Chapter 18

Mesh optimization

Introduction

Optimizing a mesh with respect to a given criterion is an operation that is fre-
quently used with various goals in mind for a wide range of applications. First,
optimization in itself is useful because the quality (the convergence of the compu-
tational schemes, the accuracy of the results) of the numerical solutions computed
at the mesh nodes clearly depends on the quality of the mesh. In this respect,
mesh generation methods usually include an optimization stage that takes place at
the end of the entire mesh generation process. An optimization process may serve
some more specific purposes such as the mesh adaptation, for instance, included in
an adaptive computational procedure. Moreover, the tools involved in optimiza-
tion methods can be also used in some particular applications (mesh simplification
being a significant example).

*
*x *x

The aim of this chapter is to introduce some methods designed for mesh opti-
mization purposes. First, some information is given on how to compute element
surface areas and volumes. Applications based on surface area and volume values
are discussed, including localization and intersection problems. Then we turn to
the definition of mesh quality. Afterwards, we introduce some local tools for mesh
optimization.

Having introduced these tools, and with regard to the given objectives, mesh
Optimization methods are discussed both in terms of strategies and computational
aspects. Actually, mesh optimization can be considered as a step of a mesh gen-
eration method (in general, the last step of the method). It also can be seen as a
stand-alone process.

This chapter only considers planar and volumic meshes. Moreover only the
geometrical aspect is considered meaning that P! meshes (and more generally
meshes whose element nodes are identical to element vertices) are discussed. Sur-
face meshes, which are slightly different, will be discussed in the next chapter.
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18.1 About element measurement

In this section, we discuss how to compute the surface areas or volumes of the
different types of mesh elements. Then we give some indications about how such
values can be used for various purposes. Note that the elements we are interested
in are defined with an orientation (see Chapter 1).

18.1.1 Element surface area

The only element for which the surface area can be obtained directly is the triangle
(due to its simplicial aspect). Thus, let K be a triangle whose vertex coordinates
are denoted by z;,y;, (¢ = 1,3), then the surface area of K is :

1 o —IT1 X3 — X1
Sk == , 18.1
K= o-w wm-wun (18.1)

or, in an equivalent form :

1|1z om
SK = 5 1 T2 Y2 . (182)
1 23 y3

In the case of a quad, the surface area can be computed as the sum of the
surface areas of the two triangles formed by considering one of its diagonals (either

diagonal being suitable, see Figure 18.1).
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Figure 18.1: Analysis of a quad by means of the four corresponding triangles. Two

4 3

triangles allow for the surface area calculation while four triangles are necessary |

to check the converity of the quad (see below).

18.1.2 Element volume

In this case, only the volume of a tetrahedron is easy to compute. Let K be a tet
whose vertex coordinates are denoted by z;, i, 2, (i = 1,4), then the volume of
K is:
g — X1 I3— X1 Xg4— Iy
VK:g Y2—-% Ys—Y%1 ya—u1 |, (18.3)
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or, similarly :

1 21 y1 o=

_lp 1l oz oy oz
Vk=5|1 o 2 2 (18.4)

1 24 ys 24

To compute the volume of a pentahedron, it must be subdivided into three tets
(Figure 18.2).
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Figure 18.2: Analysis of a pentahedron by means of three tets. Note that only one
of the various possible partitions is given.

For a hexahedral element, six or five tets are necessary. The partition based
on six tets involves first splitting the hex into two pentahedral elements to which
the above partition into three tets is applied (Figure 18.3).

A pattern with five tets is also possible (Figure 18.4) where the tet inside
the volume is considerably different to the four others (unlike the pattern with 6
elements) for a regular initial hex.

18.1.3 Other measurements

Surface areas or volumes can provide other information which is useful in this
context. ‘

Convexity of a quad. A quad element in two dimensions can be analyzed to
decide whether it is convex by using four triangle surface areas. Actually we define
the four triangles that can be constructed using one or the other diagonal of the
quad (Figure 18.1). Then we compute the four surface areas, S;, of these triangles.
Hence, if the four S;’s are positive, the quad is convex. Otherwise, if one of the
S;’s is negative, the quad is non-convex. If one of the S;’s is null, the quad is said
to be degenerated (i.e., two consecutive sides are aligned). If two of the S;’s are
Negative, each being one part of the two possible decompositions, then the quad is
self-intersecting while if two negative S;’s correspond to the same decomposition,
the quad is negative (Figure 18.5).
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Figure 18.3: Analysis of a her by means of siz tets. The initz’al' her 12345678
is primarily split into two pentahedra (123567 and 134578 ). In this example, the
resulting partition is not a conforming mesh of the initial hex. Thus, such a par-
tition is suitable for volume computation while a different one must be cgnszdered
for a different purpose (for instance, if one wants to convert a hexr mesh into a tet

mesh).

