Chapter 19

Surface mesh optimization

Introduction

In Chapter 18, we described several methods to optimize planar or volumic meshes
based on criteria notably related to the shape and the size of the elements. We
mentioned that these methods cannot generally be applied directly to surfaces.
This is why we now deal with the optimization of surface meshes which, while using
the same general principles as the methods described in Chapter 18, nevertheless
presents numerous specificities.

Surface meshes play an important role in various numerical applications. Hence,
for finite element methods, it is well established that the quality of the geometric
approximation may affect the accuracy of the numerical results as well as the con-
vergence of the computational scheme [Ciarlet-1991]. In this type of application,
a surface mesh is conceived, in principle, as the description of the boundary of a
computational domain in three dimensions (cf. Chapters 5 to 7). Actually, to be
useful, these meshes must conform to certain criteria, related to the geometry of
the surfaces they represent (we expect an element size variation based on the local
curvature) or to the physical behavior of the problems studied (element density
greater in regions where the gradient of the solution varies). But, in the last case,
following a physical criterion does not mean excluding conformity to the geometric
properties of the surface.

Moreover, it is frequent that a given surface mesh is not satisfactory, either
because it corresponds to too coarse an approximation of the surface, or because
it contains too many elements to be exploitable. We focus here on the optimization
of such a mesh with respect to the geometry it represents, so as to obtain a mesh of
a geometric nature (for which the gap between the discretization and the geometry
of the surface is bounded by a given tolerance value) and such that the quality (in
shape and/or in size) of the triangles and/or the quadrilaterals is acceptable for
finite element calculations.

Surface mesh modification and optimization operators need to access certain
Information about the surface and its properties. This information serves, in par-
ticular, to position a point on the surface or to locate a point on the surface, given
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a point and a direction. If such a surface is known exactly (given an analytical def-
inition, for example) or indirectly (using queries to a geometric modeling system,
for example), this information is easily accessible. However, if the input is already
a mesh, the surface approached by the polyhedral representation is not known.
The given discretization will then be used to construct a geometric support (i.e.,
a mathematical representation) having adequate regularity and continuity proper-
ties. This support can then be queried to obtain the information about the surface
required by the optimization process.

Once the intrinsic properties of the surface are known (or at least estimated),
it is possible to construct the metric of the tangent plane (cf. Chapter 15). This
metric will be used to govern the mesh modification and mesh modification pro-
cedures. In particular, the edge lengths are calculated in this metric!.

*
*x K

In this chapter, we specify the criteria and the methods used to optimize surface
meshes. The first section introduces the shape and size quality measures adapted
to surface meshes. In the second section, we indicate how to retrieve, from the
given discretization, the intrinsic properties of the surface (radii of curvature,
normals, etc.) and thus to construct the metric associated with the tangent planes
that will be used to govern optimization algorithms. The third section deals with
the problem of constructing a geometric support when the input is a mesh. Mesh
optimization operators and algorithms are introduced respectively in the fourth
and fifth sections. Finally, several examples of optimized surface meshes are given
in the sixth section. Examples of simplified meshes are also proposed to illustrate
a particular application of the optimization, the surface mesh simplification.

19.1 Quality measures

In this section, we deal with how to evaluate the quality of surface meshes. This
information will be useful during a global surface mesh optimization procedure.
We mainly examine the case of meshes composed exclusively of triangles, giving
some indications nonetheless about quadrilateral meshes.

19.1.1 Surface mesh quality (classical case)

Recall that (cf. Chapter 18) the shape ratio of a triangle K is defined by the
relation :
QK — ahmax — ahmapr ‘
PK Sk
where hp,q, is the diameter of K, pg is the in-radius, px is the half-perimeter and
Sk 1s the area of K. The coefficient « is chosen in such a way that the quality of
an equilateral triangle is equal to one.

(19.1)

!Which may also be combined with a “physical” metric which is, for instance, representative
of the behavior of a solution during a numerical computation.
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This formula indicates the degradation of an element K as compared with the
equilateral triangle. In practice, we use the inverse value of Qk, to avoid numerical
problems.

Remark 19.1 Notice that this quality measure makes it possible to appreciate a
triangle with no other metric consideration but the geometry.

This element quality measure allows us to define a more global quality measure,
for a whole set of triangles. Hence, the quality of the ball B(P) of a point P is
given by :

Qp(p) = KB Ok . (19.2)

By extension, the quality of a surface mesh 7 is defined by the relation :
Qr = gl&)_( Ok . (19.3)

We can, similarly, define an average quality value for a mesh, using the relation :
- 1 ne
or = E;Q,{,, (19.4)
1=
where ne denotes the number of mesh elements.

19.1.2  Surface mesh quality (general case)

If size specifications are given or if a metric map is provided, the previous approach
is slightly modified. One now has to decide whether or not the current mesh
conforms to these specifications.

Efﬁciency index. Let [4p be the length of an edge AB in the metric specified.
The efficiency index allows us to estimate the average deviation of the lengths as
compared to 1 (the reference value). More precisely, this index is defined as :

1 na
=1-— —e)?
T — ;(1 e)?, (19.5)
where na denotes the number of mesh edges and ¢; = [; if [; < 1, ¢; = 1/1; if

li>1.

This measure enables a rapid estimation of the conformity of a mesh with
respect to a given (isotropic or anisotropic) size map. In practice, a value > 091
indicates that the mesh respects the specification well. The reader can refer to
Table 18.1 (Chapter 18) to appreciate the sensitivity of the index in the isotropic
case.
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Quality of a triangle (in two dimensions). If the metric map is isotropic,
we retrieve naturally Relation (19.1). When the metric map is anisotropic, the
quality of a triangle, in two dimensions, is then defined by the relation :

Qg = llga(xs Qj',{ , (19.6)

where Q% represents the quality of triangle K measured in the Euclidean space
related to vertex P; of K. If (Mi)1<i<3 is the metric specified at the vertices P;
of K, we can also write (see the proof in Chapter 18) :

max \/tPijM,'Pij Z \/tPijMim
; 1Sj<kss 1<j<k<3
Qi =« Ll - : (19.7)
|\/D€i(M,‘)lDet(P1P2,P1P3)

where o 1s a coefficient of normalization.

This quality measure, defined in the plane (i.e., in two dimensions), can be
extended to surface triangles. The metric M; at a vertex P; is then defined in
the tangent plane II(P;) associated with this vertex and the expression of QY is
modified accordingly [Frey,Borouchaki-1999].

Quality of a surface triangle. Let us consider the vertex P of triangle K. Let
7ig be the unit normal to the plane of triangle K and let 7(P) be the unit normal
to the surface (at the tangent plane II(P)) at P. We note by 6 the angle between
the vectors fix and 7i(P) and we denote K the image of triangle K by a rotation
of angle § around the axis defined by the vector 7ig A 7(P) (cf. Figure 19.1).

By construction, the triangle K belongs to the tangent plane II(P). Its quality
Qk can then be measured with respect to the metric M(P) defined in the tangent
plane II(P) at vertex P, using Relation (19.7). This comes down to defining the
quality Qg of a surface triangle as :

Qg = g}gl)‘g QE . (19.8)

By extension, the quality Q7 of a surface mesh 7" and its average quality Q1
are defined, as in the classical case, by the following relations :

—_ 1

Quality of a surface quadrilateral. We have seen (Chapter 18) that in two
dimensions, the shape quality Qk of a quadrilateral K can be evaluated, in the
isotropic case, using Formula (18.10) :

(19.10)
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Figure 19.1: Evaluation of the quality. of a surface triangle in the tangent plane
II(P) associated with the vertex P. The metric M3(P) represents the metric of
the tangent plane at P.

where « is a normalization factor(e = \/Ti), Smin is the minimum among the four

4
surfaces that can be associated with K, by = /3 h? with h; the length of edge i

i=1
of K and hjay the largest length among the four edges and the two diagonals.
In the general case (when a metric map has been supplied), an optimal quadri-

lateral is a quadrilateral having unit length edges and diagonals of lengths /2.

We can also use the notion of roughness of a quadrilateral. To this end, we
consider the two diagonals (AC and BD) of the quadrilateral ABCD and we
measure the two dihedral angles so defined. Then, the regularity of ABCD is
defined as :

Papep = amin (Pac,Ppp), (19.11)

12,y

where

1+ (iaBc,flacp) and Pgp = 1+ (7aBD,iBCD)

Pac = 5 5 ,

represent the values of planarity of the edges present in the construction (see
below the geometric criteria). In these relations, fix denotes the unit normal to
the considered triangle K.

In practice, the measure of the regularity of a quadrilateral face will be used
to quantify the torsion of a tridimensional element.

19.1.3  Quality of the geometric approximation

The quality measures introduced in the previous paragraphs translate numerically
the deformation of a triangle and/or its conformity with respect to the size (metric)
map specified. However, these measures do not allow? us to evaluate the quality

20r only in a indirect way.
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of the geometric approximation (of the discretization), which is the way the mesh
reflects the geometry of the surface. In particular, it is important to make sure
that the gap between the elements and the surface is locally controlled. Recall
indeed that (Chapter 15) :

Definition 19.1 A geometric mesh (of type P!) within a given ¢ of a surface
surface X 1s a piecewise linear discretization of this surface for which the relative
gap to T is at any point of the order of ¢.

In other words, the problem is then to make sure that a given surface mesh
is a geometric mesh for a fixed relative gap €. To this end, we introduce several
measures to evaluate the quality of the geometric approximation of a surface.

Geometric criteria. Several rather simple geometric criteria (almost intuitive)
can be used to characterize a surface mesh. These measures are normalized (1.e.,
range between 0 and 1) according to the usual principle that a value close to 1
indicates that the element (and by extension, the mesh) under consideration is
satisfactory with respect to this criterion. These geometric criteria thus behave
like quality measures rather than like degradation (deformation) measures of the
mesh elements.

We will now specify several criteria such as planarity, deviation and roughness
of a surface. These criteria are local measures of the behavior of the surface in the
vicinity of a mesh vertex [Frey,Borouchaki-1998].

o Planarity

The geometric discontinuities of a surface are generally expressed by a rapid vari-
ation of the directions of the normals to the surface in the neighborhood of a point
(or between two adjacent triangles). The ridges and singularities are characteris-
tic examples of C° continuity. However, when the surface is supposed to be G!
continuous in the neighborhood of a point, a rapid variation of the normal to the
surface in this neighborhood is most likely an indication that the mesh density in
this area is not able to capture the local variations of the surface. To evaluate this
lack of density, we introduce the following definition :

Definition 19.2 The planarity Pp at point P is defined as the maximal angle
between the normal 7ip to the surface at P and the normals nip, at the vertices P;
of the ball of P, other than P :

Pp==(1+ min(fip, iip,)) . (19.12)

N —

According to this principle, we can define the planarity P4p of an edge AB as
follows :

1 - -
Pap = '2"(1 + <nK17nK2>) ’

where K; and K, are two triangles sharing the edge AB. Hence, the planarity of
an edge is the measure of the dihedral angle between two triangles characterizing
the geometric continuity of the surface along AB.
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Remark 19.2 When the planarity value Pp at P and the minimum of the pla-
narity values Ppp, at the edges PP; incident to P are slightly different, the point
P s a singular point.

e Roughness

Considering the set of edges PP; incident to a point P of the surface, we can
define, from the previous measure, the local roughness Sp of the surface at point
P as:

Sp = Ir]l)in'PPp' . (19.13)

The degree of roughness® of the surface in the neighborhood of point P thus
represents the minimal value of the planarity values over the set of edges incident
to P.

¢ Deviation

A variant of the planarity measure at point P consists in evaluating the deviation
of the mesh edges with respect to the geometry (i.e., the surface). In other words,
we attempt here to evaluate the maximal gap between the edges and the tangent
plane TI(P) at P. Thus, we suggest the following definition :

Definition 19.3 The deviation Dp at point P corresponds to the marimal angle
between the edges PP; incident to P and the tangent plane II(P), calculated as
follows :

Dp = 1~miin|<ﬁp,ﬁ,->] y (1914)

where U; represents the unit vector supported by the line PP; and 7ip is the unit
normal vector to the surface at P.

Remark 19.3 From a practical point of view, the deviation criterion is less ac-
curate than the planarity. Indeed, consider a point P for which the three following
relations are satisfied :

<ﬁP,ﬁi>:01 (ﬁpiwa‘i>:0v (ﬁP)ﬁP,>:~1

At point P, the deviation of the edges with respect to the tangent plane is Judged to
be good, while the planarity criterion indicates that the surface is locally badly dis-
cretized in the neighborhood of P (Figure 19.2). Such a point P is then considered
as a singular point (for which the normal to the surface is not defined).

3Notice that the notion of roughness of a piecewise linear interpolation surface (or a Cartesian
surface) has been defined as the L2 norm squared of the gradient of the function f defining the
surface, integrated over the triangulation 7" [Rippa-199(] :

n ; ] 2 ) 2
=301 with 1, =F/ (32) + (&) aemv,

where K; denotes a triangle of 7 and n is the number of elements of T.
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Figure 19.2: Ezample for which the variation of the unit normals between two
neighboring vertices is better captured by the planarity measure than by the measure
of the local deviation at P.

Notice that these criteria do not involve the map of the geometric metrics which
may possibly be supplied. In other words, we consider here isotropic criteria. In
the anisotropic case, the surface mesh is geometric if it complies with a geometric
metric map, for which the edge lengths are locally proportional to the principal
radii of curvature. To verify that a mesh complies with such a map, we introduce
the following criterion.

Size quality. Suppose given a (geometric) metric map M, the size quality L4p
of a mesh edge AB is defined by the relation :

lap if <1
Las={ 1 (19.15)
laB

where [4p represents the length of edge AB in the metric M specified (Chap-
ter 10). That is, if edge AB is parameterized by ¢t € [0,1] :

lap :/\/tﬂa’M(AHE’) ABdt, (19.16)

and, when the metric is position independent :

lap = \/‘AgMAg.

By extension, the size quality can be defined at a vertex P, depending on the edge
PP; incident to P, in the following manner :

;Cp = n})in EPP,’ . (1917)
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Combined criterion. The previous criteria can be combined into a single weighted
criterion Cp defined at a vertex P, for example in the following way :

Cp = PR D& §%° £ (19.18)

where the coefficients a; are such that :

Remark 19.4 The context of the application makes it possible to specify the values
of these coefficients, depending on their desired relative weights.

A global measure and an average measure at the mesh level can also be defined
as .

: ~ 1
Cr=minCp et cT:;pZ Cp, (19.19)

where np is the number of vertices in the mesh 7.

We now have a set of criteria allowing us to analyze whether a given mesh is
a geometric mesh or not. We will see later that these criteria can also be used to
control the mesh modification and mesh optimization operators.

