly.

21.1 Control space (background mesh)

A control space (Chapter 1) is a structure whose purpose is to govern a mesh mod-
ification or a mesh generation process by providing the required information about
the adaptation. Such information may be specified in various ways. Among these,
and based on the adaptive strategy, one can find element refinement (coarsening)
demands, desired sizes (or densities) or desired directions and related directional
sizes.

A demand at the element level mainly corresponds to an isotropic adaptation
problem addressed by means of local mesh modifications. On the other hand,
isotropic or anisotropic specifications expressed in terms of sizes, densities, di-
rections, etc., are mostly related to an adaptation problem based on complete
reconstruction of the mesh.

2Therefore, in principle, it is just necessary to dip into those parts of the book where the
necessary information may be found.
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In the first case, a list of elements (vertices) is specified which must be processed
locally. As an example, if a refinement is demanded (at the element level) then
the elements in question are subdivided into smaller elements or, if the demand
concerns vertices, the elements sharing such a vertex are processed similarly. Then,
if h stands for the element size, the refined elements will have a size smaller than
their initial & (for instance, % if we consider the edge lengths. This leads to a ratio
of 4 (or 8) in terms of surface (volume) variation). This means that a subdivision
is made if h is too long but irrespective of the initial range of A. In this way, we
go from a value h to a value % (for example) while this new value, closer to the
desired value, may be still too large.

On the other hand, if a size map is specified (generally at the vertices of a mesh
serving as a background mesh), then the affected elements must conform to this
map meaning that the h’s of the adapted elements must be as close as possible
to the specifications. In this way, the adaptation method allows the creation not
only of smaller elements (in the case of a refinement as above) but also elements
with a prespecified h.

As seen in Chapter 1, a general control space comprises two kinds of data
including a spatial description of the domain and metric information provided
in some way based on this spatial description. Thus, a control space is a pair
(background mesh-metric specification) and, for the sake of simplicity, we may use
the term background mesh with the same meaning.

21.1.1  Definition of a background mesh

A background mesh serves as a control space for the mesh modification or gener-
ation method.

Background mesh : spatial aspect. As already mentioned, a background
mesh, in terms of its spatial aspect, can follow various types.

Let us consider that the current mesh (under modification or construction) is
a simplicial mesh® (triangular or tetrahedral mesh according to the spatial dimen-
sion). Then, following Chapter 1, the background mesh could be :

¢ a simple (uniform or not) grid (type 1),
® a tree-type structure (such as a quadtree or an octree) (type 2),
e an arbitrary mesh (type 3), for instance, a simplicial mesh in our case.

The point is that the background mesh encloses the domain where the adapted
mesh will be established. As will be seen, this property which is a source of
simplicity, does not always hold (see the discussion about localization problems
below).

3we mainly consider the case of simplicial meshes as they offer great flexibility in terms

of adaptation. Nevertheless, obviously, non simplicial meshes can also be used for adaptive
purposes.
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Isotropic background mesh : metric aspect. Based on the type of back-
ground mesh and related to the adaptation method, the metric aspect could be
defined in various ways. The most popular methods consist in the following :

* a refinement (derefinement) demand at the element level,
¢ a refinement (derefinement) demand at the vertex level,
e a adaptation demand expressed in terms of sizes at the vertex? level.

The first two cases are mostly those found in adaptation methods based on the
local modification of a given mesh while the third case is generally that used when
the adaptation method consists in completely reconstructing the mesh.

For a local modification based method, the background mesh is, in general,
the current mesh. The mesh elements contain the adaptation requests and are
processed accordingly (see below).

For a global adaptive method, the background mesh could follow one of the
three above types. For a type 1 background mesh, the cells of the grid contain the
adaptation requests. These could be related to the cells themselves (for instance,
their sizes or a scalar value associated with the cells which indicates the desired
h in the corresponding regions or again a scalar value defined at the cell vertices
which is furthermore used to define the desired h in the related regions). For
a type 2 background mesh, we return to the same discussion. Either the cells
(quadrants or octants) have been constructed so as to have a size conforming to
the desired sizing specification and these sizes govern the adaptation process or a
point representative of the cell (its centroid for instance) or the cell corners support
the metric information (a scalar value). In the case of a type 3 background mesh,
the most popular method consists in associating a scalar value with the element
vertices. Then, in this case and for an adaptive loop of computation consisting
of several iteration steps, the background mesh at iteration step i could be the
current mesh of iteration ¢ — 1 enriched with the sizing (directional) specifications,
these values resulting from an a posterior: analysis of the solution in the current
mesh.

Anisotropic background mesh : metric aspect. Unlike the 1sotropic situ-
ation, a background mesh for anisotropic mesh control contains information with
both directional and sizing aspects. In this respect, a type 3 background mesh
appears to be a suitable solution to define the adaptation directives. With each
element vertex of the background mesh is associated a tensor value representing
both the desired directions and the related edge sizes in the neighborhood of the
vertices.

1Actually, a demand for element refinement or coarsening can be expressed at the element
level (for instance, it can be demanded to refine twice a given element). Nevertheless, it appears
to be simpler to have the refinement demand expressed at the element vertex level, i.e., it can
be demanded to refine twice around a given vertex. However, these two kinds of formulation are
closely related.
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Such a specification consists of d x d matrices provided at some points. Such
a matrix is denoted, given a point P, as

miy= (g )

if we consider a two dimensional problem (i.e., d the spatial dimension is 2). Above
point P could be a mesh vertex when the background mesh is itself a mesh or a
cell corner (or again a point representative of a cell) when the background mesh
is a grid or a tree structure. From the metric point of view, the reader is referred
to Chapter 10 for the meaning of the coefficients involved in the above matrix.

Remark 21.1 The isotropic case is a peculiar occurrence of the anisotropic situ-
ation where a matriz M(P) reduces to & where T stands for the dentity matriz

and hp is the size which is desired arounlcji point P.

Remark 21.2 In essence, the sizing (directional) information contained in a back-
ground mesh is of a discrete nature® which means that attention must be paid on
how to obtain consistent continuous information (see below).

21.1.2 Use of a background mesh

Whatever the nature of the background mesh, the actual mesh modification or
(re)construction is governed by this structure to which a series of queries is made
so as to collect the required information.

Various problems must be carefully addressed including mainly localization
problems and, the localization problems being completed, interpolation problems
must also be addressed so as to extract the metric information related to the region
under consideration.

Localization problem. We face a localization (or searching or point-location)
problem since a frequently demanded operation is to find which element (cell) of
the background mesh contains a given point of the current mesh.

An adaptive method based on the local modification of the current mesh does
not lead to difficulties since there is no localization problem (indeed, the localiza-
tion is implicit). In contrast to this method, a global adaptive method strictly
requires the localization of points in the background mesh. As mentioned earlier,
the background mesh could be a grid, a quadtree-octree type mesh or an arbitrary
simplicial® mesh.

The localization of a point in a cell of a grid or a quadtree-octree type back-

ground mesh has been discussed in Chapters 2 and 5 and does not lead to serious
difficulties.

5Except for rapid testing purposes where analytical sizing (directional) functions can be used
for the sake of simplicity and thus where an “ideal” control space is used.

8A non-simplicial mesh can be used as well which results in the same analysis but requires a
more precise process. Indeed, splitting the non-simplicial elements in terms of simplices allows
us to return to the simplicial case (see Chapter 18) for the searching problem.
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On the other hand, a simplicial background mesh must be considered in a more
subtle way. We can face cases where the current mesh, as well as the background
mesh, are not convex, include holes and even are not strictly coincident while
they approach the same domain (i.e., the (approximate) domain covered by the
background mesh is not exactly that covered by the current mesh due to the fact
that the boundary of the current mesh is not meshed in the same way). Thus
regions of the current mesh may fall outside the background mesh and conversely.

Therefore, depending on the (global) mesh generation method, localization or
searching problems may be of greater or lesser difficulty. As a first remark, it could
be observed that a (uniform or not) grid (or a quadtree-octree structure, see for
instance [Krause,Rank-1996]) can be constructed to help the searching operation
in a given (arbitrary) mesh. Using such a structure, it is easy and fast to find the
cell within which a given point falls.