Figure 18.4: Analysis of a hex by means of five tets.
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Figure 18.5: The various configurations for a quad. A positive quad i), a degen-
erated quad 1i), a non convex quad i1), a self-intersecting quad iv) and a negative
quad v).

Localization processes. The localization of a given point in a mesh is a fre-
quent issue that arises in various situations. In Chapter 7, we saw that it enables
us to find, in a current mesh, the element within which a given point falls, for
instance, the point we want to insert in this mesh. Also in Chapter 2, this lo-
calization problem was mentioned in the examples on data structures and basis
algorithms.

Here, we consider this problem again while observing that the localization of
a given point in a given mesh can be completed with the help of surface area
or volume evaluations. For the sake of simplicity we first restrict ourselves to
simplicial meshes and we consider a convex domain.

Let P be a point and 7 be a simplicial mesh whose elements are denoted
by K. The method relies on the observation that, given an element K in T, we
can compute the d + 1 (d being the spatial dimension) surface areas (volumes) of
the virtual-simplices defined by joining P to the d + 1 edges (faces) of K, and if
the d 4+ 1 quantities are positive then P falls in K otherwise, if there exist one or
several negative (null) quantities, then P can be classified as a member of such or
such precise half-plane (half-space). ’

As a consequence, let Ky be an arbitrary element in 7", we compute the d + 1
surface areas (volumes) associated with K and we decide to pass to the neighboring
element of K through the edge (face) related to the negative quantity (we assume
that the neighboring relationships from element to element are known). Then the
so-defined element is used as the basis of the localization process and we repeat
the same procedure.

One should note that using a control space (see Chapter 1) enables us to pick
as the element Ky an element not too far from P, resulting in a low cost algorithm.

Remark 18.1 For meshes other than simplicial ones, the same method applies
while, in some cases, replacing the elements by simplices. Thus, the problem could
be significantly more expensive in terms of CPU time.
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Remark 18.2 Non conver domains lead to a tedious solution of the localization
problem. Indeed, it could be necessary to pass through a boundary in order to reach
the solution. Thus, the latter problem must be addressed which is not so easy.

Intersection processes. Similarly, surface area or volume computations may
serve to solve some intersection problems. Indeed, we define some adequate virtual-
elements whose surface area or volume signs allow the decision.

18.2 Mesh quality (classical case)

Relatively easy to define for simplicial meshes, the notion of quality must be care-
fully addressed for other types of meshes. In every case, several criteria may be
used to evaluate mesh quality.

18.2.1 Shape or aspect ratio

This notion is basically associated with simplicial elements (triangles! or tetrahe-
dra). The aspect ratio of a given simplex K is defined by :

Qi = oy e , (18.5)
PK
where hpqp is the element diameter, i.e., its longest edge while px is the inradius
of element K. Notice that this value varies between 1 to oo and that moreover
the closer Q is to 1, the better triangle K is. Indeed, Qx measures the so-called
degradation of element K. In two dimensions, we have :

h
QK = ag—Mp—K (186)
Sk
where pg is the half-perimeter of K and Sk is the surface area of K. Similarly,
in three dimensions, we have :

hmazS
QK = CmM (187)
Vi
where, now, Sk is the sum of the face surface areas and Vi is the volume of K.
In these expressions, « is a normalization factor which results in a value one for

the equilateral (regular, in three dimensions) simplex.
Exercise 18.1 Find the value of the normalization coefficients o of Relation-
ships (18.6) and (18.7).

Remark 18.3 In terms of computation, it is advisable to compute the inverse of
the above relationships. In this way a null surface (volume) element does not lead
to a numerical problem.

In Figure 18.6, we give a graphic impression of the way in which the quality of
a triangle, Relation (18.6), varies as a function of the location of the three vertices.

!See the next chapter for surface triangles.
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Figure 18.6: Variation of the aspect ratio as a function of verter C of triangle
ABC, given AB. Edge AB spans the interval [-0.5,0.5] along the z-azis (rear)
and C' is in the half-plane bounded by this axis. Left: quality function. Right: iso-
contour values of the quality function. For the sake of clarity, this figure displays
the inverse of the quality defined in Relationships (18.5) and (18.6) (Note that the
mazimum value 1 is obtained when C is at location (0, 5@))

18.2.2 Other criteria

Numerous quality functions can be used as an alternative way to determine the
quality of a given simplex. The simplest one is :

h?
O = ﬁz§ (18.8)

. . . . . . 3
In two dimensions, with # a normalization factor and h; = ” > L? where L; is
i=1

the length of edge i of triangle K. Similarly, in three dimensions, we have :

h3
Qk = ﬁ?’ﬁ (18.9)

- ,
where hy = 1/ 2= L?, L; also being the length of edge i of tetrahedron K.
i=1

Exercise 18.2 Find the value of the normalization coefficients B for the above
cases.