19.1.4 Optimal surface mesh

We have already mentioned that, given Qg a quality measure for an element K
of a mesh T, the global mesh quality is defined as :

= O .
Qr max Qx
The notion of an optimal mesh theoretically refers to a set of meshes. As for
planar or volumic meshes, we could say that the optimal surface mesh is that for
which the measure considered is optimal. Formally speaking, the optimal surface
mesh is that which, simultaneously :

* optimizes the geometric criterion (or the quality function) considered,
¢ minimizes the number of elements (vertices).

In practice, we are trying to comply as well as possible with the various ge-
ometric criteria, the quality measures and the need to minimize the number of
elements. As in two dimensions, a surface mesh composed exclusively of triangles
must have edge lengths close to 1. Here we again encounter the notion of unit
mesh (Chapter 18) :

Definition 19.4 A unit mesh is a mesh in which the elements edges are of unit
length. ‘

Given this definition, we can say that :
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Definition 19.5 A surface mesh composed exclusively of triangles is optimal if it
is a unit mesh with respect to the geometric metric map (i.e., proportional to the
principal radii of curvature).

A good way of evaluating the optimality of a surface mesh consists in using
the efficiency index previously introduced.

Remark 19.5 For quadrilaterals, we try to have unit edge lengths and diagonals
of length V2.

19.2 Discrete evaluation of surface properties

In the previous section, we have seen that the geometric criteria and the other
quality measures involve quantities such as face normals or normals to the surface
at mesh vertices. Moreover, we know that a geometric mesh is unit mesh according
to the geometric metric map (i.e., the map proportional to the principal radii of
curvature). If the mesh is the unique data of the problem, the intrinsic properties
of the surface (normals, tangent planes, radii of curvature, etc.) are not known
explicitly.

In this section, we first show how to find these properties in an approximate
(discrete) way. Then, we indicate how to establish the metric of the tangent plane.
Finally, several practical aspects (related to the data structure) are mentioned.

19.2.1 Intrinsic properties

Normal and tangent plane. The tangent plane II(P) at a regular point P of
the surface is defined from the unit normal at P. If the unit normal vector 7i(P) is
not known, it can be approached as the average (possibly weighted) values of the
normals 7ig, at the triangles incident to P (i.e., the triangles of the ball of P) :

S wifig,
K

= 2
I o] (19-20)

n(P)

In practice, the weights w; associated with the normals at the triangles can be
related to various (representative) quantities of the mesh, for example :

the surfaces S(K;) of the triangles,

L]

the inverse of the surfaces S(K;) of the triangles (to emphasize the smallest

elements),
o the angle a;(P) at P of each triangle K;,

The unit normal vector (P) at P serves to define the tangent plane. In fact,
the point P belongs to TI(P) and the vector 7i(P) is a vector orthogonal to TI(P)
(Chapter 11 and Figure 19.3).

SURFACE MESH OPTIMIZATION 627

Figure 19.3: Unit normal vector at P and associated tangent plane.

Remark 19.6 When the point P is a singular point, the tangent plane is not
defined. If P is along a ridge, we can define a normal on each side of the edge
To this end, we consider the two open balls at P (limited by the ridge) and wé
calculate a unit normal vector using Formula (19.20).

Remark 19.7 Recall that for parametric surfaces (Chapter 11), the tangent plane
1s directed by the two tangent vectors 7i(P) and T5(P) :

() = L) AT(P)
17 (P) A 7 (P)]

' We will now examine how to determine the curvatures and the principal direc-

tions of curvature at the vertices of a given mesh.

Principal curvatures (summary). At a point P, which is supposed regular,
of the mesh, the normal 77(P) is calculated using Formula (19.20). Let us consider
the ball B(P) of point P. The edges PP;, for each P; € B(P), are supposed traced
on the surface.

] Given a tangent vector 7(P) € II(P) to the surface at P, there exists a curve
I" traced on the surface admitting 7(P) as tangent. Let C'(P) be the curvature of
I"at P, we have seen that the normal curvature? kn(T(P)) of T at P is defined as
(Chapter 11) :

kn(T(P)) = C(P) cos «, (19.21)

where a is the angle between 7i(P) and V(P) : cos a = (F(P),i(P)), #(P) being
the unit normal vector to I at P (Figure 19.4). ’

To find the principal curvatures, we use Meusnier’s theorem. We know that
all curves traced on the surface and having the same tangent vector at P have the
same curvature £(P) = |x(7(P))| at P. We consider then a particular curve, the
Ilormal section (corresponding to the intersection of a plane defined by the ve(;tors
7(P) and 7(P)). For such a curve, the vectors 7i(P) and F(P) are collinear. Recall
indeed that if T' is the intersection of the surface ¥ by a normal section, the

#Notice that the sign of C(P) changes with the orientation of 7(P).
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Figure 19.4: A normal section at P and the curve T traced on the surface of vector
director T(P).

Meusnier’s circle of diameter k,, is the geometric locus of the points P; endpoints
of the segments PP; such that ||1ﬁi|| = C(P), the curvature of a curve whose
normal 7 forms an angle @ with the unit normal @ to £ at P.

By definition, an infinity of normal sections exist around P. Among these,
let us consider the two sections (orthogonal together) whose normal curvatures
are respectively minimal and maximal. These two curvatures are the principal
curvatures at P, denoted «;(P) and k2(P), and the directions associated are the
principal directions, of unit vectors 7i(P) and 7(P).

Thus, we propose a way of evaluating the mean curvature and the principal
curvatures at any vertex of a given mesh. More precisely, we will calculate the
minimal radius of curvature and the principal radii of curvature that will serve
later to define the geometric metric at any mesh vertex P.

Calculation of the minimal radius of curvature (isotropic case). Let T
be a surface mesh representing locally the geometry of the surface. Let us consider
then B(P) the ball of a vertex P (supposed regular). It seems natural to consider
an edge PP; of B(P) as the discretization of a curve T'; traced on the surface and
belonging to a normal section.

Let T'; be such a curve, of normal parameterization «;(s). Using a Taylor
expansion at order 2 of v;(s) at P = v;(so), we can write :

¥i(s0 + As) = vi(s0) + AsT(so) + As? 7(s0) + O(As®), (19.22)

1
2pi(so)

where As represents a small increment of s. The osculating circle C;(P) to v; at
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P is the circle of radius pi(so) and its center O; is given by :
Oi = P + pi(s0) #(s0) .

Consider then the point P; defined by :

1
P = P+ As7(so) + As? —— (s ,
z ) 2 pi(s0) (s0)
that is the point of the parabola whose tangent is 7(sg) and which is at a distance

As from v(s0). This point is thus very close to the osculating circle of the curve
(Chapter 14). This allows us to write (Figure 19.5, left-hand side) :

(PR 3PP = pisten)) =,

considering a circle of radius p} passing through P and P;.

According to the previous remark (relative to the proximity of P; to the oscu-
lating circle), we can then approach pi(so) by p} (for a sufficiently small value of
As, refer to the discussion in Chapter 11). The circle of radius p? is called the
approzimate osculating circle and we deduce the value of the radius of curvature :

(PP, PP)

pi (s0) = 2(7(50), BE) (19.23)
f i(P) I(P)
7(P)

Pl

P
J 5(P)

Fig‘u're 19.5: Approzimation of the osculating circle at point P (left-hand side).
Trivial determination of the principal radii of curvature and the principal directions
of curvature (right-hand side).

.In other words, when the point of abscissis (so + As) is approached by the
point P;, the approximate radius of curvature p; is a good (accurate) approxima-
tion of the radius of curvature at P.
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This result now makes it possible to define the minimal radius of curvature
p(P) at P by the relation :
= minp} . 19.24
p(P) = min p] (19.24)
This value will allow us to define the isotropic metric (i.e., the size here) at any
vertex P of the mesh (see below).

Calculation of the principal radii of curvature (“naive” approach). The
calculation of the minimal radius of curvature at a regular mesh vertex P using
the previous approach can be slightly modified, so as to find the principal radii of
curvature at P.

In fact, reconsider the previous reasoning about the edges PP; incident to P.
It is easy to find the edge PPy corresponding to the minimal radius of curvature,
p1(P). Hence, the unit vector 7, (P) supported by the edge P P; gives the direction
of maximal curvature. To determine the maximal radius p,(P), we proceed as
follows (Figure 19.5, right-hand side) :

e calculate the line D orthogonal to 7 (P),
e position then (in distance) the points P; of B(P) (the ball of P) on D,

o identify the point P, (on D) such that P_P]) is maximal,

—
e we have 75(P) = —g—%— the unit vector indicating the direction of minimal
£ Pall

curvature.

Remark 19.8 An alternative consists in considering the mazimal radius of cur-
vature first and then in applying the above procedure to find the minimal radius of
curvature.

Remark 19.9 This calculation, although very simple in principle, leads in prac-
tice to some problems. The fact of fizing one of the directions to find the other
makes this procedure strongly dependent on the given mesh. If the given mesh is,
for example, a triangulation obtained by refinement of a reqular grid, the directions
of curvature can be “shifted” as compared to the true directions (Figure 19.6).

For this reason, we now indicate a more accurate approach to calculating the
principal directions of curvature.

Calculation of the principal radii of curvature (approach 2). Various
approaches have been proposed. Let us mention, in particular, one based on a least
square approximation formula of Dupin’s indicatriz suggested, among others, .by
[Todd,McLeod-1986], [Chen,Schmitt-1992]. However, to be valid, this calculation
supposes that the vertices around the vertex P considered can be matched together
two by two.
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Figure 19.6: Particular case where the calculation of the principal directions of
curvature is distorted by the discretization.

Dupin’s indicatrix of the surface at P, which allows us to approximate locally the
surface by a paraboloid, corresponding to a Taylor expansion at the order 2 is defined by
the equation :

ke Ry =1, (19.25)
where z = \/pcosf and y = /psin 6 for a point M(z, y) of the tangent plane at P (in
polar coordinates, function of p and 6). This equation is that of a conic section, each
point M in the direction 8 is located at a distance v/p from P. If the point P is an
elliptical point, the Dupin’s indicatrix is an ellipse, if P is hyperbolic, the indicatrix is
formed by two branches of hyperbolas (Chapter 11).

Another possible approach consists in using a least square approximation of
the directions of the tangents and the normal curvatures to calculate the principal
directions and curvatures. To this end, we calculate for each edge PP; incident
to P a normal curvature, based on the technique previously described. We thus
obtain on B(P) a set of directions (tangents) and of normal curvatures. The
normal curvature £,(P) can be expressed in a quadratic form (Chapter 11). Let
[P, 71, 7] be an orthonormal basis of the tangent plane II(P), any vector 7 can be
written as a linear combination 7 = A7 + #75. Then, the normal curvature in the
direction 7 can be written as :

o kn(7h) kL2 A
@ =0 (5 ) () ). (19.26)
where k12 = k2!, As the matrix is symmetric, the vectors 7, and 7 can be chosen
S0 as to diagonalize the matrix : k12 = 2! = (.
Let us write the normal curvature as follows :

- K 0 T,
kn(T) = (12 1) D ( 01 ks > D ( 7': ) ,
where 7, and 7y denote the components of 7(P) in the basis and D corresponds

to the principal directions at P. We can express D according to only one of the
principal directions (the two vectors being orthogonal) :

D= T, T,y
TNy Tiz
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Repeating the same process for the m edges PP; incident to P, we finally
obtain a system of m linear equations [Moreton-1992] :

2 2 2
ui,  uiglly Uy Tek1 + T yKo Kn,0
.. QTl,leyy(K,l - :‘CQ) = . ’ (19'27)
2 2 2 2 K
Ume UmazlUmy  Umy Tioh2 + TiyK1 nm

where the unknowns are obviously the expressions depending on the principal
curvatures and directions. This system is of the form A X = B.

Remark 19.10 Notice however, that this system depends on the mesh (i.e., of the
number of edges incident to P). Hence, some of the equatz’o@s may be red'undam
(think in particular of the pairs of opposite edges). It is thus important to identify
and remove such equations.

Remark 19.11 Another particular case corresponds to the configuration wﬁere
only three edges are incident to P. The system s then fully determined (3 equations
and 3 unknowns).

To resolve such a system (usually over-determined), we proceed as follows.
Satisfying all the equations simultaneously is (in principle) not possible, hence we
look for the best possible compromise, for example in the sense of the leajst squares
(2.e., the sum of the squares of the distances between the left and the right mem-
bers is minimal). The general formula to approximate the least square solution
consists in obtaining a well determined system (n equations and n unknowns) by
multiplying by *A and by introducing X the approximate solution of X :

(fAA)X ='AB.

Once this system has been solved® (i.e., the values of X are known) and according
to the relation 77, 4+ 17, = 1, we then have the system of four equations with four
unknowns to solve :

) o
leyxm +1iyk2 = Zo
Iriemy(hn = k2) = 1 (19.28)
Tf’xlﬁig + Tiyk1 = I
2 2 _
et Tiy =1

The expressions of the principal curvatures are :
_ Ey+ 3+ /(23— 21)? + &2
- 2
(19.29)
and the components of the vector 7] corresponding to the first principal direction

are :
L e B . 1_1-:1—:23>’
n,x=\/§<m+l)“d“'y—\/2( K1 — K2

the unit vector 72 being orthogonal to 7.
®using a classical method of linear algebra (see for instance [Golub, VanLoan-1983]).

(T3 — £1)% + z3)
2

1+ 23—

and ko

K1 =

(19.30)

S e T
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Exercise 19.1 Retrieve the two ezpressions of the principal curvatures and direc-
tions from the Relations (19.28).

An extension of this approach consists in constraining each pair of opposite
edges incident to a vertex P to Join with a continuity of order G2. The pairs of
edges are G! continuous when they share the same tangent vectors. (G2 continu-
ity means that the curves defined by the pairs of opposite edges share the same
binormal vector [Shirman,Séquin-1991], [Moreton-1992).

Calculation of the principal curvatures (approach 3). Finally, to conclude
this discussion about the calculation of the principal curvatures and directions, we
present here a third approach (suggested by [Hamann-1993], among others).

The basic idea is to go back to a problem of parametric surface, for which
the calculation of the principal curvatures can be performed analytically (using
the fundamental forms, Chapter 11). To this end, we start by searching for an
interpolation surface passing through P and approaching at best the endpoints of
the edges PP; incident to P. More precisely, this scheme consists in :

o finding the ball B(P) of P,

e calculating the projections of the P; € B(P),p; # P on the tangent plane
II(P) at P,

e considering the projections as abscissas and the distances HP_?ﬂH as ordinates
in a local frame in I1(P)

b

e constructing a polynomial of approximation (a quadric, for example) for
these points in the local frame,

e calculating the principal curvatures according to this polynomial.