Then, the point is to find the element(s) of the background mesh correspond-
ing to this box which is an easy task. Actually, with each background vertex is
associated a background element. Then, a background point in the box within
which the current point falls is found and thus an element is found as well which
can serve as initial element for the searching procedure. Given this background
element, the searching problem, in general, becomes a very local problem that can
be successfully solved using a classical searching method (return to Chapter 2).
Nevertheless, for non-convex domains, an element in a given box (enclosing the
point under consideration) is not necessarily close (topologically speaking) to this
point, meaning that a searching procedure initialized with this element may lead
to meeting the boundary of the domain. Figure 21.1 illustrates three possible
situations that can be encountered in such a localization process.

\
o AT LS
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K/o V K
- I v

i) i) iii)

Figure 21.1: Localization in a two-dimensional domain. We can see one box of
the grid associated with the mesh and the mesh elements included or near this bO:Z‘.
Three local patterns are visible : i) the local context is conver, i1) a hole exists while
point P and element Kg, from which the localization search starts, are separated
by this hole, 111) it is demanded to pass through the boundary to reach the element
containing point P.

A natural idea to overcome a difficulty due to a non convex local situation is
to visit the boxes neighboring the initial box so as to reach the right part of thfé
domain, then a classical searching method easily finds the solution. Note that this
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solution could demand more effort in terms of CPU time.

Remark 21.3 For a Delaunay type method, a different solution can be envisaged
as it is possible to take advantage of the current mesh which 15 necessarily conver
(return to Chapter 7 where a method based on an enclosing bor is discussed for
which a conver situation always holds). Thus the background mesh is conver or
not but the mesh under construction is conver and a subtle writing of the searching
procedure easily results in the desired solution.

Localization problem in a surface mesh. Searching on a surface could be a
more tedious problem. Actually, two cases can be considered.

First the surface is the boundary of a domain and a mesh of the latter can be
helpful to find the location of a point. In this case, in principle, we return to the
previous paragraph where a d-dimensional entity (a point in R3) must be located
in a d-dimensional entity (the background mesh).

In contrast to the previous case, if only a surface mesh is given, we face a
localization problem where a d + 1-dimensional entity (point P) must be located
on a d-dimensional domain entity (the surface mesh being seen as a topological
entity). It is then easy to construct a grid (or an octree) which encloses the surface
mesh. Then, given a point, the cell within which it falls is found?. After which,
an element in this cell is selected and a classical searching procedure is used. In
this way we return to the same difficulties as in the previous paragraph and the
same solutions apply.

Interpolation problem. Once a point of the current mesh has been properly
localized in the background mesh, we have to collect the sizing (directional) in-
formation related to this point (say, related to a “small” region surrounding the
point in question). Since the sizing is known in a discrete way, we have to define an
interpolation scheme about discrete values so as to extract consistent information
at the considered point (region).

Recall that the sizing information is assumed to be defined at, the background
mesh vertices, then several interpolation problems are encountered based on the
type of background mesh and the entity within which the point under investigation
falls (background vertex, background edge, background face or element or again
background cell).

First, let us consider an isotropic problem. We assume that the background
mesh is a simplicial mesh and that point P has been located in a given element
(a triangle in the example figure), then using the available metric data (the h’s at
the element vertices) and the way in which the h function varies, we want to find
hp the corresponding h at P. Then the first case is obvious, point P is coincident
with a background point. The second case can be successfully dealt with using the
material discussed in Chapter 10 where various interpolation schemes can be found
that interpolate h along an edge from the A’s at its two endpoints. Indeed, given
the h’s at the edge endpoints, the desired h at the given point is obtained based on

"For the sake of simplicity, we consider that point P lies on a triangle in the surface. If not,
the projection of P onto the plane of the triangles must be used in this search.
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one of these interpolation functions. The two other cases are more tedious. Using a
classical interpolation scheme (between two points) leads to splitting the problem
into two parts as can be seen in Figure 21.2 (parts ii) and iii)). First, point P;, is
found in edge P; P, and the h of this point is obtained by interpolation from those
at P; and P;. Then, using segment P3P;3, a solution can be found based on the
same type of interpolation. Hence, the scheme is not necessarily commutative and
thus the resulting h may depend on the way the known h’s are used. To overcome
this, see part i) of the same figure, a classical interpolation scheme can be used
(for instance a P!-type interpolation) and the solution depends on what type of
variation is desired. We can use a scheme like :

hp = wl(P)h1 + OJQ(P)hQ + w3(P)h3 s
with evident notations or something like :

wi(P) | wa(P) | ws(P)\!
hp:(h1 +"’hz+h3) :

In the case of quad elements, tet elements or other classical elements, the.sarr%e
approach can be retained provided the corresponding interpolation function is

used.

P3 PS

P2P Prs

i) i) iii)

Figure 21.2: Interpolation in a two-dimensional domain. The three.fpterpolatz:ons
are equivalent in the case of a linear function while cases ii) and ) .result ina
different solution at point P depending on whether Py, constructed using P and
Py, or Pa3, related to Py and Ps, is used in the interpolation scheme.

Remark 21.4 Note that a grid or tree-type background mesh can be consz’dergd n
a rather similar way. Point P is located on this structure and tl'ze h’s assoc.zated
with the box (the cell) including P are interpolated as above (for instance, using @
Q' -type interpolant in the case of a quadrilateral cell, Chapter 5).

Obviously, the same problem when an anisotropic context is desix:efi leads to
the same kind of discussion. Now, we need to interpolate both the sizing values
(the h’s) and the corresponding directions. The material in Chapter 10 allows
solution when the interpolation is based on two points (as when P belongs to an
edge). However, when the interpolation scheme must use three (or more) points
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(point P falls within a triangle or within a cell), the above scheme is no longer
valid.

Heuristics can be used to complete the solution. Let us consider the case where
point P falls within a triangle for which the metric information is known at the
three vertices. Let M;, i = 1,3, be the three corresponding metric matrices then
a possible interpolation scheme could be as follows :

3
e compute M = 37 w;(P) M; where w;(P) is a weight function (that of a
i=1

Pl-interpolation in this case),

o find the eigenvectors of matrix M, e, e, .. eq (d being the spatial dimen-
sion, i.e., d = 2 in this example)

e compute hf = (\/‘ej Miej)_l yfori=1,3and j=1,d,

o finally, compute &/ = 3" w;(P) hl, for j = 1,d,

then the matrix at P is the matrix whose eigenvectors are the above e;’s while the
size h?, related to direction ej, is that obtained by the above interpolation scheme.

Remark 21.5 Other interpolation schemes can be developed leading to a different
variation in both the directions and the sizes. In this way, emphasis can be placed
on a particular entity depending on what is expected.

21.2 H-adaptation by local modifications

In this adaptive strategy, the current mesh is locally modified so as to construct
an adapted mesh. Thus, the background mesh is naturally the current mesh and
the directives for refinement or coarsening are known at the vertices of this mesh.

Local modification of the elements, the basic ingredient of this adaptive strat-
egy, is mainly based on the general tools discussed in Chapters 17 and 18. Two
categories of local modifications can be demanded. One corresponds to element
refinement so as to increase the density of the mesh in a given region, while the
other corresponds to element coarsening leading to a coarser mesh in a specified
region. In the following discussion, we recall some tools that ensure the level of
refinement (coarsening) which is demanded while maintaining a conforming mesh.

Due to the local tools involved in this type of adaptive approach, one could note
that local modification based methods are mainly suitable for isotropic adaptation.

21.2.1 Refinement of mesh elements

Element refinement demands can be expressed either at the element level or at
the element vertex level.
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Figure 21.3: The element must be refined around one, two or three of its vertices.
Possible partitions are depicted where only triangles exist.

Refinement around vertices. In this section, we assume that the refinement
demand is expressed at the element vertex level (and not at the element level). In
this way, it will be easy to maintain a conforming mesh as will be seen below.
Let P be a vertex in the mesh, if a refinement is prescribed around P then
all the edges emanating from P are subdivided into tyo edg.es using the edge
midpoint. Based on this subdivision, the element is partitioned into sub—elemepts.
The case of a triangular element is shown in Figure 21.3 where, left-hand side,
the refinement demand concerns one, two or three vertices. One can see on the
right-hand side of the figure the corresponding partitions of the iniFial tri{mgle.
Obviously all the elements sharing a point where a refinement is requlrec.I are
subdivided in such a way that a conforming refined mesh is automatically obtained.

Remark 21.6 When a boundary edge must be subdivided, it is necessary to f’eturn
to the boundary geometry so as to properly locate the midpoint involved in the

process.
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Figure 21.4: The element must be refined around one, two, three or four O]f zti
vertices leading to the partitions depicted. The refinement procgdu?"e 15 a 2— e\;e
procedure. Note that a triangle is formed in case two (when this is undesirable,
the pattern defined for three or four vertices can be used).