Remark 18.4 See the previous remark regarding the case where null elements
may exist.

Apart from the two above functions to appreciate the quality of a simplex, we
encounter numerous other ways. For more details about this, one may consult,
among others, [Cavendish et al. 1985], [Baker-1989b] or [deCougny et al. 1990] or
again [Dannelongue,Tanguy-1991] and a synthesis by [Parthasarathy et al. 1993].
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Before enumerating some of the possible quality measures (in three dimen-
sions), we introduce a few notations. For a given element K, with volume Vi, the
inradius is denoted by pg, the circumradius is rgx. The length of edge 7 of K is
L;, the surface area of face 7 is S;. We now introduce Sk =) Si, the sum of the
surface areas of the faces of K, A4, the diameter of K ie., hpoo = max L;, and
Pomin = rniin L; and, at lastly, L,eqn the average of the L;’s. Then, the quality

measures are as follows :

r . .
. —5, the ratio between the radii of the two relevant spheres,
PK

hmaa: hmi

eter (the shortest edge),

), the ratio between the circumradius and the element diam-

h R . .
722 or - the ratio between the edges with extremal lengths,

L]
hmz’n hmaw
v .
e ———— the ratio between the volume and the surface areas of the faces,

(3 522

h3 .
. %, the ratio between the average edge length and the volume,
K

® 0,40, the maximal dihedral angle between two faces,
® Opin, the minimal solid angle associated with the vertices of K.
with, for the two last measures, the following definitions :
Definition 18.1 The dihedral angle between two faces is the value
m & arccos(7iy, 7ip)

depending on the configuration of the two faces with respect to 7i;, the normals of
the faces under interest.

Definition 18.2 The solid angle at a vertez is the surface area of the portion of
a unit sphere centered at this verter bounded by the three faces sharing this point.

Exercise 18.3 Find the equivalent definitions in two dimensions (for those cases
where it makes sense). :

Exercise 18.4 Give the normalization factors resulting in a unit value for the
above quality measures (when it makes sense).
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Figure 18.7: Dihedral angle (top) and solid angle (bottom).

18.2.3 Simplicial element classification

The above quality criteria enable us to decide whether a simplex is good or not
In term§ of quality. It could be interesting to classify the bad-quality elements so
as to discard one or the other causes from which this bad quality results. This

tgsk is covered in the exercises (see also [George,Borouchaki—1997] where a detailed
discussion is given).

Exercise ;8.5 Shotq that, in terms of the geometrical aspect, 'there erist three
types Qf t?‘zangles (Hint : there are only two types of ll-shaped triangles). Show
the criterion leading to this classification without ambiguity.

Exercise 18.6 Similarly, exhibit the eight types of tetrahedral elements (Hint :

consider both the volume and the type of the element faces following the triangle
classification).

Exercise 18.7 Discuss how the above measures allow (or are not suitable in all
cases) for the element classification.

18.2.4 Non simplicial elements

In this section, we discuss the quality of quad, hex and pentahedral elements
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Quad. In two dimensions?, quads are usually appreciated through several quan-
tities including the so-called aspect ratio, skew parameter along with two ta-
per coefficients (one taper being related to one axis), see [Robinson-1987] and
[Robinson-1988]. Although quite natural for some peculiar geometries, the above
notions are not so well defined in a general context. Thus one can look for other
types of measurements. One idea could be to find in the above series of measures

hma:v

those which apply in this case. For instance, the ratio where A and Aoy

denote the smallest and the largest edges can be consirag'ed. Nevertheless, this
measure must be coupled with information about angles between two edges.

We would like to propose a new® formula which offers several advantages.
First, it looks like Relationship (18.7). Second, it appears to be an efficient way
to discriminate between the elements (in terms of quality). Then, negative or
non-convex quads are detected on the fly. Finally, only one measure is involved.
Thus, we propose the following :

hmaw hS

Ok =« < (18.10)

where a is a normalization factor (o = %), Smin 18 the minimum of the four
surface areas that can be associated with K. Indeed, these surface areas are those

of the four triangles that can be defined (review the way to decide whether a quad

4
is convex or not, Figure 18.1), hy = /5 L? with L; the length of edge 7 of K and
i=1

hmaz is the longest length among the four edges and the two diagonals. In practice,
we compute Spin and if this value is correct, we pursue the test, otherwise the
quad being invalid, it is useless to continue.

Remark 18.5 Another way to judge a quad is to consider that its quality 1s that
of the worst triangle that can be constructed based on three of the quad vertices.

Remark 18.6 Following Remark 18.3, it is advisable to compute the inverse of
the above quality function (to avoid a possible overflow when one of the surface
areas involved is null).