Remark 19.12 Notice that with this approach, we also find a (over-determined)
system of linear equations (depending on the number of incident edges).

Let o(u,v) be the polynomial of approximation, the surface of approximation
is then defined as the set of points (u,v,0(u,v)) € R3. The principal curvatures
k1 and K3 of the polynomial :

1
o(u,v) = E(cz’ou2 + 2¢1,1uv + ¢ 20?)
at pont (0,0, ¢(0,0)) are given by the roots of the equation :

K2 — (Cg’o + C()'Q)K/ + €2,0C0,2 — Cil =0. (1931)
Remark 19.13 Variants of this approach consist in using cubical splines as ap-
prozimation functions [Wang, Liang-1989] or Beta-splines [Tanaka et al. 1990,
for example, or even more simply in considering the circles circumscribed to the
triangles (P P; P;) [Chen,Schmitt-]Qg.?].
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19.2.2 Metric of the tangent plane

Once the principal curvatures and directions have been calculated using one of
the methods described previously, the metric M3 of the tangent plane can be
constructed at each vertex P of the given mesh. We have already seen that the
control of the gap between an edge and the surface for a given value ¢ fixed can
be obtained via the metric M3, the so-called geometric metric (Chapter 15).

As we consider edges as curves traced on the surface, this leads to the matrix
M (P), which is the trace of the matrix M3(P) on the tangent plane I1(P) at P :

My(P) = Ms(P)NIL(P).

In other words, at any point P, the metric Mj(P) is the metric induced by M3(P)
on the tangent plane IT(P) to the surface at P (Chapter 10).

Remark 19.14 The metric My is only defined in the tangent planes associated
with the vertices.

It is obvious that the choice of the metric induces the nature of the mesh to
obtain. In principle, we are looking for a metric having the general form :

ap bp cp
Ms(P) = bp dp cep . (1932)
cp ep fp

Hence, we consider the following geometric metrics (i.e., in the tangent plane) :

e (anisotropic) metric of the principal curvatures (or metric of the principal
radii of curvature) :

B
GoPhrass =PIV gpy) [P(O) (1989
-

where D(P) is a matrix corresponding to the principal directions 7 and 7
at P, where a. (resp. f.) is a coefficient allowing an anisotropic (relative)
control of the gap ¢ to the geometry (Chapter 13), that takes into account
the principal directions and curvatures;

e (isotropic) metric of the minimal radius of curvature :

! 0
G(P), = | P , (19.34)
)

where p is the minimal radius of curvature and the variable h(P) = ap(P)
depends on the position and « is an adequate coefficient, related to the geo-
metric approximation (i.e., to the gap between the edges of the discretization
and the surface);
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¢ anisotropic (resp. isotropic) physico-geometric metric. Here we consider the
metric Go(P)x, x, (resp. Ga(P),) intersected by an arbitrary field of metrics
(for example, supplied after a calculation).

Exercise 19.2 Retrieve and Justify the value of the coefficients o and B used in
Relation (19.33).

In practice, we could also consider the isotropic map M3(P) of the intrinsic
sizes.

Definition 19.6 The intrinsic size at any verter P € T corresponds.to an average
value (possibly wewghted) of the Euclidean lengths of the edges PP; incident to P.

The average value corresponds to the solution of a minimization problem (between
the desired size and the edge length). Actually, the problem is to find h(P) for
any vertex P so as to minimize the function :

H(P)=Y (h(P) - |PP)?,

P,

where the P;’s denote the points of the ball of P but P.

Remark 19.15 When the size h(P) is, at any point P, smaller than or equal to
p(P), the metric M3(P) so defined is a geomelric metric.

Once these metrics have been defined, the problem arises of evaluating the edge
lengths with respect to the geometric metric.

Calculation of the edge lengths in M. At a given point P, the length of
an edge P P; can be approximated using Formula (19.16) by considering the point
P* = PP N M;(P) where P? is the projection of point P; in the tangent plane
II(P) (Figure 19.7).

/

M2(Ii) N P,
T j/ I ,,_'——\!
/ / N
/ ‘\ P/,/ pr I(P). p?

—

Figure 19.7: Calculation of the length of edge PP; in the metric M (P) associated
with the tangent plane II(P) at P.

From these results, we now have a theoretical framework to evaluate the con-
formity of the mesh with respect to a given metric Ma.
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Mesh conformity. We aim to decide whether a given mesh conforms to a geo-
metric metric specification G3 defined at any mesh vertex.

Definition 19.7 A mesh T conforms to a given metric map M3 (or more pre-
cisely to its restriction My in the tangent planes) if and only if :

VABEeT. (19.35)

LSZABSﬂy

V2

When the metric map My considered is the map Gk, K2 (resp. Gp), the mesh is
an anisotropic (resp. isotropic) geometric mesh. Such a mesh is called a G-mesh.

Remark 19.16 When the metric map G, is isotropic, the following assertions are
equivalent :

T conforms to Go <= T conforms to Gs.

Combination of metrics. When a metric map other than that corresponding
to the geometric metrics (intrinsic map) is supplied, it is interesting to combine
these two maps. To this end, we consider the metric map corresponding to the
intersection of metrics Ha(P) = Go(P) N M3(P) in the tangent planes associated
with the mesh vertices (Chapter 10).

Remark 19.17 By definition, the map H, is a geometric map.

19.2.3 Computational aspects

We will close this section by noticing briefly several practical aspects related to
the evaluation of the intrinsic properties of surface meshes.

Data structure. The approaches described above involve the ball of a mesh
vertex P. It is thus important to use an efficient internal data structure that
allows us to retrieve the elements of the ball of a vertex easily.

For a triangular surface mesh, it is convenient to use a topological data struc-
ture such as those introduced in Chapter 2. The triangles are considered as ori-
ented triples® to which are associated (at most) three edge neighbors. We could
also use a richer representation, using a connection matrix for each triangle.

The case of mixed meshes (composed of triangles and/or quadrilaterals) re-
quires more care in the definition and the management of the data structure.

Identification of singular points. For meshes representing real su?faces (.1..6,,
the boundaries of a real domain), we need to carefully identify the sm.gul'arltles
(corners, ridges, etc.) of the model. If the points of C! or .Gl dlscqntlnulty are
not explicitly provided (for instance supplied by a geometric mod.el}ng syste.m),
we must carry out a pre-processing stage on the data to extract this information.

8This is not a restriction, the surfaces concerned being supposed orientable.
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Hence, for example, a ridge” could be identified as a mesh edge such that the
dihedral angle between the adjacent faces along the edge is larger than a given
threshold. A corneris a mesh vertex where three (or more) ridges are incident or
a vertex such that two incident ridges form a very acute angle.

In addition to the singular points, a certain number of entities (points, edges,
faces) can be imposed, the required or constrained entities. These entities must be
present in the resulting mesh (refer to [George,Borouchaki-1997] for a description
of a data structure allowing this type of entity to be specified).

19.3 Constructing a geometric support

When the sole data available is a surface mesh, the construction of a geometric
support makes it possible to define, internally to the procedure, a geometry. The
latter is actually a mathematical representation of a surface, the given discretiza-
tion being then supposed to be an approximation (at the second order) of it. This
support must, at least, interpolate the vertices and the normals at the mesh ver-
tices®, so as to satisfy the conditions of continuity of order G!, except at the points
of discontinuity (which are supposed explicitly known).

The problem is then to construct (to invent, so to speak) a surface composed
of order G, from the given surface mesh, each triangle serving to define a patch.
To this end, two adjacent patches must necessarily have the same tangent plane
along their common edge, if the latter is not a singularity of the surface (i.e., is
not a ridge).

19.3.1 Classical approaches

Several approaches have been proposed to construct a geometric support globally
of class G! from a piecewise triangular representation of a surface. In principle, in
all these approaches, each triangle serves as support of a patch (cf. Chapter 13).

The methods suggested by [Farin-1986] and [Piper-1987] seem well-suited to
dealing with the problem of defining a geometric support. They consist in sub-
dividing each triangle into three triangles and in defining on each newly created
triangle a polynomial patch of degree 4 (quartic), such that the continuity of the
transverse tangent planes along each boundary edge is ensured, on the one hand
between the new triangles resulting from the subdivision of the original triangle
and, on the other hand, between the couples of new triangles issued from the
subdivision of two adjacent triangles.

This technique, however, requires rather large memory resources. Actually,
after subdivision, 28 control points (9 of them common to the adjacent triangles)
are associated with each initial mesh triangle. Moreover, each triangle leads to
the definition of three patches. The definition of these patches greatly depends on
the shape quality of the triangle support (thus, if the latter is badly shaped, for

7Also called crest line.

8 A priori, as the initial mesh is a sufficiently accurate geometric approximation of the surface,
this geometric support “emulates” reasonably the rale of the oo ogoe oo OO BACH
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Figure 19.8: Walton’s patch of order G' associated with a surface triangle.

example too stretched, the current method presents some instability in the patch
definition).

19.3.2 Modified approach, Walton’s patch

More recently, the method proposed by Walton and Meek [Walton,Meek-1996],
presents the advantage, on the one hand, of explicitly taking into ac?ount the
geometric specifications (notably the normals to the surface at the vertices) and,
on the other hand, of being relatively simple in its formulation and less memory
consuming than the previous approaches.

Basically, this method consists in defining a network of boundary curves for
the patches, as well as the related transverse tangent planes, independer}tly of one
another, using an interpolation of the normals to the surface at the vertices. Each
patch is then defined independently, from its boundary, by taking the specn‘ic-‘a;—
tions related to its boundary (the tangent planes) into account using Gregory’s
approach [Gregory-1974] (Chapter 13).

The specificity of this method lies in the definition of the network of curves
from the sole data of the normals at the vertices (each curve and the related
transverse tangent plane is completely defined from the normals at its endpoints).
Each boundary curve represents a cubic polynomial whose principal nqrmals (to
the curve) are coincident with the normals to the surface at the endpoints. The
transverse tangent planes (to the boundary curves) are generated from the tangel}t
vectors at any point along these curves and from vectors resulting from a qgadrlc
interpolation of the binormals at the endpoints. Hence, the sole specification of
the normals at the two endpoints of an edge is sufficient to define a boundary
curve of a patch (based on the endpoints) as well as the transverse tangent plane
to the surface along the curve. Finally, from the transverse tangent plangs of any
triangle, a Gregory patch is generated using a classical approach. Each triangle is

thus associated with a patch defined analytically using a rational function in the .

interior and a quartic along its boundary. This method requires, for each triangle,
only 9 control points common to the adjacent triangles.
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Remark 19.18 The scheme suggested by Walton-Meek can be extended to the
case of C° discontinuities present in “realistic” geometries (ridges, corners, etc.)

19.3.3 Constructing the geometric support

Here we briefly recall the construction principle for a surface composed of patches
globally of class G' from an initial (geometric) surface mesh.
The construction scheme comprises the following stages :

* associate with each mesh edge AB a curved segment of degree 3 passing
through A and B, while making sure that the principal normals in A and B
are collinear to the unit normals to the surface in A and B,

¢ define the tangent plane generated by the vectors tangent to the curve and
to the binormal and associated with the boundary curve,

e raise the degree of the boundary curves so as to construct a polynomial
surface of degree 4 (Gregory) over each triangle.

The thus defined surface is of order G!. This is related to the unique (unam-
biguous) definition of the tangents (from the normals to the edges), so as to ensure
the desired transition between the patches.

Remark 19.19 For domains presenting C° discontinuities, the geometric sup-
port is constructed as previously, except at the entities of discontinuity where the
tangents are defined in order to obtain a C° continuous surface.

19.3.4 Using the geometric support

As mentioned previously and to conclude on this topic, let us recall that the
geometric support is used to answer the following queries :

e given a point and a direction, find the closest surface point,
e return the normal and the minimal radius of curvature at a surface point.

"This support thus represents an analytical definition of the surface comparable
to that generated by a modeling system (C.AD.). This support enables us to
know the position of the closest surface point from a given point and a specified
direction. A second essential requisite concerns the geometric specifications of
the surface in the vicinity of these points, a fundamental requirement for any
local topological mesh modification (see below). This query provides two types of
information, depending on the surface characteristics in the neighborhood of the
point considered.

If the point presents (at least) a continuity of order (2 (in practice, a continuity
of order G', a tangent plane continuity, is sufficient), the normal to the surface and
the minimal of the principal radii of curvature at this point is the sole information
required. If the point presents a discontinuity of the tangent planes (the case
of points located on a ridge), the two normals to the surface as well as the two
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minimals of the principal radii of curvature on both sides of the ridge and the
tangent to this edge at this point are supplied. This information is returned by
the modeling system together with the location of the point considered.

19.4 Optimization operators

As we have seen in Chapter 18, numerous specific tools have been developed for
mesh optimization. Similarly, for surface meshes, these operators can be classified
into two categories, either of topological or geometric nature. The first ones pre-
serve the mesh connectivity but modify the positions of the mesh vertices and are
thus, in some way, related to the geometry of the mesh (a point should be located
on the surface). The main operation is the node relation. The second type affect
the mesh topology, that is the mesh connectivity (i.e., the connections between
vertices, cf. Chapter 1) and are thus related to the geometry in a different way {for
instance, an edge flip must preserve the quality of the geometric approximation).
Among these operators, we can mention the edge swap, the entity (vertex or edge)
deletion, for example.

In the following sections, we will describe these operators in detail, in a par-
sicular case of surface meshes.

19.4.1 Geometric optimization

The basic principle of a geometric optimization operator consists in moving the
vertices (by modifying their coordinates) while making sure that these vertices
remain (to a certain extent that will be specified later) on the surface.

Node relocation algorithms are usually based on the local notion of vertex ball
(the union of all elements sharing a vertex P). The ball of a vertex can be closed,
for an internal vertex, or open, for a boundary vertex. For the sake of convenience,
we will only study here the case of closed balls.

Node relocation. A trivial node relocation process consists in moving the ver-
tex P under consideration to the barycenter of the positions of the n vertices P;
of the ball of P. This can be formally written (Chapter 18) :

1 n
p=t Z P (19.36)

Notice however that after this modification, the new position of the vertex P is
no longer on the surface. Hence, the geometric support must be used to move the
point back to the surface, that is to modify its coordinates again . A variation
consists in weighting the previous barycentrage, Relation (18.20).

As for two and three dimensional meshes, a more efficient technique consists

in introducing a relaxation. The role of the relaxation is to avoid moving the
point too far from its original position, which is considered correct (geometrically
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speaking) during the iterations. Hence, we consider the point P* defined as the P

in Relation (19.36) :
* 1 .
Pt==-3"F,
i=1

and the relaxation, of parameter w, then consists in calculating (as in Chapter 18)
the new position of the point P as :

P=(1-w)P+wP*. (19.37)

In practice, we can choose a sub-relaxation, for example by taking a value w = 0.5,

Smoc.)thing techniques. As for two and three dimensional meshes, smoothing
techmques can be applied to surface meshes. We indicate here two particular
techniques, based on element quality or edge lengths.