The same procedure for a quad element leads to ﬁ\fe cases (Figurg 21.4%\Id;:
pending on both the number of affected vertices and their relatlye locations. 0iS
that this local procedure leads to dividing an affected edge twice, Fhe pn?;:fess :
a 2-level process. A variation, proposed by [Schneiders—1996b],. c.ops1ders d;) ererg-
templates as depicted in Figure 21.5. In this case, three sub41v1s1ons can eT(;l -
ployed based on the number of vertices where a refinement is demanded. u

|
|
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the procedure is a 3-level procedure. As before, conformity is automatically main-
tained® as can be easily observed in the figure (just consider the cases of adjacent
elements and apply to them the corresponding templates).

el
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Figure 21.5: The element must be refined around one, two, three or four of its

vertices leading to the partitions depicted. The refinement procedure is now a 3-
level procedure. Note that no triangles are formed, whatever the case.

Three-dimensional elements can be dealt with in the same vein. Nevertheless,
subdivision procedures are not so obvious. Some examples of possible partitions
are given in Figures 21.6 and 21.7.

The templates of Figure 21.6 are now fully described. Let i and j be two vertex
indices, we note ij the index of the midpoint of points 7 and j. With this concise
notation, for a given element (1,2, 3,4], the four series of templates depicted in the
figure correspond to the following vertex enumeration -

o [1,2,3,4] gives (12,2,23,24], [1, 12,3,4], [12,23,3,4] and (12,23, 24, 4] when
we refine around vertex 2. Indeed, we define a “small” tet around vertex 2
and, removing this tet, the remaining polyhedron is a pentahedron which,
in turn, is split into 3 tets.

e [1,2,3,4] gives [1,2,3, 24] and [1, 3,24, 4] when the edge [2,4] is subdivided.

e [1,2,3,4] gives [13,1,12, 14], [12,2,23,24], [23, 3, 13, 34], three “small” tets,
along with [12,23,13,4], [12,13, 14,4], [12,24,23,4] and [23, 34, 13,4] when
we refine around vertices 1, 2 and 3 meaning that the 6 mid-edges are intro-
duced in the partition.

o [1,2,3,4]gives, introducing again the 6 mid-edges, [13, 1,12, 14], (12,2,23,24],
(23,3,13,34],[34,4, 14, 24], four “small” tets at the corners and [13,23,14,12],
[12,14,24,23], [23,14,34,13] and finally [34,23, 24, 14].

Exercise 21.1 Show that the first refinement scheme admits an alternate a priori
valid subdivision. Hint : eramine the remaining prism (on the fly, retrieve and
discard the Schonhart case which is no longer valid).

8Given an adequate definition of the templates used to refine a triangle in the case of a mesh
comprising triangular and quad elements.
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Figure 21.6: Selected examples of three-dimensional partitions for tetrahedral ele-
ments.

Exercise 21.2 Show that the last refinement scheme is only one of the three pos-
sible subdivisions of a given tet. Hint : ezamine the polyhedron formed when the
four corner based tets are removed. Look at the siz possible diagonals based on the
siz remaining vertices.

Exercise 21.3 Ezamine how the tet subdivision patterns interact with mesh con-
formity.

The templates, as depicted in Figure 21.7, concern the case of a 2-level subdivi-
sion. More complex and flexible templates can be found when a 3-level procedure
is used. In this case, we return to Figure 21.5 for the patterns corresponding to the
face subdivision. Using these templates, no conformity problems may be expected.

Figure 21.7: Two examples of three-dimensional partitions for hexahedral elements.

Local refinements can be coupled with classical mesh optimization tools (such
as node balancing, (generalized) edge swapping, etc.) so as to increase (to preserve)
the mesh quality.

Remark 21.7 In many of the above examples, it could be noted that if the edge
lengths of the initial element are about unity then the edge lengths of the refined
elements range from unity to half (or from unity to a third). Thus, it is n.ot s0
easy to achieve a size variation following a different variation for two adjacent
elements.

Remark 21.8 Multiple refinements can be easily obtained by repeating the above
element partitioning. Nevertheless, a repeated series of refinements may alter the
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angles in the elements if some care is not taken thus resulting in ill-shaped ele-
ments.

With regard to what an optimal mesh is (see Chapter 18) and following the
two above remarks, it appears that local adaptation methods necessarily induce
some extent of rigidity.

Element refinement. In this section, we assume that the refinement demand is
expressed at the element level. Thus, maintaining mesh conformity must be made
explicitly. Indeed, when an element is refined, one has to propagate the refinement
to some neighboring elements if the interfaces (edges or faces) between the refined
element and some of its neighbors are affected by the refinement procedure.
Basically, we return to the above templates. However, simplicial elements offer
alternative solutions. In this respect, a triangular element can be subdivided by
the so-called longest-side subdivision method or one of its variations. Advocated in
numerous papers including, in a recent issue, [Rivara-1997], the basic idea of this
method is to split a triangle by introducing the midpoint of its longest edge and
then to propagate (for conformity reasons) the subdivision to some of its neighbors.
Nice theoretical issues indicate that the path of propagation is finite and thus mesh
conformity is easily obtained and the number of elements still remains reasonable.
In addition, this strategy results in a refined mesh where the angles are bounded.

Exercise 21.4 In two dimensions, show that if a triangle is split by introduc-
ing the midpoint of its longest edge, then the two resulting triangles are such that
the minimum angle is greater or equal to the minimum angle in the initial con-
figuration. Therefore, the angles do not alter even when repeating this splitting
procedure.

Also, many variations have been investigated including coupling with the De-
launay criterion. The three-dimensional extension of this idea to tet elements can
be found in [Rivara,Levin-1992] and, more generally, there are numerous papers
by the same author(s) discussing simplicial mesh refinement.

Remark 21.9 It could be of interest to store the history of a refinement procedure.
This can be achieved by storing the item genealogy. Such information could be
useful for the inverse process, i.e., a derefinement procedure as will be seen below.

21.2.2 Element coarsening

Constructing a coarser mesh, based on local modifications of a given mesh, is more
tedious. Actually, two approaches can be envisaged that address the derefinement
problem in a rather different way. First, the coarsening procedure is seen as an
inverse algorithm based on a previously applied refinement algorithm. Second, the
coarsening of a mesh is seen as a autonomous procedure that applies for arbitrary
meshes however they may have been created.
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Figure 21.8: Some occurrences for the longest-side subdivision refinement method
in two dimensions. Left, triangle Ky is candidate for refinement and the edge
common to Ko and its neighbor K s the longest edge of both of these triangles,
then the refinement is confined in this pair of elements. Right, triangles Ky and
K, are candidates for refinement and the refinement path also propagates to some
other (not depicted) elements.

Derefinement as the inverse of refinement. As it is based on the inverse of
a refinement procedure, such an approach is only suitable in regions of the mesh
where a refinement has been applied in a previous stage of the computational pro-
cess. Given a list of candidate nodes for the derefinement procedure, we have to
check whether or not they can be removed from the mesh. This point concerns
both maintaining mesh conformity and the fact that the genealogy of the investi-
gated node allows the procedure. The genealogy mainly depicts relationships like
children-parent for the mesh entities (vertices, edges, faces and elements). Based
on this history, derefinement consists in rolling backward the refinement procedure
which led to the current mesh.

This inverse process either has an immediate effect or else is more subtle to be
processed as it must consider not only a transformation (to be processed backward)
but also a series of transformations whose inverse implies several operations.

Arbitrary derefinement method. Such a method considers an arbitrary mesh
and ignores the way in which it was created. Thus, this derefinement method is
based on classical optimization tools (see Chapter 18) that lead to vertex removal
(and, consequently, edge, face and element removal). Apart from some peculiar
local pathologies (for instance, a vertex in a triangular mesh only shared by three
triangles) where an obvious solution can be obtained, the basic tool for mesh
coarsening is the edge collapsing operator. Due to this, simplicial meshes are
more flexible than other types of meshes as they are more readily candidates for

successful edge collapsing.

21.2.3 R-method

A r-method is a method which adapts the sizes (the A’s) while maintaining the
connections between the mesh vertices, thus this connectivity remains unchanged.

[

)
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The principle lies in moving the mesh vertices, in such a way as to increase or
decrease the vertex density in certain regions in the domain in accordance with
the behavior of the physical phenomenon in question. This can be seen as a mesh
deformation.