¢ Smoothing based on the quality.

In this approach, we consider the ball of a given vertex P. With each external
edge f; of the ball (i.e., each edge not connected to P) is associated an ideal point
P; such that the element formed by fi and P} has an optimal shape quality. The
smoothing process is then defined as :

2 Py
Pr= = (19.38)
>
1=1

where the coefficients a; can be chosen in several ways (cf. Chapter 18).

Remark 19.20 This method is also applicable in the case of anisotropic meshes,
provided the corresponding notion of quality is used.

* Smoothing based on edge lengths.

The idea consists this time in defining the position of the optimal points P of the
ball of P, so as to define internal edges of unit length. The unit length is related
to the size (or metric) map specified. Hence, we obtain a relation like -

PP
Pr=p 4+
; + (P ) (19.39)

where x4 (P;, P) represents the length of edge P;P in the metric M associated
with P;P.

Notice that in practice, regardless of the approach taken, we want to move
the point P in the associated tangent plane II(P). To this end, we consider the
projections f! of the external edges f; of the ball in the tangent plane II(P) and
we look for the position of the associated optimal point using any of the above
approaches.
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Constrained node relocation. Smoothing and node relocation techniques de-
scribed previously make it possible to find the position of an optimal point (in the
tangent plane associated with the point P to be moved). However, it is necessary
to validate this position before accepting the move. In particular, the point P* is
accepted if :

e the geometric approximation associated with the ball of the new point is
better than that related to the initial configuration. This can be expressed
as :

min(rig,, U(F;)) < min(ﬁK;, v(Pr)),

o the shape quality of the elements of the ball of P*, B(P*), is better than
that of B(P),

o the lengths of the internal edges of B(P*) conform to the specified metric :

.? SIP‘P, S \/§a

where 7ig; and 7(P;) denote respectively the normals to the triangles K; and to
the vertices P; of the ball of P.

For a given vertex P, the node relocation consists in redefining the elements
incident to this vertex. To this end, from each edge on the boundary of this
configuration, we define an optimal element, thus a point, that belongs to the
plane supporting the element of the configuration containing the edge. Then,
we determine the barycenter of all these points to get an ideal point. The node
relocation then consists in moving step by step the vertex toward the ideal point
(considering the projections on the surface) if the previous criteria are satisfied.

Figure 19.9: Node relocation for a surface mesh. Left-hand side, node relocation
for a G vertezr. Right-hand stde, node relocation when the vertexr is located in a
discontinuity of the surface (ridge).

Remark 19.21 If the point P considered is located on a ridge (C° discontinuity),

the relocation procedure is more tedious. Actually, we must consider open balls §

around P. In fact, the geometric constraints are slightly changed and the checks
must be performed in each open ball (Figure 19.9, right-hand side).
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Edge splitting. The subdivision of an edge PQ is an operation that consists in
inserting points along the edge, so as to split the edge into unit length segments in
the metric specified. We retrieve here the problem of splitting a segment, already
discussed in Chapter 14.

In practice, we replace this general procedure by a simpler one consisting in
inserting the midpoint M of the edge PQ in the current mesh. More precisely,
the midpoint of the edge is created (on the straight segment) and then mapped on
the surface using the geometric support. This process involves replacing the two
triangles sharing the initial edge by four new triangles sharing two by two the two
sub-segments created after the insertion of the midpoint (Figure 19.10).

Q

P

Figure 19.10: Edge splitting by adding a point on the surface. The two triangles
sharing the initial edge (left-hand side) are replaced by four triangles sharing the
two newly created sub-segments (right-hand side).

Specific geometric conditions must be satisfied for the subdivision to be ap-
plied :

e the geometric approximation of the new configuration must be better than
(or equal to) that of the initial configuration,

e the lengths of the edges AB of the newly created triangles must conform (or
at least be close to unit length) to the metric specified :

2
%——SlAB <V2,

e the shape quality of the final configuration must be improved (as compared
with that of the initial configuration).

Remark 19.22 Notice that, the edge splitting operation is usually combined with
edge swapping operations (see below), to form a more complez operator. In this
case, the last geometric constraint can be slightly relazed.

19.4.2 Topological optimization

We now examine the different operators that make it possible to modify a mesh
while preserving the vertex positions.
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Edge swapping. Edge swapping is a simple operation consisting in replacing
the edge common to two adjacent triangles by the alternate edge (i.e., the diagonal
linking the vertices not connected by the initial edge). In principle, this operation
is similar to edge swapping in two dimensions. However, we will see that additional
constraints are applied in the case of surface meshes.

In two dimensions, edge swapping is possible as soon as the polygon formed
by the union of the two triangles is convex. For surfaces, we will examine if the
configuration of the pair of alternative triangles (after swapping) is optimal (in a
sense that will be specified) with respect to the geometric approximation and to
the element shape quality compared with the original configuration.

Remark 19.23 Notice than an edge can be swapped if and only if it s not con-
strained (is not a ridge, for example).

For surfaces, verifying that the initial configuration is convex is only meaningful
if the two triangles are exactly in the same plane (which is a rather particular case).
However, according to the shape quality measures introduced previously, we can
express several conditions that must be checked and satisfied in order to apply the
edge swapping.

Q)

N(KY) Q) Ny

K} 7 B
/

K] ii(P)
\

Figure 19.11: Edge swapping on the surface, initial configuration (left-hand side)
and alternative configuration (right-hand side).

Let K1 = APQ and K = BQP be two adjacent triangles sharing the edge
PQ (Figure 19.11) and let K{ = APB and K} = BQA be the triangles of the
alternate configuration. We denote by N (Ki) the normal to the triangle K; and
by 7i(F;) the normal to the vertex P;. The edge PQ can be changed into the edge
AB if and only if :

o the (dihedral) angle between faces K of the alternative configuration does
not exceed the angle limit of a ridge (C° discontinuity). In other words, the
surface must not be “folded”’ locally,

e the geometric approximation (of the underlying surface) of the alternative
configuration is better than (or identical to) that of the initial configuration.

CERR R
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This can be expressed by the relation :
min(N (K;), i(P) < min(N (K}),i(P)), 1<i<3,1<j<32,

e the shape quality of the triangles of the alternative configuration is better
than that of the original configuration :

minQK;_ <minQg;, 1<j<2,

e the length l4p of the edge AB conforms to the specified metric :

%—5 <lap <V2,

o the edge AB does not already exist in the mesh®. We can use a hash table
(Chapter 2) to avoid this problem (Figure 19.12, left-hand side). A similar
case (Figure 19.12, right-hand side) can be detected using the geometric
criteria, the new face after swapping is almost coplanar with two (or more)
existing faces.

Here, the order of the checks is arbitrary. In practice, the user must choose an
order that favors, as much as possible, a quick reject (a condition not satisfied).

Figure 19.12: Particular cases where the edge swapping PQ is not possible : the
alternative edge AB already exists (left-hand side), the face ABQ and the faces
ASQ, BSQ are almost coplanar (right-hand side).

Edge deletion (vertex removal). This operator consists in retriangulating the
ball of the vertex P to be deleted. In two dimensions, this operation comes down
to triangulating a star-shaped polygon (with respect to the vertex P), without an
internal point. To this end, several methods have been proposed. We suggest here
a method that presents the advantage of being applicable to surface meshes. We
recall first the principle of the method in two dimensions.

The basic principle of the operation aims at reducing the degree (i.e., the
number of incident edges, Chapter 18) of the vertex to be deleted to the value
3 or 4 (in the degenerate case). The cavity can then be retriangulated trivially
(Figure 19.13).

The process involves applying to each edge incident to P an edge swapping, if
possible (if the orientation of the resulting triangles is preserved). Schematically,
the reduction algorithm can be written as follows :

9 A situation which is impossible with planar or volumic meshes.
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iii)

Figure 19.13: Edge deletion by vertex removal. Edge swappings are applied itera-
twvely (steps 1) to iv)) to reduce the degree of the vertex P to 8. The three triangles
sharing this verter can then be removed.

¢ apply edge swappings to each edge incident to P,
e iterate the process, if a modification has been carried out.

This process converges in principle toward a configuration of 3 or 4 edges incident
to the vertex to be deleted (the second configuration representing a quadrilateral
having two orthogonal diagonals).

The application of this algorithm to geometric surface meshes requires a mini-
mum of attention. In two dimensions, the edge swapping is applied if the triangles
of the alternative configuration are valid. For surfaces, the alternative configu-
ration must be validated by the conditions described in the previous paragraph.
We can however relax a little this constraint by requiring that each newly created
triangle of the cavity not enclosing the vertex to be removed (hence a triangle that
will be part of the final configuration) must be close to the surface. This is equiv-
alent to imposing that the gap (the angle) between the normal to the triangle and
the normals to the surface at the three vertices is bounded by a given tolerance
value. We can also impose a condition regarding the shape quality of the triangles
formed.

The deletion operator being defined, the convergence of the procedure is no
longer ensured. In practice, this means that if an intermediate configuration is
blocked, the deletion cannot be carried out and the initial situation must be re-
stored. This leads to extra (useless) work.
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For these reasons, we favor another edge deletion operator consisting in merging
the two edge endpoints into a single point.

Identification (merging) of the edge endpoints. Given an edge PQ, we try
to replace this edge by a single point. To this end, we consider two operators that
reduce the edge either into one of its endpoints (cf. Figure 19.14), or into a new
point (cf. Figure 19.15).

¢ Identification on one of the endpoints.

This operation can be seen as a specific re-writing (remeshing) of the ball of
the vertex merged. The final configuration being known, it can thus be validated
a priorti, based on the geometric constraints. This is indeed a specific remeshing
as all possible configurations are not analyzed systematically to retriangulate the
vertex ball (see Chapter 18).

Figure 19.14: Edge deletion by identifying its two endpoints (the vertex P is merged
with the vertez Q).

In practice, it is sufficient to substitute the vertex @ to the vertex P in all
triangles of the ball (without the two triangles sharing the edge PQ) then to
verify if the following conditions are satisfied :

e the shape quality of the new triangles is acceptable,

o the length lgp, of any edge of the triangles in the final configuration conforms
to the specified metric,

¢ the geometric approximation of the final configuration is controlled :
min(N(K;),4(P)) < 7,

for each triangle K; of vertices P;,i = 1,3. For an isotropic mesh, for
example, the value 7 represents the maximum gap allowed, 7 = cos 8, where
0 is such that a = 2sin 8, ap(P) being the size imposed locally by the metric
map at each point P (depending on the minimal radius of curvature p(P)),
cf. Chapter 15).
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Remark 19.24 We are not trying here to strictly improve the shape quality of
the initial ball. In practice, if Qp denotes the quality of the initial ball and Q the
quality of the new mesh, we want to have @ > 0.6Qp (the coefficient 0.6 is chosen
so that a configuration of siz equilateral triangles can be retriangulated into four
triangles).

o Edge reduction.

The reduction of an edge into a new vertex is an operation similar to the
previous one, although it is more costly. Actually, in this case, two balls must be
retriangulated (the ball of P and that of ). Moreover, the position of the new
vertex M must be supplied by the geometric support associated with the mesh.
The geometric and shape quality requirements are identical to those used in the
identification of the edge endpoints.

/

Figure 19.15: Edge deletion by reduction. The vertices P and @ are merged into
a new vertex M.

Relaxation of the degree of a point. Recall that the degree of a vertex is
the number of edges incident to this vertex. We have seen in Chapter 18 that in
two dimensions, 6 is the optimal value for the degree of a mesh vertex. This value
is also optimal for surface meshes.

The aim of the procedures for relaxing the degree of a point is to get rid of
the under-connected and over-connected vertices (vertices for which the degree is
respectively lesser than or greater than the target value). To this end, the process
consists in iteratively applying edge swappings in order to reach the target value.

In the following section, we describe several techniques used for surface mesh
optimization.

19.5 Optimization methods

The strategies carried out to optimize surface meshes are very close to those used
for classical meshes in two and three dimensions.

The initial values of the quality measures relative to the mesh or to a particular
set E' of triangles (for example, a vertex ball or a pair of adjacent triangles) of
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the initial mesh are calculated and serve to initialize the optimization procedure.
The same quantities are evaluated for each new configuration £’ corresponding to
a topological or geometric operation. The operator is applied if the optimization
criteria are satisfied. In particular, the modification is carried out if the resulting
configuration strictly improves the measure chosen (Qg: > Qg), or if the resulting
configuration improves the measures by a certain coefficient (Qp: > aQp).

Among the various possible configurations, the one leading to the best (resp.
first) optimization is picked. All these choices can also depend on the order in
which the mesh entities are considered. Hence, it is possible to process the ele-
ments :

* in a natural order (.., based on the increasing or decreasing indices),

e according to a specific relation of order (for example, sorted according to an
increasing order of the edge lengths),

e of a certain type exclusively (for example, all triangles of a connected com-
ponent, all boundary points, etc.),

¢ according to any other criterion, including a random order.

19.5.1

In the classical case, the surface mesh is optimized exclusively with respect to the
element shape quality. From the initial mesh, a geometric support G! continuous
1s constructed to represent the underlying surface. This support is used notably
to find the position of a point on the surface.

From the algorithmic point of view, the current mesh elements are iteratively
analyzed and those whose quality exceeds a certain tolerance are removed. The
deletion of badly-shaped elements is performed using the topological and geometric
mesh modification tools.

In principle, a heuristic procedure is used which consists in simulating the
application of an operator on the badly-shaped configuration and, based on the
simulated results, in carrying out an optimization procedure on the mesh. Notice
that it may sometimes be useful to degrade locally the mesh quality. Hence, for
example, it may be interesting to merge two closely spaced points (event if the
quality of the resulting configuration is worse than that of the initial one) before
applying edge swapping to improve the shape quality of the new configuration.

Shape optimization (classical case)

19.5.2 Size optimization (isotropic and anisotropic case)

When one (or several) metric map(s) is (are) supplied, the optimization problem
Is a little more tedious. We first try to get back to a one size map problem,
the geometric metric G3. Hence, the required metric intersections are carried out
(Chapter 10).

Remark 19.25 If the metric map supplied is not geometric, we calculate the met-
ric map Gz using one of the approaches described in this chapter.
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The problem boils down to evaluating and then modifying a given mesh 7T
according to a metric map Msj. In practice, we use the induced metric Mo,
in other words, we consider the trace M3(P) of M3(P) in the tangent plane

associated with each mesh vertex P.