While well suited to some classes of problems, this method suffers from a certain
degree of rigidity. From a numerical point of view, it must be carefully checked
that the deformed elements (once their vertices are moved) remain valid and have
an accept.able quality. The deformation process (by attracting the vertices in a
given region or by repulsing them) is in general an iterative process, the vertex
shifts are processed step by step.

Remark 21.10 [t is often very efficient to combine an r-method with some of the
previous methods for mesh enrichment or coarsening.

Note that this method is a local processing (based on vertex movi
a global effect on the mesh. ( Fring) but has

21.2.4 Remarks about local methods

Local modification based adaptive methods are one solution for completing adapted
mgshes. Nevertheless, a precise examination of the different points discussed in
this section leads to some comments. Indeed, this adaptive approach offers both
a series of positive aspects and some weaknesses.

Let us mention first some apparent weaknesses of a local method. Nevertheless
note that a tricky implementation could be, in some cases, one way to overcom;
some of these weaknesses.

¢ In essence, local methods appear to be a solution for isotropic adaptive
problems and seem unlikely to be suitable when anisotropic features are
expected.

e The mesh conformity is more or less automatically insured.
e Mesh derefinement is not so obvious.

¢ Continuous variation in size is not easy to obtain (indeed, we start with an
edge lgngth h and obtain a length % and thus obtaining another type of
gradation is not so simple. In other words, such an approach is far from
optimal when the desired size is not in a ratio 2. or 0.5).

On the other hand, positive features of a local method include the following.

e Localization problems are not an issue as the background mesh is, in general,
the mesh itself.

e The use of predefined templates allows an easy implementation.

o Also, templates lead, in principle. to a reduced effort in farma ~f (DTT
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Note that other computer issues, such as boundary management, are common to
both the local approach and the global method discussed in the next section and,
thus, do not influence the appreciation of the local approach.

Thus, based on these observations, the user must decide whether or not a local
method is a suitable solution to a particular problem.

21.3 Global isotropic adaptation method

Automatic mesh generation methods, as discussed in the previous chapters, are
natural candidates for completing adapted meshes. Thus we now discuss how to
use or to modify these methods to serve this objective.

In Chapters 5, 6 and 7, we have described quadtree-octree, advancing-front
and Delaunay type methods. In what follows, we successively return to each of
these methods to see if they can be suitably used for the construction of meshes
conforming to a metric map specified in advance.

Quadtree-octree based methods can be used to obtain graded (isotropic) meshes
as the quadtree-octree structure can be constructed in such a way as to conform
to some sizing properties. In this case, the control space could be the quadtree-
octree structure itself provided a suitable criterion has been used to complete this
structure. :

Advancing-front type methods can result in the same kind of meshes by locating
the created point properly (say at a location such that the resulting edges are of
the desired size).

A Delaunay based method as previously described is also a possible solution
that can be used to obtain governed meshes.

In the following sections, we give some details about these three classes of auto-
matic mesh generation methods when an isotropic adaptive problem is considered
(the case of an anisotropic situation will be discussed in subsequent sections).

Remark 21.11 To make the discussion of each method independent, some ma-
terials, common to several methods, may, to some extent, be repeated in what
follows. Note also that a good knowledge of the methods in their classical version
s assumed.

21.3.1 H-method based on a quadtree-octree approach

A quadtree-octree type mesh generation method (Chapter 5) allows for some flex-
ibility in the mesh creation process leading to the creation of meshes conforming
to pre-specified isotropic requests.

A quadtree-octree type mesh generation method can be decomposed into sev-
eral steps where the first concerns the construction of the underlying quadtree-
octree structure. Then, based on this spatial structure, field points are inserted
and elements are constructed prior to some degree of optimization.
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Underlying tree construction. The tree construction is the basis of the mesh
construction. In the classical meshing method, the tree is constructed based on
the dgmain boundary discretization provided as data. Recall that this tree con-
struction is a recursive process in which several criteria are used to decide whether
or not the current tree is fine enough or must be refined again.

’ In the context of a h-method, the same idea can be retained but now the tree
1s constructed based on the boundary discretization of the domain and the sizing
function which is desired. Let h(P) be the size at point P where P is a vertex
of the background mesh serving as control space, then the tree must take into

account this information. Thus, a reasonable method resulting in an adequate
tree structure could be as follows :

. congtru?t the tree structure based on the domain boundary discretization
(which is assumed to conform to the size map),

. ?eﬁne, if necessary the above tree, by checking if it conforms to the h’s
included in the background mesh which means that the size of a terminal
cell corresponds to the desired element size. To this end, for each cell of
thf: tree, one can find the vertices of the background mesh which fall within
this cell. Then, examine if the cell size conforms to the sizing values. If
not, pursue the tree decomposition until a satisfactory matching has been
reached, while applying classical rules (such as the 2:1 rule) to balance the
tree. Figure 21.9 depicts how the h’s data interact with the tree construction.

Figure 21.9: Tree decomposition using a prescribed size. The size at point A forces
the im"tial tree bor containing A (left-hand side) constructed without explicit sizing
prescription to be decomposed two levels deeper (right-hand side) to adjust to the
size hy represented by the dashed circle.

Remark 21.12 The tree level | is then related to the size of a mesh edge, h, as
[ =logy(b/h) where b is the length of a side of the root cell. ‘

Remark 21.13 Note that, in this method, the distance between two connected
mesh vertzcgs (i.e., an edge length) is controlled by the cell sizes. Hence, the edge
size control is not obtained explicitly but results from the tree decomposition.
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Remark 21.14 Also, using the [2:1] rule results in a ratio of one, one half or two
between two adjacent cells (in terms of size).

Element construction. Once the tree has been completed, the element creation
follows the same aspect as in a classical quadtree-octree type method (return to
Chapter 5).

Mesh optimization. Mesh optimization, taking place at the end of the meshing
process, is slightly different than in the classical meshing problem. Unlike this
case where only the element shapes were considered, we have now to take into
account two (possibly antagonistic) aspects. Actually, what is needed are well-
shaped elements conforming a specified size. Thus these two aspects must be the
objective of the optimization stage. We refer the reader to a further section on this
point as optimization purposes in this quadtree-octree based method are similar
to those of the two other meshing techniques described below.

In conclusion, adaptation using a quadtree-octree method, such as that pro-
posed above, is essentially based on a particular construction of the tree structure
so that the cells in this tree reflect through their sizes the desired metric specifi-
cations. Therefore, the control is achieved by means of the tree.

21.3.2 H-method based on an advancing-front approach

An advancing-front type mesh generation method (see Chapter 6) allows for some
flexibility in the mesh creation process leading to the creation of meshes conforming
to pre-specified isotropic requests.

An advancing-front type mesh generation method includes the construction of
the field points and their connection with the current front and a final step that
corresponds to some extent of optimization.

Point creation and point connection. One way to control the mesh creation
with regard to a given sizing map is to analyze the length of the mesh edges. Let us
assume a three-dimensional case. Then, given a front face, say ABC, we examine
the context to decide whether an existing point or a new point must be created
that can be combined with face ABC so as to form an element. In the case where
this candidate element, is indeed formed, we will have introduced one, two or three
new edges depending on the situation. As a consequence, a control on this (these)
new edge(s) allows us in principle to complete what is needed.

Thus, let us examine a (potentially new) edge of this candidate element, say
AP (we assume that P is known, see below regarding a way to find such a point).
If h(t) stands for a sizing function defined for this edge (with h(0) = h(A) and
h(1) = h(P)), then the length of edge AP with respect to h(t) is :

1

1
lap=d —dt 21.1
wr=dar [ o (21.1)

where dap is the usual (Euclidean) distance.
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Actually, h(t) is only known in a discrete way (thanks to the background mesh)
So, if only h(A) and h(P) are provided, we have (using an approximation base(i
on a rather simple quadrature formula) :

lap =dap =———= (21.2)

while if edge AP intersects a series of elements in the background mesh and if M,
stands for the i** intersection point, then we can define the length of AP as : l

lap = X:ZM,M.Jrl (21.3)
i=0

where (using the same quadrature formula)

1 + 1
h(Mi) * h(M;4y) .

2

In .this relationship, h(M;) is obtained by interpolation on the background mesh
stng these definitions, the (potentially new) edges of the analyzed element aré
examined. This means, Figure 21.10, that we may be interested in computing the
lengths of edges AP, BP and C'P, given the face ABC. Based on these values
as compared with the unity, point P is moved towards or away from the face’

(see Chapter 6) and the same analysis is repeated until (a satisfactory) convergence
is obtained.