The aim of size optimization for a surface mesh is to obtain a unit mesh with
respect to the metric map My. This approach is (obviously) based on the edge
lengths analysis. Hence, mesh optimization involves applying the following process
iteratively on the current mesh edges :

REPEAT
FOR ALL edges AB in T
calculation of lsp
IF lap < '\IE
deletion of AB

ELSE IF lap > V2
subdivide AB into n sub-segments (n depending of l4p)

END IF

END FOR

FOR ALL mesh vertices P
node smoothing, coupled with
local edge swappings

END FOR

WHILE the current mesh is modified.

Remark 19.26 The edges are, generally, processed in a random order. Thus, the
edge splitting or vertex deletion operators are carried out alternatively.

Remark 19.27 A patch of the geometric support is associated with each newly
created point so as to improve the further searching and localization procedures.

Remark 19.28 Finally, notice that it is more interesting (for practical consid-
erations) to subdivide an edge using its midpoint, rather than inserting n points
along this edge.

19.5.3 Optimal mesh

Let us simply recall here that we aim at getting an optimal surface mesh, that is
a mesh 7 such that :

1
— <lap<V2, VABEeT. (19.40)
\/5 XS tAB S

The above procedure (size optimization) aims at creating edges that satisfy this
criterion.

19.6 Application examples

To conclude this chapter about surface mesh optimization, we now provide several
examples of optimized isotropic surface meshes.
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19.6.1 Surface mesh optimization examples

Table 19.1 presents some information related to the surface meshes. For the sake
of clarity, we denote respectively by 7.2 the initial mesh, by 7. a geometric mesh
(with respect to the map of the minimal radius of curvature) and by 7;° a simpli-
fied geometric mesh. In this table, np and nt denote respectively the number of
vertices and triangles in the mesh, ¢ is the relative distance to the surface allowed
(in degrees, Chapter 15) and the quantities Py, Dr, Ry and Lt correspond re-
spectively to the average values of the geometric criteria of planarity, deviation,
roughness and edge sizes in the meshes. Finally, the value Q7 represents the shape
quality of the mesh (i.e., the quality of the worst element).

meshes np nt € Pr | Dr Rr | Cr Or
7?0 1,685 3,370 - 0.96 | 0.88 { 0.97 | 0.71 | 0.70
77 36,329 | 72,658 | 0.01 | 0.99 | 0.96 | 0.99 | 0.95 0.86
T° 3,823 7,646 | 0.03 | 0.98 | 0.87 [ 0.98 | 0.92 | 0.64
T2 67,106 | 134,212 - 080 ]0.57 075 0.72 1046
75 64,048 | 128,096 | 0.01 | 1.00 | 0.94 | 1.00 | 0.94 0.83
TS 11,814 | 23,628 | 0.02 | 0.98 | 0.88 | 0.99 | 0.96 0.84
79 43,575 | 87,150 - 0.98 1092 0981 0.56 | 0.25
77 77,291 | 154,582 | 0.02 | 0.98 | 0.87 | 0.99 | 0.95 0.84

5 17,240 | 34,480 | 0.05 | 0.97 | 0.85 | 0.98 | 0.95 0.83

Table 19.1: Statistics related to various surface meshes.

Figure 19.16 shows an example of initial surface mesh, i). From this mesh,
the edges separating the faces of C° continuity and the singular points have been
identified, i1). Two meshes have then be generated from these specifications, an
enriched and optimized mesh, iii) and a simplified mesh, iv). From the initial
mesh, a surface composed of patches globally of class G' has been constructed
thus defining the geometric support. This has been used to find the position of
the vertices in the enriched mesh, obtained by subdividing the initial mesh edges.
A simplified mesh has been extracted from the enriched mesh (see below).

19.6.2 Mesh simplification

A particular and interesting application of optimization concerns the geometric
simplification of surface meshes. When the surface meshes have a number of
elements that is too large to be used (for example, in numerical simulations or for
visualization purposes, see below), it is desirable to reduce the number of elements,
while preserving (to some extent) the geometric approximation of the surface. This
is the aim of mesh simplification!® algorithms.

10 Also called decimation, coarsening or reduction.
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Figure 19.16: Optimization of a surface mesh. i) initial surface mesh (data cour-
tesy of Mac Neal-Schwendler Corp.) i) identification of the ridges, G! disconti-
nuities and constrained entities, iii) enriched geometric mesh (metric correction
€ = 1.5, surface deviation 5 degrees) iv) simplified geometric mesh (surface devia-
tion 14 degrees, without metric correction).

Basic principle. In principle, mesh simplification is an operation of the same
nature as optimization, in that it involves the same operators. In practice, given
a (geometric) surface mesh supposed to comply with a given size map G,, the
simplification aims at creating an optimal surface mesh with respect to a modified
size map, corresponding to a greater surface approximation.

The first stage consists in calculating a geometric metric map G- from the map
G for a greater tolerance ¢ than the original one. Then, a classical optimization
procedure described previously is applied to obtain a simplified surface mesh.

The key to the method lies in respecting the following rules (see, for example,
[Frey,Borouchaki-1998]) :

e the control of the distance to the geometry, the simplified map is a geometric

map,

e the resulting mesh is optimal with respect to this modified map,

¢ the shape quality of the final mesh elements is controlled.

Remark 19.29 Notice however that a verter where the minimal radius of cur-
vature p is smaller than the threshold € (within a coefficient) can be simplified.

5

F
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<
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Figure 19.17: Left-hand side : original mesh reconstructed from scanned data
(Computer Science Department, Stanford University). Right-hand side : corre-
sponding tsotropic geometric mesh.
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Figure 19.18: Geometric simplifications of a surface mesh, corresponding to dif-
ferent deviations to the surface € = 0.03, € = 0.1 and € = 0.29. Notice that as we
move further from the object (as simulated here), the visual aspect remains very
close to the original one.
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This idea makes it possible to remove details that are judged useless (at the given
resolution) and, therefore, to construct simplified geometric meshes, within ¢.

Actually, given the previous remark, it is easy to note that mesh simplification
consists in working in a “strip” of a given width (obviously related to the specified
tolerance value). The modifications are applied when the edges concerned by the
operation remain in this strip.

Application to visualization. A “natural” application of mesh simplification
is related to the representation of scenes (graphic visualization). Based on the
distance and the point of view selected, it may be interesting to have various
surface meshes at variable resolutions. Figure 19.18 illustrates this idea of mesh
simplification adapted to graphic visualization.

Remark 19.30 Moreover, mesh simplification enables the compression of sur-
face meshes, which may be extremely useful, particularly for transmitting data
[Taubin, Rossignac-1998].

Chapter 20

A touch of finite elements

Introduction

Up to now we have discussed many aspects regarding mesh generation and mesh
modification and while our final objective for such meshing activities is to provide
meshes required for finite element simulations, we have not yet dealt with such
methods! directly.

However, in some parts of the book, we have faced some mesh generation
problems where more advanced knowledge about finite elements was necessary to
understand what needed to be done (see, for instance, the numbering issues related
to finite element nodes in Chapter 17). Also, in later chapters, we will discuss
h-methods, p-methods and hp-methods (in terms of meshing technologies) and
clearly, at that time, it will be necessary to know more about the corresponding
finite element requirements. Thus, this chapter on the finite element method
appears to be necessary before further meshing Investigations.

Nonetheless, library bookshelves are straining under the weight of literature on
finite element theory as well as practical manuals for finite element methods, and
it is clearly impossible for this book to compete with such a wealth of specialized
literature. Thus the point of view adopted here will be clearly motivated by the
following question : “ what must be known about finite elements in order to
successfully deal with a meshing problem ?”.

In what follows, the theoretical point of view is largely based on [Ciarlet-1991]
to which the reader is referred for a more advanced view of the problem together
with a comprehensive list of relevant references about finite element theory and
practice. The above reference also includes a long list of other papers and books
related to the theory and finite element applications in the engineering fields.

*
L O ¢

1Only some brief allusions to finite element theory were given in Chapter 1 for instance.
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Given this objective, the chapter is organized as follows. We consider a simple
problem to which the finite element method is applied so as to find an approximate
solution. The main aspects of the method are introduced. We start from the
continuous P.D.E. problem which models the problem under investigation. We
replace this problem by a discrete problem whose solution is approached by means
of a finite element method. The notion of a finite element is discussed, defined
as a geometrical element considered along with a set of degrees of freedom and a
set of basic functions. Several types of finite elements are given including curved
elements. Error estimate issues are briefly covered and related to the notions
introduced in Chapter 10.

In terms of practice, curved finite elements are analyzed. Then, explicit use of a
finite element approximation is discussed where we show how to compute a stiffness
matrix, a right hand side and the resulting discrete system. This will present an
opportunity to see how a finite element approximation can be implemented on a
computer. Finally, some examples of popular finite elements are given to illustrate
what types of interpolation, nodes and degrees of freedom can be encountered.

20.1 Introduction to a finite element style com-
putation

To introduce the terminology, notations, etc., which will be used, we consider a
very simple P.D.E. problem and we briefly mention the main steps of its finite
element approximation. Furthermore, P! and P2 examples of finite elements will
be illustrated. In specific, we will show how to compute the stiffness matrix and
the right-hand side of such elements for the P.D.E.’s used as an example.

Let us consider a simple academic example. Let © be a domain and T be its
boundary. We assume that Q is composed of two sub-domains, denoted as €,
and that T' includes three parts, denoted as I';. We want to solve the following
problem, find u, the solution to :

~div(k;Vu) = F, in®Q (i=12)

kig_Z‘f‘giU = fi onl; (:=1,2) (20.1)

u = 0 on I's

. Ja . L .
where V represents the gradient and 3 1s the derivative with respect to the
n

normal along T';.

This system of partial differential equations models a heat transfer problem?.
The physical conditions and the material coefficients to which the problem is sub-
Jected include the conductivity coefficient k; of domain Q;, the source term F; for
the sub-domain €;, the flux term f; for the boundary T';, the transfer coefficient gi
for the boundary T'; and, finally, the Dirichlet condition u = 0 which is prescribed
on ['s.

2Le., the initial problem is a heat transfer problem and physicists have proved that such a
P.D.E. system is an adequate model for it.
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Figure 20.1: The domain Q with its two sub-domains and the domain boundary T
with its three components.

In what follows, we will describe the method, without going into too great
a detail. The initial P.D.E. problem is then analyzed with a view to a finite
felement approximation. This analysis includes several steps. A weak formulation
1s established, then approximate solutions are constructed.

First, a better suited formulation, called the variational formulation, or weak
formulation, is derived from the above formulation by means of partial differential

equations (P.D.E.) (after a Green formula). This weak formulation can be written
as follows :

{ Find w &€V such that
a(u,v) = f(v), Vo € V, (20.2)

where V' is the space of admissible values. In this way, we meet the operator a
and the form f which are associated with the operators of Relationship (20.1).

In fact, using a Green formula, one sees that if u conforms to (20.1) and if v is
an appropriate differentiable function, we have successively :

> /(-—div(IQVu)—F,»)v =0,

2
i=1

Q;

2 ,

> /kiVqu—/F}v—/kiQﬁv =0

i=1 an ’

. Q I,

2
Z /kiVqu+/g,-uv—/Ev—/ﬂv =0.
=g, r, . I

This leads to a formulation equivalent to (20.1), this variational formulation then
serves as a stz.irtmg point for the finite element, approximation. We return to the
formulation given in (20.2) by introducing the following definitions :

9 ‘
a(u,v)zz (n/kiVqu+/g,-uv
i=1 .

;
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2
f(v):,; /Fiv+/fiv

i Ty

This continuous problem is then replaced by an approzimate problem. In prac-
tice, the explicit solution of the continuous problem is not generally possible. This
has led to the investigation of approximate solutions using, in our context, the
finite element method. Basically, this method consists of constructing a finite di-
mensional sub-space Vj, of space V and defining uy, an approximate solution of u,
the solution to the following problem :

{ aFlnd up € Vi, such that (20.3)

(un,vn) = f(vn), Vor € Vi

Under appropriate assumptions (see below), it can be shown that this problem
has a unique solution, u;, and that the convergence of uj to the solution, u, is
directly related to the manner in which the functions v, of space V;, approach the
functions v of space V' and therefore the manner in which the space V} is defined.

Hence, the finite element method consists of constructing a finite dimensional
space Vj such that, on the one hand, a suitable approximation is obtained and,
on the other hand, the actual computer implementation is not too difficult. This
construction is based on the three following basic ideas :

1. the creation of a mesh, denoted by 753 or simply 7, of domain 2 so that the
domain can be written as a finite union of elements K, the members of 7;

2. the definition of V), as the set of functions vs, whose restriction to each
element K in 7 is, in general, a polynomial;

3. the existence of a basis for the space V), whose functions have a small support.

In other words, constructing a mesh 7}, is an essential prerequisite when defin-
ing space V,. The functions in V, are usually polynomials over every element
in the mesh which are continuous over the neighboring elements (i.e., across the
element interfaces). The simplest case for triangular meshes (in two dimensions)
1s to choose piecewise linear functions which, after interpolation on the mesh node
values, make it possible to define the desired solution everywhere.

Remark 20.1 Index h in V), (and in T} ) is related to the fact that Vi, depends on
the mesh. This value h must be seen as a size parameter (the element diameter)
which, in fact, defines a family of meshes and, therefore, a family of approxi-
mations and which, to demonstrate the theoretical convergence and accuracy (the
approzimation order), tends towards 0.

3By convention, T;, denotes a triangulation of £ such that :

h = max hg
KeT, K

where h is the diameter of polyhedron K.
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The elements K in mesh 7, have a certain number of properties which are
characteristics in the finite element method (Chapter 1).

The choice of the basis function in Vj consists in taking functions whose re-
striction at every element K is written as :

N
un(e) = Zd’i(““"““’)’ (20.4)

where p; is the basis function i of the polynomial space previously defined (while
pi(x) is the value of this basis function at a location z in K) and ¢;(u) is the
value of the degree of freedom i associated with up while N denotes the number of
degrees of freedom and the number of pi’s as well, i.e., the dimension of the space
engendered by these p;’s. As will be seen in greater detail below, a finite element
is then characterized by a suitable choice of the following triple :

® I, a geometrical element;
¢ Pk, a finite dimensional space of functions defined over K;
* Xk, aset of degrees of freedom associated with the functions defined over K.

Hence, for all unknowns in the problem (here, the unique unknown, u, is a “tem-
pgratl{re”) we have dimPg = card(Sk) = N and a section below discusses this
triple in more detail, the basic support for defining the finite elements.