In theory, we need to find a point, P, the solution of :

lMiM,‘+1 = dM,M.’.{,.l (214)

lap = pr/ =lcp =1 ,

which is, in practice, unrealistic. Therefore, the above approximate method (based
on iterations) is a reasonable solution.

The above discussion assumed that P was found in some neighborhood of face
ABC meaning that an existing point can be used or, on the other hand, that
P is constructed somewhere. This being done, point P is easily adjusted’using
the Previous material. The point is then to find an initial (and not too bad)
candidate point. One method could be, based on face ABC, to define point Py,
such that element K is well-shaped. Then, among the three edges P, A, P, th
anq PoptC, that or those which will be added in the mesh in the case whgre élempent
K is .retained, are examined based on the metric map. If P,,, is a free-point, its
location is adjusted to meet as closely as possible a unit length for the edge; of
element K. Then P is assigned to be the resulting adjusted point. Note that all
these operations are coupled with the classical validity checks as performed in a
classical advancing front type method.

Remark'21.15 Note that the radii used for the searching operations for the can-
didate points must take into account the desired element sizes.
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Figure 21.10: Optimal point P creation, given a front face ABC the resulting
tetrahedron K is considered optimal as it has edge lengths conforming to the desired
sizing map. Poy 1s first constructed, then P}, Pp and Pl are defined and an
adequate combination of these (virtual) points is used to define P,;pt. Finally, the
new location of P is prescribed to be this Py, .

Remark 21.16 In [Rassineuz-1995], the internal points are constructed using an
octree, in three dimensions. Thus, provided this tree structure is developed in
accordance with the size map (cf. the previous approach), we obtain a priori a
mesh which is reasonably satisfactory with regard to this size map.

Mesh optimization. As above, we refer the reader to a later section on the
optimization step of the method.

In conclusion, adaptation by using an advancing-front method, such as that
proposed here, basically relies on an appropriate location of the points with regard
to the front faces. The global control, each point being well located for its face,
is due to the fact that the candidate points are selected in a neighborhood of the
faces in question and thus these points are globally well located.

21.3.3 H-method based on a Delaunay-type method

A Delaunay type mesh generation method also appears to be ﬁexil?le enough to
carry out the creation of meshes conforming to pre-specified isotropic requests.

As we saw in Chapter 7, a Delaunay type mesh generation method can be
decomposed into several steps that concern the insertion of the bound.ary ver'tlces,
the boundary enforcement, the creation of a suitable set of field points prior to
their insertion and some extent of optimization.
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Delaunay kernel. Recall that, under appropriate assumptions, the Delaunay
kernel is the basic ingredient that makes it possible to insert a point in a given
triangulation. This Delaunay kernel is simply expressed by the relationship

Tior = Ti = Cp + Bp, (21.5)

where the cavity and the ball of P are involved. Then, whatever the size map,
this basic algorithm remains valid.

Boundary enforcement. Obviously, the a posteriori enforcement of the bound-
ary entities when the boundary vertices have been inserted, remains unchanged in
this adaptive context.

Internal point creation. Following the classical point creation method (Chap-
ter 7) using as a support the edges of the current mesh, we have to examine how
this method could be used in the present adaptive context.

Note initially that the proposed method is rather similar to that used in the
above advancing-front approach since it is based on a control related to the edge
lengths.

Thus, let us examine an edge, say AB. If h(t) stands for a sizing function
defined for this edge (where h(0) = h(A) and h(1) = h(B) hold), then the length
of edge AB with respect to h(t) is

1
1
lup =d /——dt 21.6
AB =dap \ 70 (21.6)

where dsp is the usual (Euclidean) distance.

Actually, h(t) is only known in a discrete way (thanks to the background mesh).
So, if only h(A) and h(B) are provided, we have (using an approximation based
on a rather simple quadrature formula) :

(21.7)

while if edge AB intersects a series of elements in the background mesh and if M;
stands for the i** intersection point, then we can define the length of AB as :

i=n

lap =Y by, (21.8)
1=0

where Ipr,p7,,, is approached using Relationship (20.4). Using these definitions,
the edges of the current mesh are analyzed so as to create some points along them.

This can be done using the very simple algorithm that follows (where n is the
number of the M;’s) :

1 =0. (where I stands for a length)
DO FOR 1 =0,n
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=14+ lM, Mg,
(4) - IFl>1
create one point between M; and M,y at a unit distance from the
previously created point (Mo = A at the first step),
l=1-1 and return to (4).
END FOR 1.

This process is repeated for all the edges of the current mesh leading to the
creation of a series of points. These are inserted using the Delaunay kernel resulting
in a new mesh. The process is then repeated until all the edges are satisfactory
(in terms of length). Actually, the unit value is replaced by an appropriate value
close to one (as it is for all of these length based methods).

Mesh optimization. As above, we refer the reader to the next section about
the optimization step of the method.

In conclusion, adaptation for a Delaunay type method mostly relies (in the
proposed approach) on the proper position of the points in the mesh edges. The
global control, every point being well located on its supporting edge, is due to the
fact that the points are filtered before insertion, this leading to a global consistence.

21.3.4 Mesh optimization tools (isotropic case)

The optimization stage met in all automatic mesh generation methods (for simpli-
cial meshes) is, in practice, the same for all of them (quadtree-octree, advancing-
front or Delaunay). As already seen, this stage is the last in the mesh construction
process. The optimization is governed by a quality objective (at the element level)
with includes two criteria, a shape criterion and, at the same time, a size criterion.
The point is what mesh quality is expected and, based on this objective, what
tools can be used and how to combine them (i.e., how to define a mesh optimiza-
tion strategy) so as to improve the mesh resulting from the first steps of the mesh
generation (modification) method.

Mesh evaluation. Provided with a metric map, the mesh quality analysis must
naturally take into account this map to examine whether or not the mesh elements
conform to it. In addition, as we are considering an isotropic situation, the element
shapes (aspect ratios) must be as good as possible. Indeed, we have discussed
all these aspects in Chapter 18 where aspect ratio measures as well as length
efficiency index have been introduced and which form the basic ingredients we
need to evaluate a mesh quality.

However, the above appreciation is not directly related to the main reason
for constructing the presumably adapted mesh and thus, this appreciation is only
formal. In fact, in the context of an adaptive loop of finite element computation
(our purpose), the right tool to analyze the mesh quality is the error estimate which
analyzes the quality of the solution of the P.D.E. problem under consideration.
Since the error estimate is not known in the meshing process, we assume that the
above formal appreciation is valid (and consistent). Thus, at the meshing stage of
the entire process, we still use this kind of appreciation.
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As detailed in Chapter 18, various local tools can be used to optimize a given
mesh. In our context, the same tools are used in the optimization step included
in the mesh generation methods.

Shape optimization. Classical optimization tools (Chapter 18) can be used
such as node relocation, edge swapping, generalized swapping, etc.

Size optimization. Edge collapsing or edge splitting can be performed when a
given edge is too short (in terms of ! measured according to the discrete metric
map) or too long. Prior to actually apply such an operator, one has to check
whether or not it results in a better solution. For instance, an edge that is too
long could be retained if splitting it into two shorter edges results in two violations
of the sizing criterion (instead of only one violation in the initial configuration).
Apart from these two processes, node relocation proves to be useful. A free vertex,
namely P, can be moved as follows :

— PP —
P; =P+ —L—h; :
P .

where Ej is such that lp;p =1 in the metric. Then, the new position of point P
can be the centroid of the Fj ’s.

Optimization strategy. First, it could be observed that respecting a size map
while maintaining well-shaped elements could be two conflicting objectives, based
on what the size map is. Thus, the optimization strategy must take into account
this possible conflict. Following our experience, we suggest firstly optimizing the
length criterion and then, this objective being satisfied, optimizing the element
shapes (although this may alter the length criterion to some degree).

21.3.5 Remarks about global methods (isotropic)

As for the local approach, we give some preliminary observations about global
adaptive methods. The aim is not to pass judgment on the various mesh genera-
tion methods that may be employed but to give a general impression of a global
approach.

Indeed, this adaptive approach offers both a series of positive aspects and some

weaknesses. Let us mention first some apparent weaknesses of a (isotropic) global
method.

¢ Localization problems could be an issue and could be time consuming.

e CPU requirements could be large, particularly when the difference between
the initial mesh and the adapted mesh concerns only a small part of the
computational domain.