Provided with these choices, Problem (20.3) is then replaced by a matrix prob-
lem. In fact, if locally, in each K, we have -

N
up(z) = Z ¢i(u) pi(z),

globally we have a similar expression, i.e., :

M
un(e) = 3 63(w) 3z}
Jj=1

where M is now the total number of degrees of freedom when the mesh is considered
globally and when we have removed“the degrees of freedom of the nodes in Is,
?Vhl‘le ¢;(u) and pf(z), at index j, are indeed the values #i(u) and p;(z) for the
indices 7 of the corresponding elements K . Therefore, for (20.3), we have :

a(un, pj(2)) = f(p}(z)) for j = 1, M

and the problem is now :

Find Ui k=1, M such that
o(S Ukpi (), 55 () = (9} (x) (20.5)

) ‘.‘This is a formal point of view, in practice, some techniques are used that allow for the
Dirichlet boundary conditions with no specific numbering of the nodes as implicitly assumed
here.
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which can be written in a matrix form as follows :
AU =B

where A is the matrix with coefficient a; ; = a(p?(z), p;(z)) and B is the right-hand
side, whose component b; is b; = f(p}(z)). o .

Before discussing the element level, note that the basis function j, in the linear
case, 1s 1 at node j and 0 otherwise (the hat function). This property leads Fo
sparse matrices, in fact, we have a; ; = 0 for most pairs (4, j). For example, again
in the simplest case, the triangle of degree 1, we have a; ; = 0, unless the nodes ¢
and j belong to the same triangle K.

20.2 Definition and first examples of finite ele-
ments

Here, we return to the formal definition of a finite element, using the above triple.
Then, we give some examples of such triples.

20.2.1 Definition of a finite element

Now, we specify what the above triple means. As previously mentioned and again
after [Ciarlet-1991], a finite element is defined by the triple® :

[IﬁrypKyEK] .

In this triple K is the “geometric” element, i.e., a mesh f?leme.nt. Pk denotes the
space functions of the finite element. The basis functions in ‘thls space are referred
to as the shape functions of the finite element. Finally, Xk is the set of degrees of
freedom associated with K. ' . )

From a geometric point of view, and according to the space dimension, K may
be a triangle, a quadrilateral, a tet, a pentahedron , a hex, et.c. o

Space Pk is generally made of polynomials. This space with Fhe finite dlmfen—
sion N is built from N basis functions. Thus, if p; is a basis function, any function
pin Pk can be written (cf. Relation (20.4)) as :

N
p=) aip;,
i=1

where the a;s are some coefficients (in fact, the degrees of freedom). .
The set of degrees of freedom X g, the ¢;’s in Relation (20.4) or, .s1m?larly, thi
above «;’s may be some values of the function p, where p is a function in Pk, a

5In fact, K itself is often referred to as a finite element. This clearly correspc.mds. to a
simplification in the notations since, indeed, this is K combined with P and £ which is one
finite element.
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anode® in the element K. Such a node js denoted by a in the following. A finite
element with this type of node is said to be a Lagrange type element.

When the ¢;(p)’s include at least one value of a derivative of p, for example,
with evident notations, Dp, gg, gg, gﬁ, D?p, g—;%, etc., we face a Hermite type
finite element.

Following these definitions, one notes that Pk can be seen as a space of func-
tions (the p’s) or directly as a list of basis functions (the p; ’s), which is clearly two
ways of writing the same thing. Similarly, ©x can be defined as a set of degrees
of freedom, the ¢i(p)’s, and we reach a global node definition, or a set of nodes,
the a’s, with which one or several degree(s) of freedom is(are) associated. Based
on the context, one or the other of these definitions will be used.

The important fact is that the triple [K, P, X k] properly defines a finite ele-
ment if the set Yy is Py -unisolvent. This means that there exist N functions pis
in space P which are linearly independent. In particular, we have :

¢j(p:i) = &y

with d;; the Kronecker delta (6 =1ifi = Jand 6;; =0 otherwise).

A more general definition of this concept is to make use of one reference ele-
ment, K, together with a mapping function F so as to define the above triple
from a reference triple denoted by :

[K,P,3].

In other words, a unique reference triple [[{’, 13, E] may serve to characterize all
finite elements in the mesh which have the same geometric type provided the
corresponding functions Fy are given. Thus, starting from one triple [[A{, P, Z] and
one function F, it is possible to obtain the triple [K, Py, 21{] of every element

K. If p (resp. a) denotes the functions (resp. the nodes) in P (resp. in K), we
have :

K = FK(R’)
Pk = {p=poFg' pepP} (20.6)
Yk = A{p(a),a=Fg(a),ac K}.

where, for the sake of simplicity, we assume only one degree of freedom of the form
p(.) and where a stands for the nodes in K. As previously mentioned, Px can be
also written as :

P = Ap=Taip with pi=poFgl pePi=1,N}  (207)

for convenience, while in turn and for the same reason, Y i can be expressed in
two ways :

Xk = {di(p),i=1,N}. (20.8)
Yg = laj,j=1,M;6i(p(a})),i=1,N}. (20.9)
8A node supports one (or several) degrees of‘ freedom. According to their type, the nodes

in a finite element may be its vertices, its mid-edge points, some points in its facets or some
particular points inside K.
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In other words, either using the entire list of degrees of freedom, or using the list
of nodes and, for each of them, the list of the corresponding degrees of freedom.

To make sense, the above definition implies that Fx is invertible. This being
satisfied, the two triples are equivalent (and, if in addition, Fi is affine as it is in
the P! case, the two triples are affine equivalent). In this way, we have defined
a family of finite elements which may be represented using a unique element, the
reference element. Notice that making use of a reference element is not strictly
required in the case of simplicial element, but this is a source of simplification due
to its great ease of application.

Remark 20.2 This notion of equivalence allows us to reduce the definition of a
finite element to that of the corresponding reference element. As will be seen, this
property 1s met again at the computational step, a part of the computation for a
gwen element concerns the reference element and therefore does not change when
we consider one element or another of the mesh.

Remark 20.3 In the case where the function is affine, we have affine elements.
In contrast, other types of elements can be defined, for example, curved (or isopara-
metric) elements.

20.2.2 First examples of finite elements

In this section we give some examples of finite elements which are rather simple
(and widely used). At the end of this chapter, a certain number of other finite
elements will be given.

The P! triangle in two dimensions. The first example is the well known
P! Lagrange triangle in two dimensions (also referred to as Courant’s triangle or
as the T3 element). It is defined, Figure 20.2 (top), by means of the following
reference definitions :

e K, the straight triangle of “unit” side whose vertices are 9; = (0,0), 92 = (1,0)
and 53 = (0, 1).

e P=P' ={1-3-9,5,§}, ie., dimPx =3.
o ¥={a; =0;,1=1,3;¢i(p) = p(a:i),ai = Fr(a:), 1 =1,3}
° FKE(P1)2.

Remark 20.4 Note that Fx can be written as Fg = {F}'{}izl,d where d is the
spatial dimension and we have F}, € P'.

The Q' quadrilateral in two dimensions. The Q! Lagrange quad in two
dimensions (also referred to as the Q4 element) is defined as shown in Figure 20.2
(bottom) :
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az
FI( € (P1)2
ET Lk
ag————— aj

Figure 20.2: Lagrange type finite elements of degree 1, the T3 and the Q4 finite
elements. Left-hand side, the verter labeling in the reference element (indeed o,

could simply be the vertez of label 1, etc.). Middle, the reference node labeling and,
right-hand side, the current node labeling.

. Ig’, the unit square whose first vertex ¥1 is at the origin”;
P=Q' ={1-8)(1-¢) ,3(1- 9),25,(1- )9} dimPx = 4.
o U=A{ai = 0,i=1,4;¢i(p) = pla), a; = F(a), i = 1,4}

Fr e (Q")%.

The two P? triangles in two dimensions. Figure 20.3 (left-hand side), the

affine P? Lagrange triangle in two dimensions (also referred to as the 76 element)
1s defined as :

o K, the “unit” triangle as for the T3 element.
¢ P=P={(1-2-9)(1-28-29) , (28 ~1), §(25-1) ,4(1——9) , 429 ,49(1-
Z—g) }. dimPx = 6.
o Y={a:=10;,8i43 = L;'ﬂ 1 =1,3;6i(p) =p(ai),a; = Fre(ai), i = 1,6}
o Fi e (Pl)2.
T.he isoparametric P2 Lagrange triangle in two dimensions is similarly defined
but, in this case, we have Fx € (P?)2,

The two @? quadrilaterals in two dimensions. The Q2 Lagrange quad in

two dimensions (also referred to as the Q8 element), Figure 20.3 (right-hand side),
1s defined as : '

"Obviously, it is also possible to center the square, to give it a side 2 and to define if from —1
to +1, for example.
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IA(, the unit square.

P =@ ={(1-8)1-9)(1-28-29) ,#(1-§) (28— 29~ 1) , ~#9(3— 25 —2¢) , (1
£)§(=28 + 29— 1) ,48(1 = 2)(1 — §) ,489(1 — §) ,48(1 — &)§ , 4(1 — £)G(1-9)}.
dim P = 8.

o = {ai =0,Giya = EEL i = 1456i(p) = p(ai),ai = Fie(as), i = 1,8)

Fr € (Q")? (affine case) or Fx € (Q?)? (isoparametric case).

ﬂ)as
as 2

Figure 20.3: Lagrange type finite elements of degree 2, affine (top) and isoparamet-
ric (bottom) T6 and Q8 finite elements together with the corresponding reference
element.

Remark 20.5 In the case of an affine element, the mid-edge node is the midpoint
of the edge and, for instance for the T6 element, ay = Fi(d4) = FK(ﬂl—gﬁz). In

this case, we have FK(QZL@) = FL(Q—‘HZ'MG—"’-Z and a4 can be obtained as g_dz-_az

However, for the curved T6 element FK(&“;“’?) + FK(a‘);F"'(&Z) and then a4 =
Fk(aq) = FK(Q%Q) s not, in general, 31—'5—‘11

In a subsequent section, we will give various examples of common finite ele-
ments other than those presented here.

20.3 About error estimation and convergence

The initial problem, Problem (20.2), concerns a solution in space V of a(u,v) =
f(v). The approached problem, Problem (20.3), is to find a solution to.a(uh, vp) =
f(vn) in space V. If this problem is solved using one or several numerical schemes
or quadratures, this leads to the solution ay (up,vs) = fu(vs) in which ay (resp. fr)
are approximations of a (resp. of f). The question is then to ensure that the
approached solution up, tends towards w with k in a pertinent way th'anks to a
proper choice of the various parameters and ingredients used in the various steps
included in the approximation.

20.3.1 Local (element) quantity and global quantities

Passing from the initial continuous problem (formulated in domain ) to its nu-
merical approximation and to the calculus corresponding to the mesh elements

A TOUCH OF FINITE ELEMENTS 665

approaching €2 is thus made by replacing the global quantities by some local dis-
crete quantities. The various relationships between these two types of quantities
are as follows :

¢ Qisreplaced by T= |J K,
KeT

o I'is approached by the “sides” 8K of the appropriate element K,
¢ a function vy in V} is replaced by its restriction in K, vp/K, in space P = Py,

* a global node b; corresponds to a set of local nodes ai, several elements K sharing
this node b;. One finds here a numbering problem leading to identifying the global
index of a local node,

e similarly, the basis functions and the degrees of freedom are seen at a global and
a local level,

e the restriction in K of a vy = ITxv is IIxo.

These notions (and notations) being done, we recall, using a simple example (an
elliptic problem) the abstract basis of the convergence and error estimate issues.

20.3.2  Error estimation and convergence issues

Error estimate as well as convergence of the approximation is analyzed by observ-
ing if :

[l — up|] —0
when A — 0 in some sense, i.e., for an appropriate norm || .||.

From a mathematical point of view, the notion of a convergence is linked not
to a (discrete) approximation but to a family of (discrete) approximations defined
by a parameter h which tends towards zero. With each value of h is associated a
space V} and with each V), is associated one approximation uj of Problem (20.3) :

a(un,vn) = f(vp).
Such a family is said to be convergent, if :

Jim lu — wal] = 0.

After the previous discussion, the convergence of u towards us, i.e., ||u —
up|| — 0, is based on Cea’s lemma which proves that a constant C exists,
independent of A, such that :

u—u|| < C inf [|lu—
b= sl SC inf [l wn

and, therefore, a sufficient condition for convergence is that there exists a family
of V}, such that :

lim inf |ju— vl =0.
h——0 vpeV,

Then, we need to show that :

[lu — un|| < C(u) h?,
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which implies that :
[lu = unl| = O(h?),

meaning that the convergence is of order 4 for the norm || .||, while it is obvious
that different norms can be found according to the regularity of the problem and

the nature of the approximation. . ‘ .
The distance between u and uy, i.e, infypev, ||u— upll, is estimated by look.lng
at the distance between u and IT,u the interpolate of u. This leads to a result in :

= wnll < Cllu = Myul].

If we assume (2 to be a polygonal (resp. polyhedral) domain, then we have strictly :

Q= Z K
KeT
where K is a polygonal (resp. polyhedron) and, in this case, straight finite elements

(the above triple) can be chosen so as to construct the sub-spaces Vj (Which are
therefore included in V). Then, in such a situation, we have a conforming finite

element method.

Hence,
(ITp v)/K =Mgu

for all K in 7 and, one can write :
211
llu—Maull = {3 Ju— g ul’}7 .
KeT
As a consequence, estimating the error between u and u; comes down to seeing
what the local errors of interpolation are :
llu =Tk uf].

We then show (after some assumptions about the interpolation) that there exists
a constant C, independent of K, such that :
k+1

v — g v|mix <C Ifn [vlk41,5
PK

for 0 <m < k41 and for all v in H**+1(K). This relation is related to the degree
k of the po_lynomials in Pk and two quantities already mentioned many times :

o the diameter of element K, say hg and

e the radius of the circle (the sphere) inscribed in K, i.e., pg.

From a practical point of view and for the envisaged error estimate, we use one
reference element, IA(, on which the error is estimated. Then, we evalugte tl?ls er-ror
on element K (assumed to be affine equivalent). The .full progf for this estimation
is slightly delicate and makes use of various issues in functional analysis. This
is beyond our scope here. It is enough to retain that, ba.sed on the .prob']em
considered and according to the assumed regularity, we obtain some majorations
for some appropriate norms which enable us to prove the convergence of these
approximations together with the order of this convergence.
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20.3.3 Quadrature influence

As already seen, the actual computation often makes use of integration schemes.
In this way, the problem to be solved is no longer a(un,vh) = f(vs) but rather
an(un,vn) = fr(vn). If ¢ stands for a function that must be integrated in K, we
then compute :

[ ¢tenir = Yoo, m)
K 1

where the quadrature is defined by means of I points (z;,y) and ! weights w;.

Bear in mind that the choice of the quadrature formula must be made in such
a way as to retrieve the corresponding error estimate (the order of convergence)
when no quadrature is used. In other words, the quality of the approximation is
preserved.