Now, positive features of a global method are briefly indicated.
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¢ Essentially, global methods appear to be a good solution for isotropic adap-
tive problems.

e Mesh conformity is not an issue.

e Mesh derefinement is obvious since it is no different from a refinement prob-
lem.

¢ Continuous variation in size is easy to obtain.

Note that other computer issues, such as boundary management, are common to
the local method discussed in a previous section and, thus, do not count in the
appreciation of the approach.

Thus, based on these observations, one has to decide whether or not a global
method is a suitable solution to carry out a given problem.

21.4 Global anisotropic adaptation method

Anisotropic meshes or meshes with anisotropic meshed regions are of great interest
for some numerical simulations (one can consider the construction of boundary
layers or the case where the problem induces some shocks).

As for the previous meshing problem, anisotropic mesh generation can a prior:
be based on any of the classical mesh generation methods. Nevertheless, each of
them must be precisely examined so as to see if it can be easily extended to this
particular meshing problem. In what follows, we review the quadtree-octree, the
advancing-front and the Delaunay type methods with this precise objective.

21.4.1 H-method based on a quadtree-octree approach

Basically, the mesh elements resulting from a quadtree-octree type method, are
strongly related, in terms of size as well as in terms of shape, to the underlying
tree structure. More precisely, the mesh elements are created based on the cells of
the tree structure. Thus, since the cells are in essence 1sotropic, it is not so easy
to find a method resulting in the construction of anisotropic elements. Up to now
and as far as we know, there is no available literature about this point and no
attempts to construct an anisotropic quadtree-octree structure.

Remark 21.17 Nevertheless, it could be observed that a global anisotropy (ie.,
where the anisotropy is globally defined and aligned with the usual coordinate axis
and also does not vary from regions to regions) can be obtained by constructing the
tree structure accordingly.

Despite the above observations, it could be of interest to examine how it is
possible to construct a quadtree (octree) structure using a repeated subdivision of
the root cell not aligned with the sides of this cell. This being completed, one could
examine whether or not such a spatial partition can be exploited for anisotropic
mesh construction.
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21.4.2 H-method based on an advancing-front approach

An advancing front type mesh generation method is more flexible than the previous
type of method since point connection as well as point placement can be guided
by anisotropic criteria.

In an anisotropic context, directional features and sizes varying in these direc-
tions are expected at the mesh element level. This leads to introducing what the
length of an edge is, with respect to a given metric map.

Length of an edge. In Chapter 10, we have seen that computing a length con-
sists in using the dot product related to a quadratic form. Here we are concerned
with the curve I joining two points A and B. If ¥(t) is a parameterization of T of
class C* (k > 1) such that 7(0) = A and v(1) = B, the length L(v) of the arc T
in the metric M., is defined by the expression :

1 1
o) = [l = [\from,va. (21.10)
0 0

Therefore, the restriction of the parameterized arc T' to the vector AE (i.e., the
edge under examination) with the parameterization y(t) = A +tﬁ, t€0,1] and
7(0) = A,%(1) = B enables us to write the length L() of the line segment AB

L(y) :/\/tA—B’/m ABdt, (21.11)
0

where M, is the metric specification in 4. Once the metric does not vary with the
position (M, = M), we obtain :

L(y) = V'ABMAB.

Having this definition, it becomes possible to compute the lengths of the mesh
edges is the case where an anisotropic metric is given.

Internal point creation. As for the isotropic case above, creating an adapted
mesh is based on the edge length control with respect to the metric map. Given
a front face ABC, we want to know whether a point P in the current mesh exists
which is suitable for the construction of elements whose edge lengths are compat-
ible with the sizing and directional specifications. If such a point is found, it is
used so as to create a mesh element. Otherwise, the above method is used to find
the location of an optimal point. A point P, is first constructed in such a way
that the element ABC'P has a nice shape quality. Then, the position of Pope is
adjusted so as to meet unit edge lengths in the metric.

The element constructed based on ABC and P,;t is an element whose size
conforms to the size specification and whose stretching and orientation follow the
directional features included in the anisotropic metric map.
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Metric interpolation. In practice, the metric at a vertex is known in a discrete
manner (in fact at the background mesh vertices). Therefore, it is necessary to
use a metric interpolation procedure so as to obtain the metric value(s) at a vertex
P in the current mesh. To this end, the element K in the background mesh in
which point P falls is identified (this point is that resulting in an optimal element).
Using the metric information at the vertices in K, the metric at P is obtained by
interpolation and then serves to adjust the position of P, so as to obtain unit
length for the edges AP, BP and CP.

Remark 21.18 The advancing-front approach is also able to construct some bound-
ary layers in the vicinity of a given boundary. This boundary forms a front which
is then “pushed” in order to define the first layer, this then forms a new front and
the same method is repeated [Kallinderis et al. 1995].

Remark 21.19 A combination with a Delaunay type method is also a solution
for completing anisotropic elements. The optimal points are created using an
advancing-front strategy and are then connected using a Delaunay method (see
[Mavriplis-1992], for instance).

21.4.3 H-method based on a Delaunay-type method

Given the final theoretical remark of Chapter 7, the Delaunay based method as
described in this chapter is probably also a possible answer for anisotropic mesh
generation. As previously seen, a Delaunay type method is mainly based on the
notion of a distance between two points. Indeed, the Delaunay kernel, the field
point creation phase and the optimization phase all make extensive use of this
kind of information®.

Edge length. Before going further, we recall how the necessary lengths are
defined. Given a curve I', joining two points A and B, we consider v(t) a parame-
terization of I', at least of class C! (¢ ranging from 0 to 1) such that v(0) = A and
7(1) = B. Then, Ip(A, B), the distance, following the metric map characterized
by the matrices M’s, between A and B is I(T), the length of ' defined as follows :

1
L(7) = lm(A, B) = / JAB M, ABdt, (21.12)
0

or, if metric M does not depend on the position :

L(7) = lm(A, B) = V' AB M AB.

Now, using this length definition, we can return to the scheme of the isotropic
case and compute the length of AB using metric information, the M matrices,
collected on the background mesh.

9While the other phase (boundary enforcement), part of the whole method, is, in principle,
not affected by the present meshing context.
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Point insertion method (Delaunay kernel). Actually, the classical Delaunay
point insertion algorithm is no longer suitable. Indeed, following the method
proposed in the isotropic case while modifying the way in which the points are
located (i.e., by computing the unit lengths using Relation (21.12) instead of
Relation (21.6)) results in a priori well located internal points. Inserting these
points via the classical Delaunay kernel is possible, but the underlying proximity
notion (based on a Euclidean distance) does not match the way in which the
distances from point to point have been evaluated. Thus, the local procedure
(already described elsewhere) :

Tit1=Ti —Cp + Bp,

enabling us to insert point P in triangulation 7; so as to complete 7;,1 must be
extended to the present context.

Note that Bp is the set of elements formed by joining P with the external
edges (faces) of Cp, these being the series of elements in 7; whose circumcircle
(circumsphere) encloses P. Thus, now, this notion of a circle (sphere) is defined
according to the metric associated with the problem.

The key-issue is to construct a proper cavity, i.e., the set Cp. To this end,
we consider a two-dimensional meshing problem and, at first, we return to the
classical case. Let K be an element of 7;, let Ok be its circumcentre and let rK
be its circumradius. Then, element K will be a member of Cp if

d(P,Ok)

a(P,K) = -

<1 (21.13)
where d is the usual distance. To take into account a metric map, this classical
characterization is replaced by :

Im(P,Ok)

aM(P, I\’) = -

<1 (21.14)

where, now,

¢ Ok stands for the point equidistant to the vertices of K. This means that
this point is the center of the circumcircle of K according to the metric
defined by M (in general, this circle is an ellipse in the usual Euclidean
space) and,

e rx is the radius of this circle according to the Euclidean space defined by
M, v.e., r is the length between the point equidistant to the three vertices
of K, the above Ok, and one of these points.

Computing Ok as well as rg is not, in general, possible, as M varies from one
point to another. Thus, approzimate solutions must be involved leading back to a
Euclidean problem. The simplest one consists in approaching M by the value of
M at point P. This approximation results in a possible construction of Cp (after
a correction step) and the point insertion method applies in an anisotropic context
(return to Chapter 7).
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Figure 21.11: The circumcircle associated with element K once the metric is fived.
The construction of the cavity of P by means of adjacencies relies, starting from
one triangle in this set (in dotted line), in eramining its neighboring triangles,
here that share the edge denoted by a, i.e., element K.

It has been proved (thanks to the correction step) that the resulting cavity has
the desired properties and thus that replacing it by the ball of P results in what
is expected : an anisotropic point insertion method.

Remark about the boundary enforcement. In practice, as the elements in
manipulation can be strongly anisotropic, numerical problems!® may arise.

Internal point creation. This step is similar to the isotropic case previously
discussed while the lengths are evaluated using the above (anisotropic) formula.
We return to the isotropic scheme where queries about the background mesh to-
gether with interpolation of the collected information are used to compute the
length of a given edge. As for the Delaunay kernel, an approximation is used in
this length computation.

21.4.4 Mesh optimization tools (anisotropic case)

Common to all automatic methods resulting in simplicial elements, an optimization
phase forms part of the meshing process. The optimization here is based on a shape
quality criterion coupled with a size (directional) quality criterion. The delicate
issue is, as in the isotropic case, to define a optimization strategy that produces
what is desired.

Mesh evaluation. The analysis of the resulting mesh must take into account the
specified metric map. The aspects about optimization itself have been discussed
in Chapter 18. It should just be borne in mind that the efficiency index allows
for a global appreciation of the lengths of the mesh edges. Moreover, using an
error estimate may provide information (in the form of a metric map) that makes

10While in principle, this stage is similar to how it was in a classical case.
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the mesh analysis possible. The tools for optimization as described in Chapter 18
apply here with no restriction.

Shape optimization. Among the classical optimization tools for element shape
improvement, we have edge swaps, point moves (with a unit length), etc.

Length optimization. The edge lengths having been computed in the given
metric, the collapsing (resp. splitting) operators deal with the edges that are too
small (resp. too long). The point relocation procedure consists in trying to obtain
unit length edges (in the metric at the considered vertex P).

Optimization strategy. As in the 1sotropic governed case, an efficient strategy
leads to optimizing the mesh by firstly considering the size criterion. Then, a
quality (shape) criterion is considered.

21.4.5 Remarks about global methods (anisotropic)

In this section, we give some remarks about anisotropic global mesh adaptation
methods. As in the isotropic case, a series of (relative) weaknesses can be found :

e localization problems may be tedious,

o the time required for a remeshing may be relatively great, specifically when
the adaptation is rather local,

¢ numerical problems may arise due to the stretching of the elements (when
computing surface areas or volumes for instance).

Nevertheless, a certain number of positive features can be mentioned :

¢ the global remeshing approach is a likely solution for anisotropic adaptive
problems,

¢ a mesh gradation is, in general, relatively easy to achieve (or to maintain).

.AS in the isotropic case, mesh derefinement (coarsening) is a trivial task since
1t does not differ from a refinement method. Note that it is always the user’s
responsibility to decide whether the problem at hand requires global anisotropic
approach.

21.5 Adaptation

Adaptation is a key-issue for automatic simulations where the purpose is to insure
a given accuracy of the solution. Given a tolerance threshold, the problem is to
compute, for a given P.D.E. problem, a solution whose accuracy conforms, in some
sense, to this threshold.

There are several approaches suitable for adaptation purposes. As discussed
up to now in this chapter, these include the h-method where the mesh, the support
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for the computational step, is adapted in terms of element size (density) or sizes
and directions. In an isotropic meshing problem, the desired mesh must be coarser
or finer in such or such region as specified by an error estimate that analyzes the
quality of the solution computed using the current mesh as a spatial support. In
an anisotropic context, the elements must be aligned in the directions specified by
such an error estimate which is assumed to have a directional aspect and, at the
same time, these elements (indeed their edges) must have the required lengths.

Following the previous discussion, the mesh generation aspect can be envisaged
in two ways so as to design a h-method. The first is based on local modifications
of the current mesh while the other involves a entire mesh (re)construction at each
step of the process (or after a few iteration steps).

The ingredients needed in this context include local mesh modification tools
(local approach) or fully automatic mesh generation processes (global approach)
resulting in adapted meshes along with solution methods coupled with a posterior:
error estimates able to provide mesh specifications used, in turn, to repeat the full
process until the tolerance threshold has been achieved.

In what follows, we indicate what a global computational scheme could be for
both a local and a global meshing approach in the case of an adaptive loop of
F.E.M. style computation. The example concerns a three-dimensional case from
which it is easy to infer what a two-dimensional case could be.

21.5.1 General framework of a local adaptation method

The general framework of a h-method adaptive loop of computation when the
adaptation is based on local mesh modifications at each step is illustrated in Fig-
ure 21.12 (in three dimensions).

The general scheme includes two parts. Left, we find a scheme similar to that
in a classical mesh generation method. Right, we see the part directly related to
the adaptation phase.

More precisely, for the classical part, we start from a CAD system (box “CAD”
in the figure), to define a first surface mesh (j = 0), then a 3D mesh generator
creates the mesh of the domain and this part (left-hand side of the figure) is nothing
other than a classical mesh generation problem. Then the solution of the P.D.E.
problem is computed and analyzed using an ad-hoc error estimate. The latter
provides a metric map (box “Metric”). Based on this metric map, the process is
iterated (j = j + 1) thus consisting in the second part of the figure (right-hand
side) and corresponding to the governed mesh modification problem. Note that the
geometry of the surface (box “Geometry definition”) is now strictly necessary as
will be discussed below. The local mesh modification step consists in modifying
the mesh so as to complete a mesh conforming to the data included in the metric
map.

The metric map is indeed a simple request associated with each element of the
type element to be subdivided or, conversely, element to be coarsened. In practice,
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the same type of requests may be given at the vertices of the current mesh (for
example, refine (once or several times) around a given vertex).
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Figure 21.12: General framework for a local adaptation method.

21.5.2  General framework of a global adaptation method

The general framework of a h-method adaptive loop of computation when the
‘adaptation is based on the entire mesh (re)construction at each step is depicted
in Figure 21.13.

As for the previous approach, we can see two parts as shown in the previous
figure. Indeed, the first part (left-hand side, the classical mesh generation problem)
remains unchanged while the second part (right-hand side, the governed mesh
creation problem) is rather different.

The classical part in the scheme is similar to that in the previous case and
completes an initial mesh of the domain using an initial mesh of its surface as data.
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In contrast, the adaptive part in the scheme differs slightly from that included in
the previous scheme. Now this part comprises two steps. One concerns the surface
mesh processing while the other, based on an automatic mesh generation method,
considers as input the above surface mesh (assumed to be conform to the metric
specifications) and completes the domain mesh accordingly.
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Figure 21.13: General framework for a global adaptive method.

21.5.3 Remarks about an adaptive scheme

The two above general frameworks include a series of processes w.hich, in 'turn,
involve various types of input and data flows. In what follows, we give some ideas
and comments about these aspects.

Geometry definition. The precise definition (in an analytical way, for i.nstal.lce)
of the geometry of the domain surface to be meshed is not strictly required in a

k-
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classical meshing process!!. In fact, the domain mesh is generally obtained using
a discretization of its boundary as input data. Therefore, this boundary mesh is
assumed to be known and is sufficient for the definition of the domain in question.

In contrast, in an adaptive meshing process, the discretization (the mesh) of
the domain surface may vary during the iterations, depending on the metric spec-
ifications. It is then necessary to have access to a definition of the geometry (the
boundaries) of the domain. In practice, there are two ways to obtain the informa-
tion related to the geometry :

e using a direct access to a geometric modeler (a CAD system) to which queries
are made by the mesher so as to know the geometrical or topological informa-
tion which is needed (corners, ridges, curve definitions, surface definitions,
normals, tangents, curvatures, etc.);

e using an indirect access, which means using a mesh, the so-called geometric
mesh which serves as the geometric definition of the domain (Chapter 19).

When a geometric mesh serves as a support for the geometry definition, the
properties of the boundary curve (resp. surface) are obtained using this discretiza-
tion. In principle, such a mesh is constructed by the CAD system and the geo-
metric approximation it forms is assumed to accurately reflect the geometry of the
curve (resp. surface) it models. Therefore, a mesh whose element density indicates
the curvature well is a suitable candidate. On the other hand, it must be noted
that such a mesh is not generally a suitable mesh for a finite element computation
(in particular, the mesh gradation is not necessarily controlled).

Given such a geometric support, we return to the previous case in which queries
are addressed to the geometry in order to obtain the required information.

About the boundary mesh construction. A mesh of the domain boundary is
the natural data input!? of a mesh construction or a mesh modification procedure.
In practice, there are two types of problem regarding surface meshes.