For instance, this is the case when, for an approximation based on polyno-
mials of degree k, we use a formula which exactly integrates the polynomials of
degree 2k — 2.

20.3.4 Curved elements

Using curved or isoparametric elements is one way to deal with non polygonal
(polyhedral) domains for which an approximation by means of straight finite ele-
ments leads to a poor geometric approximation.

For such domains whose boundary or a portion of the boundary is curved,
we generally use two types of finite elements. Inside the domain®, straight finite
elements are employed. Near the domain boundary, we use finite elements with at
least one curved edge (face), in order to have a more precise approximation of the
underlying geometry. These elements are said to be “curved” or isoparametric.
In this short section, we give some indications about this type of element and,
specifically, we show how they can be constructed.

For such elements, the error analysis is made as it was for straight (affine)
elements. In particular, provided the deformation between the curved elements
and the straight ones is not too great, the same discussion holds. Similarly, the
role of a quadrature formula is as above.

The concern is more specifically how to define an isoparametric element. This
leads to a problem of element node definition which comes down to finding a (local)
index and, more importantly, a suitable location for these nodes.

Let us again take the case of a curved T'6 triangle. As previously seen, this
element has as its nodes its three vertices and its three mid-edge points. In fact,
these last three nodes are effectively the midpoints of the edges when these edges
are straight segments. The case of a curved edge is slightly different. Here the
theory and the practice are somewhat different. In theory, specifically for a con-
vergence study, it is convenient to take as a mid-edge node for a given edge the
point projection on the boundary of the. mid-edge point; we assume in addition
that the distance between these two points is small. This is clearly the case when

8In principle, as it is not necessarily true everywhere.
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h tends towards zero, and therefore the convergence issue may be based on such
an assumption. Nevertheless in practice, the curved edges are represented by a
number of arcs of parabola and, unfortunately, the best approximation possible for
a curve by such arcs does not mean that the projection of the midpoint of the
edge is the best possible candidate to construct an arc of parabola close enough
to the geometry. Moreover, since h does not tend towards zero, such a fact is not
necessarily without effect. Thus, as will be seen in detail in Chapter 22, the mid-
edge nodes are not necessarily the projections of the mid-edge points concerned,
they are also related to the local curvature of the boundary near the region under
examination.

To summarize, one needs to :

e mesh the curve related to the boundary edge by means of an arc of parabola
as close as possible to the geometry (Chapter 22),

e check that the Jacobian of the transformation defined from the reference
element to the current element is strictly positive in all points, so as to ensure
the property of invertibility and thus results in elements with a positive
surface area.

Nevertheless, this scheme merits some remarks. First, it is not always true, in
practice, that the edge is close enough to the boundary curve. This condition would
hold in regions with a high curvature (i.e., where the minimal radius of curvature
is small) only for a sufficiently small edge. Then, the P? element (if we consider
this case) thus constructed would probably be adequate but certainly too small,
therefore leading to a mesh with too many elements. This refutes the fact that
we know in advance that, for an equivalent or a better geometric approximation,
the size h of a curved element may be larger than the size of a straight element
constructed at the same place. An intuitive idea is to consider that a P! mesh of
size at least 2k allows the construction of a P? mesh with the same size which
1s equivalent or better than a P! mesh with the half size (i.e., h). Note that in
this way, for the same number of degrees of freedom, the number of elements is
less. We refer the reader to Chapter 22, where there are some indications about
the construction of P? meshes (the discussion is based on a P! mesh completed
by one of the automatic mesh generation methods previously described).

Remark 20.6 In this discussion, we have essentially seen as a curved element
ezample the case of simplicial elements (in two dvmensions) of degree 2. However,
it 1s clear that there exist other isoparametric elements, with a degree other than
2, a dimension other than 2 and a geometric nature other than simplicial.

Remark 20.7 To end, notice that the case of elements in three dimensions is far
Jrom being trivial. Indeed, this case leads to surface meshing problems.

20.4 Stiffness matrix and right-hand side

In this section, we firstly give the general expressions of the stiffness matrix and
the right-hand side associated with the problem presented here. We give the
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corresponding element quantities (at the level of one element) and we show the case
of an affine T'3 triangle and for an affine T6 triangle together with an Isoparametric
T'6 triangle. Then we discuss some specific questions regarding the information
that must be stored or found in the mesh so as to make it possible to obtain these
quantities. We also look at the quadrature formula and the way in which the
global quantities are obtained by assembling the element quantities thus obtained,

20.4.1 General expression of a stiffness matrix

The stiffness matrix results from the contribution of a(uy, vs) of Equation (20.1)
through the two terms —div(k;Vu) and g;u. After a Green formula, we have

ah(uhyvh):/ k;Vup Vo +/ Fitlp v
n F'

t

and thus (omitting index i)

an(un, vp) = Z/KkVuthh+ Z/ Jupvp .

. Apart from the coefficients, the quantities we are interested in are the restric-
tions over the elements of the various functions of the above relationship. For
convenience we denote [K] the d x d matrix with coefficients k. We now con-
sider (uy)/K, the restriction over K of up. Following the approximation we have
(up)/K = Xl: ¢i(u) pi where ¢;(u) is the degree of freedom i associated with func-

tion.uh and p; is the basis polynomial i of space P (note that vy is similarly
considered).

. \”Vith [P] the row [py, po, -] and {u; g} the vector of the degrees of freedom
in K, the above expression is conveniently written as

{(un)/K} = [P]{uik}.

With this concise notation, we have

V(un) /K = t{ﬁu(gz/lx” 8u§y/]i" auahz/K}

which is simply expressed by

{V(un)/K} = [DP) {ui &},

where
o1 Op2 Opy
[DP] = ﬁ ] 2
o by o
0z 8z 7 82

Thus, using these quantities, we have
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/ KVunVon = us x) / DPIKIDPIAK {u; i)}
K K

and / gunve = i x} / [PlO[PIOK {u; x},
oK oK

where [ ‘[DP][K][DPIAK + [, t[Plg[P]dOK forms [Ak] the so-called elemen-
tary stiffness matriz of element K.

As previously indicated, this matrix is actually computed by means of the
corresponding reference element K. We have, following (20.7), p; = p; o FIEI, thus

[P] = [P] and [DP] = [DF!|[DP]

hold where [DF] denotes the derivatives of Fx. Using this yields :

[Ak] = / PP DFKIDF | [DPITdK + / _[Plg[P)Jrdok
R 8K
with J the Jacobian of Fy, é.g,, J = det(DF) and Jr the corresponding term on
I, w.e, we have dOK = JpddK. In terms of computation, the above integrals can
be obtained directly (exact quadrature) or after a numerical quadrature based on
some quadrature nodes (and coefficients). In this case, an integral is replaced by a
summation and we need to evaluate the quantities of interest at the nodes of the
quadrature formula.
Having the elementary matrices ready, we can obtained the global stiffness
matrix [A]. As can be easily established we have

[Al= ) ‘[B][Ax][Bx],
KeT

where [Bg] ensures the correspondence between the local node numbering (i.e.,
when element K is considered) and the global node numbering (when all the mesh
1s considered). Thus [Bg] gives the correspondence between the local and the
global numbering and enables us to assemble® the global matrix by merging in it
the contributions due to the local matrices (see below).

20.4.2 General expression of a right-hand side

The right-hand side results from the contribution of f(vs) of Equation (20.1)
through the term over the domain and that due to the boundary. We have,

f(vh):./n, Fivh‘l"/r,fivh

and thus (omitting index ),

F(on) = Z/KFUHZ fon,

KeT KeT /KOL

®Notice that some solution methods do not require the explicit construction of the global

matrix.
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or again

fon)= 3 t{v,,K}{/K t[P]FdK+/ ‘IPIfdOK } |
KnI®

KeT

The elementary contribution, the so-called elementary right-hand side is com-
posed of the two terms Jx ‘[P]Fd]\”—i-fKnF ‘[P1fdOK . It is denoted by [RHSk].
The calculation is performed over K

K

[RHSk] = / ‘HPIFTAR + + / [PIfIrdOR
OK

As before, using the matrix [BKk] allows us to obtain the global right-hand side :

[RHS] = > ‘[Bx][RHSK].
KeT

Remgrk 20.8 Elementary (global) quantities other than the stiffness matriz or
the rzgﬁt-hana’ side, namely, the mass matriz (in an evolution problem), etc., can
be obtained in the same way. ’ ’

20.4.3 About the T3 triangle

To de.monstrate the above discussion, we look at the T'3 triangle in two dimensions.
In this exarAnpleA, we consider d = 2 and N = 3 while the basis polynomials are
Pl={1-i-g,2 ,¥}. Then, we have :

- -1 1 0
DP] =
(PP] [ ~1 0 1 J
Also Fg = {F}i(}i:I,E € (P')2. Then, if a; stands for node 7 of K and (@i, u)

Elnd y17 a’nd since

Fic(2,9) = (1= & - 9){ar} + #{as} + §{as) ,

we have
Fg(2,9) = {a1} + & {an, } + y{as1}.
Thus,
[Df] — [ 21 Y J
L31 Y31
and

J = det(DF) = z9,y3;, — Z31Y21

[Dﬂ‘lz _{17_" Y31 —yn ] )

-_—Taq P
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Now, we have all the ingredients ready for the stiffness matrix calculation.
Since the latter is symmetric in our case, we just write its lower part. The integral
over K leads to the term!® :

k Y23Y23 + L2323 )
[Ak] = :7—_/ Y31Y23 + T31Z23  Y31Y31 + L33 dK |
K —Y21Y23 — T21T23 — Y21Y31 — T21T31 Y21Y21 + L2101

which, since [ dK = 1 reduces to
, K 2

k Y23Y23 + T23%23
(Ak] = — Y31Y23 + 31223 Y31Y31 + 31231
2J
—Y21Y23 — T21Z23 — Y21Y31 — T21T31 Y21Y21 + Zo120g

The integral over JK leads to boundary contributions if 8K is a boundary edge
where g acts. Let us assume that edge ajas is such a boundary edge, then the
corresponding contribution is (g being assumed to be constant per element edge)

[AK]:gjp/O i(1-2) 2% .. |di.

The element of integration is Jprdz. Indeed, for this edge, we have a = a; + #as;
where a is a point on edge ajas. Then we have £ = z; + 4, and Y=y + &yo.

Then
AOK = \/de?+ dyf = 1 [2},ds? + y3,d2? = \[a3, + g, di,

and finally, if Jr = \/23; + y3, we have d0K = Jrdi. Using an exact quadrature
leads to

1
[Ax] =9 Jr %
0

Similarly, provided they are in the adequate part of the boundary, the two other

edges contribute in the same way. We have Jr = V@i, + y3, (edge asaz) or
Jr = /3, + y3, (edge asa;) and the corresponding contributions are successively

0

Swi- d

0 ..
0 i 1
6 3
and
1
3
[AK]:QJF 0 0 ..
1 9 1
6 3

10The conductivity is assumed to be isotropic (and constant per element), then [K] acts through
the single coefficient k in all matrix coefficients. The general case where [K] is not isotropic results
in a similar calculation provided several different values of k are employed in the appropriate

terms.
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Now the complete elementary stiffness matrix is the sum of the above contriby-
tions.

We turn now to the right-hand side calculation. For the term over K, we
consider a quadrature formula based on the three element vertices, then, using K
we have

3
[ Prgaic = ZE S qpia, )
=1

which leads to the term :

JF |1 g | o
—6— 1 or g F2 y
1 Fs

depending on whether F is assumed to be constant per element or used via its
values at the element vertices. The boundary term is simply :

1| (1-2) % L
fIr / & i =f7 | L | or 7 /;; ,
0 0 0 0

for edge ajay with Jr = /23, + yZ,. In the first solution we have assumed f
to be constant per edge and an exact integration while in the second solution we
have used a quadrature (based on the two edge endpoints) and f; (resp. f2) are
the corresponding values of f. For the two other edges, in the case where they
contribute, we obtain a similar contribution, for instance,

for edge asaz with now : Jr = \/.rgz + y3§2.

20.4.4 About the linear 76 triangle

This section deals only with the affine triangle, and the isoparametric case will be
discussed in the next section. In this example, we have d = 2 and we consider the
so-called T'6 triangle as a finite element. For both triangles (affine or curved), we
have N = 6 and :

[P) = {(1-2-9)(1-28-29) , 2(28 1), §(29-1) , 45 (1~3—) , 429 , 49 (1—5—3) } .
Then [DP] is now :

[Db)]:[‘?’“‘?*‘l? -1 0 4-8i-4j 49 —4g
—3+4E4+49 0  45—1 —43 4i 4—43 -8y |’

hence, [DP] is now a function of # and 9. For convenience, we write this fact as

[DP] = [DP(&,3)].



674 MESH (GENERATION

For this affine case, the mapping function is the same as for the 7'3 element,
1€

’

Fr(2,9) ={a1} + 2 {ax1} + §{az}.

Thus, [DF], J and [DF]~! are as in the T3 element. The general expression of
the stiffness matrix, for element K, is :

Ax] = /K "(DP (&, 9)] [DFK)DFDP(&, §))TdK + /a _PllP)TeddK.

In the first term, {[DF~[K][DF 1] is constant. Indeed, if [FKF) stands for this
2 x 2 matrix, we have :

k

[FKF] = K [ Y31y31 + r31231

—Y21Y31 — 2123

j?

— Y21Y31 — I21T31
Y21Y21 + 2129

Thus, the first term of the stiffness matrix is :
| 0P R ADPE, gk,

and, although it is tedious, an exact integration can be used. The terms we have
to compute are of the form :

O ds o [0

D 5pj o 3[),' 31)]' o
2 dF kit )
. B2 Do , *Bxc‘)yd\and dK

k Oy Oy

for i = 1,6 and j = 1,6 while we have :

1 1-¢
/ dfi':/ / .. didy.
’4 £=0Jg=0

Thus we need to compute 108 integrals of the above type. For example, we have :

Opr0pr , - 1 Op, Opy , -~ 1
- 5—dK = —— a—dK =~ | ..
i Oz 81:(1& 2 ' Jg Oz Ox YTE

On completion, we easily find the contribution of K to the stiffness matrix.

To complete this matrix, we need to compute the second part of the general
expression. Let us examine the case where edge a;ay contributes in this boundary
contribution. First, the element of integration is as it was for the T'3 triangle. In-
deed, we have dOK = JrdOK where Jr depends on the edge under consideration.
Then, we obtain (omitting symbol ")

(1 —z)*(1 - 22)?

—z(1 — z)(1 - 2z)? 1:2(21‘— 1)?

0 0 0 dz
gjr/o 4z(1—-2)’(1—2z) 42°(1—z)(22—-1) 0 162%(1 —1)? !