The classical part of the adaptive mesh construction scheme consists of con-
structing an initial mesh of the domain. This is done with no special knowledge,
i.e., of a metric nature related to the physical behavior of the problem. The sole
properties used are those related to the geometry. The surface mesh results from
a geometric modeler or by using an appropriate surface mesh method. However,
this mesh must be reasonable (meaning that it is representative of the underlying
geometry, Chapter 19), but it is probably not ideal with regard to the physics
included in the P.D.E. problem in hand, which therefore justifies the use of an
adaptive approach.

In alocal approach, the surface is remeshed so as to take into account the given
metrics and the geometric metric. The basic idea is always the same, and aims at

' This is strictly the case for an advancing-front or a Delaunay type method but this is not
necessarily the case for a classical octree method where the surface mesh and the volume mesh
can be constructed at the same time.

12See the previous note.
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constructing unit length edges. The remeshing process, discussed in Chapter 19,
makes use of geometrical operations (point relocations) or topological operations
(edge swaps, edge collapsing, point insertion, etc.). In brief, remeshing a surface
is seen as an optimization procedure. The information which is then pertinent
concerns :

o the proper location of a point on the surface,

o the access to the properties of the surface (normals, tangents, principal radii
of curvature, etc.).

Note that the local surface remeshing can be made at the same time that the local
remeshing of the volume is made.

In a global approach, the surface mesh is constructed in a stand-alone step
with no connections with the volume mesh. See Chapters 14 and 15 for a detailed
discussion on mesh generation methods for curves and surfaces.

About the mesh construction. Using an initial surface mesh as data, the
volume mesher constructs an initial mesh in the domain. It is clear (following the
mesh generation methods described in this book) that the quality of this three-
dimensional mesh is strongly related to the quality of this surface mesh. If a metric
map (obtained using an error estimate after the solution analysis) is available, it
is possible to numerically evaluate whether the current mesh is satisfactory or
not. If it is not judged good enough, the mesh generation process is iterated thus
leading to the construction of a new mesh taking into account the geometric metric
map together with the physical metric map. Then, the current mesh becomes the
background mesh for the next iteration step.

As for the surface meshing case, two types of methods can be envisaged to
obtain adapted volume meshes. A local approach makes use of the optimization
operators, as we have already seen. In a global approach, the new mesh is entirely
recreated using the metric map defined at the vertices in the background mesh.
The mesh generation is then governed, meaning that we aim to construct a mesh
with unit length edges.

About the solution step. The solution step comprises a solution method (the
method used to solve the resulting matrix system) and an error estimate to access
the quality of the solution that is computed. This estimate also serves to translate
this analysis in terms of directives that are directly usable by the mesh generation
method.

In a global adaptation scheme, it is advisable to use an iterative solution
method in which the solution which is sought is initialized by the solution ob-
tained at the previous iteration step. Therefore, interpolation methods must be
used to interpolate the solutions from mesh to mesh. This raises the problem
of how to transport the solution from the background mesh to the current mesh.
These methods involve finding the position of a vertex in the current mesh in the
background mesh and are thus based on localization procedures (Chapter 18).
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About the metric map. As previously indicated, the metric map is a discrete
set of values (tensors) which are usually known at the vertices in the background
mesh. When several metrics are specified at these vertices, an intersection pro-
cedure (Chapter 10) is used to find a unique metric. A continuous map is then
obtained by (linear) interpolation using the vertex values.

21.6 Application examples

In this section, we show some examples of adapted meshes corresponding to various
iteration steps in an adaptive process. In all these examples, the approach is a
global one for the domain meshing (planar or volume domain) and a local approach
(by remeshing) for the boundary (curves or surfaces) meshing.

The first series of examples (Figure 21.14) corresponds to a mechanical device
in two dimensions. The mesh generation method is a quadtree type method. In this
example, the metric map is isotropic, the sizing function is defined in an analytic
manner using two real valued functions :

W(z,y) = 4lri = TP +0.05 and  h2(z,y) = 2ry — [[C2B]| +.02, (21.15)

Whg?e C1 = (-3,5) and Cy = (10,-5) are the center-points of two discs whose
radii are respectively r; = 7 and r, = 13. Ten iteration steps for mesh construction
were necessary to capture the analytical map in a satisfactory manner.

mesh - iter np ne | QOr Q1 lmin | lnas lavg T
part - 0 22041 3,794 29129024 8331075 | 088
part - 1 2,808 | 4975 | 2.9 (128021 | 21.13[0.77 | 0.89
part - 3 5,090 | 9,502 | 3.64 |127] 024 299 | 0.75 | 0.90
part - 10 7,772 {14847 | 2.9 (1271024 | 1.78 [ 0.74 | 0.92

Table 21.1: Statistics about the numerical evaluation of adapted meshes by means
of a quadtree type method.

Table 21.1 gives the results of the adaptation for this example. The values
np and ne are the number of vertices and the number of elements in the mesh,
Qr and Q note the worst and the mean qualities of the triangles. The minimum,
maximum and mean edge lengths are respectively denoted by lmin, lmaz and layg
while 7 is the efficiency index.

Remark 21.20 Note that this type of method (based on a tree) favours the cre-
ation of small edges (in the metric) and, more specifically, in this analytic example
in which the mesh gradation (by means of the [2:1] rule) is not really compatible
with the given metric map. Nevertheless, the spatial tree decomposition has cap-
tured the required map, as can be seen by observing the value of indez 7.

The second example concerns a C.F.D. case, in two dimensions. The problem
deals with a viscous calculus around a NACA012 type profile at Mach 0.95 with
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Figure 21.14: Adapted meshes of a mechanical device using a quadtree type method
(iteration steps 0, 1, 3 and 10) for an analytical isotropic metric map.

a Reynolds 5,000. A characteristic configuration of the fish tail is sought with an
instationarity due to shocks-wakes interactions. The mesh adaptations allow the
shock regions, the boundary layers and the wake (Figure 21.15) to be captured.
The density iso-contours are shown in Figure 21.16. Six adaptation steps were
used to capture the physics. A type method (with a point insertion scheme using
the edges of the current mesh, Chapter 7) was used for the global remeshing at
each iteration step and a Navier-Stokes solution method was used.

To conclude, we give an example of adapted meshes in three dimensions. The
shape of the domain is deliberately simple!3, a sphere with a unit radius centered
at the origin. The isotropic metric map used here is analytic and also concerns
the domain surface. Figure 21.17 shows the surface meshes at steps 0, 1 and 7 in
the adaptation. Figure 21.18 shows the volume meshes (and some cuts by various
planes) at the corresponding steps.

An isotropic mesh optimization procedure was used for the surface remesh-
ing [Frey,Borouchaki-1998]. A Delaunay method was employed to adaptively
remesh the volume [George,Borouchaki-1998].

Table 21.2 gives the main figures for the different iteration steps. The values
ly, denote the percentage of edges whose lengths are compatible with the size map
(i.e. such that v/2/2 <1< v2), Qr, 1 — 2 and 2 — 3 denote the worst quality in
the mesh and the number of elements with a quality between 1 and 2 and between
2 and 3, respectively.

13Note that the visualization of map in three dimensions is delicate or even not really possible
in the case of arbitrary complex geometries.
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Figure 21.15: Original mesh (top left-hand side) and adapted meshes using a
(anisotropic) Delaunay type method around a wing profile (NACAQ12) at itera-
tion steps 0, 1, 2, 8, 4 and 6 for a Navier-Stokes computation in CFD.
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Figure 21.16: Density iso-contours corresponding to the adapted meshes at itera-
tion steps 0, 1, 2, 3, 4 and 6.
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Figure 21.17: Adaptation examples in three dimensions. Adapted surface meshes

at iteration steps 0, 1 and 7.

- np ne Tl | Qr | 1-2]2-3
Initial mesh 277 1,200 | 0515 | 7] 1.8 100 -
Iteration 1 23,023 124,362 | 0.814 | 37 | 47. 81 11
Iteration 3 115,215 647,119 | 0.944 | 78 | 12. 78 20
Iteration 7 | 253,068 | 1,416,617 | 0.961 | 86 8. 74 24

Table 21.2: Statistics about the different iteration steps.

Figure 21.18: Adaptation examples in three dimensions. Adapted volume meshes

at iteration steps 0, 1 and 7, cuts by the

(bottom,).

plane z = 0 (top) and by the plane z = 0.5