0 0 0 0 0

0 0 0 0 0 0

P .
BRI N
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which, with Jr = /21221 + y21921 and since an exact quadrature can be used,

reduces to :

l e
s )
00 0
9Jr| 1 1 4 &
15 15 15
0 0 0 0 0

0 0 0 0 0 0
Now the complete elementary stiffness matrix is the sum of the two above con-

tributions. Note that boundary contribution of edges other than that used here
are dealt with in the same way as for the T'3 element. For edge asas, we have -

Jr = \/T3232 + y32y32 and the possible contribution is :

fo .. 1
0o < ..
0 _r 2
30 15
9Ty 90 0 !
0 & % 0 & .
| 0 6 0 0 0 0 |
while edge ajas possibly contributes through the term :
2
&
0 0 ..
-5 0 %
9T % 0 0 0 . :
0 0 0 0 0 ..
i 0 %5 00

with Jr = \/Z31231 + y31¥31 as can be easily seen.

The right-hand side comprises two possible terms. The term over K is :

0 0

JF
6

—_a——0 O
D
)

J F3

if the quadrature used is based on the three mid-edge vertices and F is assumed
to be constant per element or used via its three relevant values. The boundary
term (for instance, for edge ajay) is computed using a quadrature based on the
edge endpoints and its midpoint, thus we have (with evident notation for f)) :

fi
f2

Jr |0

6 | 4f12 |’
0

0
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with Jr = \/Z21Z21 + y21y21 as above.

20.4.5 About the isoparametric 76 triangle

We now turn to an isoparametric 76 element. Basically the same approach can
be retained. In specific [P], the basis polynomials, are those of the affine case.

6
However, since Fg(2,9) = 3_ pi(2,9) {a;}, the matrix [DF] is no longer constant i
i=1 g

over K. Thus both J and [DF~'] are functions of # and . Consequently a
numerical quadrature must be employed and we obtain, as a K contribution :

> @ IDP (e, @IIFKF (@1, @) [DP (e, 5017 (81, ) -

Using the three mid-edges as quadrature nodes we have to compute [FKF), [DP]
and J at these nodes. Following :

6
&wm=2mmmML

we find :

—3+4c+4y 4zr-1 0

— 4—-8r—4y 4y —4y
[Dﬂ—[—3+4m+4y 0 4y-1 4o

4z 4—4x—8y]{“"}’

then, for the node (3, 0) we find :

1 -1 1 0 0 0 0
[PF(3,00= [ -1 0 -1 -2 2 2 ] {ai},
which reduces to :
1 = —Z1+ 22 -y1 + Y2 }
[Dj:(Q’O)] B [ —T1— 23— 224+ 2z5 + 226 —y1 — Y3 — 2y4 + 2ys + 296
1 _ o1 Y21 :l
[D}-(Q’O)] - [ 2254 + 61 + 63 2Y54 + Y61 + Y63
and

1 o-1_ 2ysa +ye1 +¥es —ym: ]
[PF(5,071 = [ ~(2z54 + T61 + e3) T2y |’

whose determinant is j(%,O)‘ Similarly, and left as an exercise, one can obtain
[DF(3,5)" " and J(3,1) as well as [DF(0,1)~] and J(0, 3). From these quan-
tities, we have [FK F] ready at the three quadrature nodes. Similarly, we compute
the [DP]’s involved in the formula. We find successively :

9 11 0 0 00
[Dp(i’o)]:[—l 0 -1 -2 2 2}’
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1 110 -2 2 -2
[DP(§’§)]—[1 01 -2 2 —2}’

S -1 -1 0 2 2 =2
[1)7)(0,5)]_[_1 0 100 o]

Now using the above [DAP(ai'l,g},)]’s, we have all the ingredients required to
compute the contribution of element K to the stiffness matrix.

Let us now consider the contribution of an edge part of the boundary which
contributes to the stiffness matrix. We want to use a quadrature whose nodes are
the edge endpoints along with the edge midpoints. Let ajas be this edge. If a
stands for a point on this edge, we have

a=Fg(&,9) = (1-2)(1-28)a; + 2(2& — 1)as + 42(1 — 2)ay,
and, for instance,
z=(1-2)(1 - 2&)2) + (22 — 1)z, + 43(1 — Z)zyq,

thus,
dr = {(42 — 3)z1 + (42 — 1)z, + £(4 — 82)z4 }d2

and similar expressions hold for y and dy. For # = 0, this reduces to :
dz = (—3.’61 —Z9+ 41‘4)di‘ = (31741 + 1742)d:i‘

and we have, in this first quadrature node,

Jr = Jr(0) = /(3241 + 242)? + (3yar + Ya2)?.

The same calculation for the midpoint # = % and for the other endpoint, # = 1,

leads to a similar expression for the corresponding Jr. We obtain successively :

1
Ir(z) = \/£3, +v3, and

Jr(1) = \/(1714 +3224)? + (Y14 + 3y24)?.

Now, the boundary contribution is obtained based on these three quadrature
nodes. We have :

3
/ak ‘[Plg[P)Irdz = sz [P (&1, 0)]g(d1, 0)[P (4, 0)] T (41, 0)

=1

with w; = (%, 2, 1), this leads to :
91Ir(0)
0 ggjr‘(l)
1|0 0 0
[Ax]= 6 0 0 0 4!}12..7[‘(-%-)
0 0 0 0 0o ..
0 0 0 0 0 0
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The contribution of the two other edges, if relevant, is obtained in a similar way.
We find successively :

0
( 0 gsz(O)
0 0 gsjr‘(l) .
[Ag]==] 0 0 0 N
0 0 0 0 0
0 0 0 0 4g23._71"(%) .
00 0 0 0 0

where

Jr(0) = /(352 + 253)% + (3ys2 + Ys3)? .

1 )
Te(3) = ok + vy and

Jr(1) = /(was + 3235)% + (y2s5 + 3y3s)?
and, for the last edge :

rgljr‘(())
0 0
) 1 0 0 g3Jr(1)
[“4"]‘6 0 0 0 ’
0 0 0 0 0
[ 0 0 0 0 0 4g570(2) |
where now,

Ir(0) = V/(3ze1 + x63)? + (3¥61 + yes)? -

1
JF(§) =1/23; + 93, and

Tr(1) = /(z16 + 3236)% + (y16 + 3ya6)? .

To complete this example, we have to compute the right-hand side. The term
over K is computed based on a quadrature formula using as nodes the three vertices
and the three edge midpoints. Thus we have :

(O P, i) F (e, 90) T (&, 4))

=1

| =

[RUSK] = / ‘PIFTAK =

K

which, with evident notations, reduces to :

&3
Q
=

[RHSKk] = g

]
P
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Nevertheless, the above formula is too poor and a more precise quadrature must
be used. It is also based on the six nodes in K and, after [Glowinski—1973], it
results in the following contribution :

[ 6FR.T(0,0) = (F2J(1,0) + F57(0,1)) — 4F7 (%, %)

627(1,0) = (F1J(0,0) + F37(0,1)) = 4F157 (0, 1)

[R%q ] — L 6F3J(O, l) - (FIJ(O»O) + FZJ(I’O)) - 4F12~7(%,0)
=360 321%5(%,0) + 16 (FasJ (1, %) + F137(0,3)) - 4F3.7(0, 1)
32F23J (5, ]%) + 16 (F137(0, ) + FIZJ(I%; 0)) — 4F1.7(0,0)
| 32F137(0,35) + 16 (Flzj(%, 0) + Fa3J (5, %)) ~4F,J(1,0)

The R-H-S boundary contributions, if any, are computed using a quadrature
formula based on the two edge endpoints and the edge midpoint. For edge a;as,
we have :

[RHSK] = / P} TrdOK

8K

= UPOOATO) + 4P, 01k (3) + PO, 0L (1))

which reduces to :

f1Ir(0)
faIr(1)
1 0

[R%SK]zg 4 fr2Tr(3) |
0

0

where the Jr’s are identical to those used for the boundary contribution of the
same edge to the stiffness matrix. Other edge contributions are obtained in the
same way. )

Exercise 20.1 Based on the previous examples, compute the stiffness matriz and
the right-hand side for a P.D.E. modeling a two-dimensional elasticity problem
(provided a small deformation problem with planar stress). Hint : we face a
problem with two degrees of freedom per node where can be easily expressed using
the previous quantities (polynomials, mapping, Jacobian, etc., see [Ciarlet-1986],
[Ciarlet-1988)).

20.4.6 Element quantities and data structure

In the previous finite element examples we have seen how to compute a stiffness
matrix and a right-hand side. Based on these calculations, some practical details
about what a mesh data structure could be have been implicitly introduced. In-
deed, a mesh data structure must store any information which is required to make
the desired calculation possible. In this respect, we have used various information,
including :
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the vertex (node) numbering,

the vertex (node) coordinates,

the classification of the mesh elements in terms of sub-domains (or materials),

the classification of the mesh boundaries (mesh edges in two dimensions) in
terms of the part of the boundary in which they are located,

the classification of the mesh vertices (nodes) with the same objective (in
our example, to easily find the nodes subjected to a Dirichlet condition).

Numbering and coordinates are natural entries. The problem of membership is a
mesh entity classification problem .

Provided with this information, both relevant calculations are possible while
using adequate physical coefficients. In what follows, we give some details about
these issues (restricting ourselves to a two-dimensional problem).

Vertex (node) coordinates. The node coordinates are obviously used when
computing such or such elementary quantities. Note that provided with the co-
ordinates of the three vertices of the affine 76 triangle, it is easy to retrieve the
coordinates of the mid-edge nodes. Thus, it is not strictly necessary to store these
values in the mesh data structure. On the other hand, the 6 pairs of coordinates
must be stored for an isoparametric T6 triangle if we want to avoid calculating on
the fly which would also require a geometric description of the domain boundaries.

Vertex (node) numbering. The (global) node numbering allows us to com-
plete the global matrix and the global right-hand side of the discrete system (see
below).

Classification of the mesh entities. The point is to know to which material
belongs a given element. In this way, it is possible to assign the right material
coefficient to this element. Similarly, we have to know which part of the boundary
an element edge belongs to (provided it is not internal). Based on this knowledge,
the contribution to the stiffness matrix or to the right-hand side is possible while
assigning appropriate coefficients.

It is then desirable to associate an integer value'! with the elements in the
mesh (serving as material number or material pointer) and, similarly, an integer
value (pointer) with all faces, edges and nodes for each element [Shephard-1988],
[Beall Shephard-1997].

Note that this data about elements, faces, edges and vertices makes it possible
to easily find the information at the node level. Indeed, if a node is also a vertex,

there is no problem and if a node is not a vertex it is only necessary to know where .
it is located. Ifit belongs to an edge, then its attribute for classification (the above §

integer) is that of this edge, etc.

Hor pointer or any other equivalent manner.
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Curved boundaries. Following the previous paragraph and based on the same
classification, it is easy to see whether or not an edge belongs to a curved boundary.
In such a case, the relevant boundary is identified and the node(s), if any, that
must be constructed are created on this entity.

Mesh data structure. After the above discussion, the mesh data structure
must be designed with these objectives in mind. In this respect, return to Chap-
ter 1 and see the section about the external structure.

20.4.7 About integrals and quadratures

As seen above, it is sometimes possible, given some assumptions about the nature
of the data used (about what are the polynomials, the complexity of the oper-
ators involved in the problem, the case where the data values are constant per
element, for example), to compute exactly some of the integrals involved in the
quantity sought. This is, nevertheless, not the case in general. Thus, making use
of numerical scheme is generally required.

As seen and based on the degree of the functions in space Pk and on what
needs to be computed, such or such formula must be retained. The objective is to
make sure that the error due to the quadrature is “consistent” with regard to the
interpolation error of the finite element itself.

Usually, the numerical scheme for quadrature is chosen in such a way as to
exactly integrate a polynomial of degree n, where n is defined in accordance with
the finite element, of the order of the expression resulting from the development
of the operator and the nature of the data (for example, if the latter are assumed
to be constant per entity (element, face, edge, etc.)).

20.4.8 The global system

As previously seen, assembling the contributions of the mesh elements takes the
following form :

A= )" [Bx]lAx][Bx],

KeT

to complete the global matrix and :

[RHS]= 3" ‘[Bk][R#SK],
KeT

to obtain the global right-hand side of the system. In these expressions, matrix
[35*} related to element K is a boolean matrix (whose coefficients are 0 and 1),
which makes it possible to merge the local contribution at the right place in the
global quantity.

. To specify what matrix [Bg] is, let us return to the above example with the
Simplest element, the 78 triangle. Thus, [Bx]isa N x M matrix where N = 3 is
the number of degrees of freedom in the 73 triangle and M is the total number of
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degrees of freedom in the mesh!2. All the coefficients of the matrix are null except
three. Indeed we have [Bk)i i, =1, [Bkl2i, =1 and [Bgls:, =1,,if 4,1,
and i3 are the global indices of the three degrees in K (i.e., the degree with indices
1,2 and 3 in this element).

From a practical point of view, the different matrices [Bx] do not really exist,
a careful writing can be used which luckily avoids their construction (and their
storage) while reflecting the mechanism they represent.

20.5 A few examples of popular finite elements

In the following list, we don’t seek to be exhaustive, we Jjust want to give several
examples of finite elements representative of the various types of element that may
be encountered. In this respect, examples of planar, surface and volume elements
are given illustrated by different interpolation methods (Lagrange, Hermite, etc.)
and different geometrical natures (straight element, curved element).

\ A\ //’\ )/.’ ~
\ 4\ S
T \\\0 &\L ‘\\‘\\.L =
Figure 20.4: Typical ezamples of triangular finite elements (in the plane). Element
T'3 Lagrange, the three node triangle, elements T6 Lagrange, the straight siz node

triangle and the isoparametric siz node triangle, the Lagrange triangle with ten
nodes and the Hermite triangle with 10 nodes.

T T T
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Figure 20.5: Typical examples of quadrilateral finite element (in the plane). Affine
(@4 and Q8 and isoparametric Q8 and Q9 Lagrange element, with respectively four,
eight and nine nodes.

12Including now the degrees corresponding to a Dirichlet condition.
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Figure 20.6: Typical examples of triangular or quadrilateral finite elements (for
surfaces, plates or shells).
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Figure 20.7: Typical ezamples of triangular or quadrilateral hybrid finite elements
where the nodes are less usual. From left to right, the nodes are the three mad-edge
points (the vertices not being nodes), the nodes are the vertices and the intersection
points of the two diagonals, the nodes are the vertices and the Gauss points.

Figure 20.8: Typical ezamples of volume finite elements, The T4 tet and the affine
and isoparametric T10 tets. A pentahedral element with 10 nodes and an isopara-
metric hex with 20 nodes. ‘