Figure 18.8 gives an impression of how the measure of Relation (18.10) varies
as a function of the geometry of the analyzed quad. In this respect, the classical
aspect ratio, skew parameter and taper coefficients as well as the global measure
are displayed for an arbitrary variation.

Preliminary remarks about hex and pentahedral elements. Examining
the quality of the element faces only gives a rough idea of the element quality.
Indeed, the case of the sliver tet where the four faces are well-shaped while the
volume is (almost) zero clearly indicates that the face qualities alone are not suf-
ficient to qualify an element. In addition, quad faces are not necessarily planar

2See the next chapter for a surface quad.
3As far as we know.
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Figure 18.8: Variation of the quality function in a quadrilateral (edge AB is fized).
Optimal quadrilateral is denoted by ABCD. i) taper measure : points C' and D
vary along the dashed line. it) skewness measure : the point C varies along the
curcle of radius 1 = ||AB|| (edge CD is parallel to AB). iii) aspect ratio measure :
the edge CD (along the y-axis) varies in the interval [0,5]. iv) global measure :
points A, B and D are fired, point C varies in the interval [0,5] x [0, 5].
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thus introducing some extent of torsion that must be taken into account to qualify
an element with such a face. Thus, other measurements are needed which are not
purely two-dimensional.

Quad face. In advance (see Chapter 19), we introduce the roughness (or smooth-
ness) of a quad face. We consider the two diagonals of the quad ABCD, e, AC
and BD and we consider the two dihedral angles that are defined in this way.
Then, the smoothness of ABCD is :

Sapcp = min(Pac,Ppp), (18.11)

where

n i 14+ (7 7
Pac = 1+ <nABQC,nACD> and Ppp = ( ABQD BCD) ,

are the two edge planarities involved in the construction. In these relations, M4 p¢,
for instance, denotes the unit normal related to triangle ABC'.

In practice, the face smoothness measure will be used to quantify the torsion
of a three-dimensional element.

Hex. As there is not a unique formula as for a quad or different criteria for
analysis, it is possible to appreciate the quality of an element by. observing.the
quality of the various partitions of it into tets. The worst tet then gives the desired
answer which, combined with the element face qualities, enables us to conclude.

Pentahedral element. The previous idea can also be retained, the element
analysis is based on a partition by means of tets.

18.3 Mesh quality (isotropic and anisotropic case)

The previous discussion allows mesh appreciation when the only concern is the
shape aspect of the elements in the mesh, i.e., without other considerations (such
as metric specifications). We now turn to a different view point. In what follow:s,
a metric map is supplied and the mesh is evaluated to decide if it confoxfms to this
specification or not. In other words, the problem concerns the app.recu.itlon of a
given mesh with regard to some specified size (isotropic case) or directional and
size prescriptions (anisotropic case).

18.3.1 Efficiency index

Let I; be the length of the edge ¢ with respect to the given metric. The .eﬁiciency
inder of a mesh is defined as the average value of the squares of the differences
to 1 of all mesh edge lengths (let na be the number of mesh edges), hence :

na

r=lo— Y (1), (18.12)
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with e; = [; if; <1, ¢; = 1/ i > 1.

This coefficient seems adequate for a quick estimation of the mesh quality with
respect to a given metric map. Table 18.1 presents the sensitivity of this measure
in the case of an isotropic map, { being constant for all mesh edges (which is highly
unlikely although it shows the effect of the size variation on 7) and indicates that
the edge lengths are ! times too long or too short (a value I = 5 or [ = 0.2 means
that all edges are 5 times too long or 5 times too short). The optimal valueis{ = 1
and in fact, any value of r greater than 0.91 ensures a reasonable mesh quality
with respect to the metric map.

l 100 20 10 5 3 2 V2 1.3 1.2 1.1 1
7 10.019 | 0.097 | 0.19 | 0.36 | 0.51 | 0.75 0.91 | 9467 | 9722 | 9917 [ 1.

Table 18.1: Sensitivity of the efliciency index.

The reader could consult this table in order to interpret the numerical results
obtained in a given governed problem.

18.3.2 Element quality

In this section, we turn to a general point of view.

Simplicial elements. In this case element quality reduces to the above aspect
ratio. When the metric map the mesh must conform to is isotropic, we return to
Relation (18.6) or equivalent relations. In the case of an anisotropic metric map,
the notion of aspect ratio is more delicate. In fact, an approximate expression can
be used. For instance, in two dimensions, Qg the quality of triangle K, can be
defined as :

- i
Qk = 11;11;15)(3621( , (18.13)
where Q% is the triangle quality in the Euclidean space related to the metric
specified at any vertex P; of K. To evaluate the quality Q’K of K, one has just to
transform the Euclidean space associated with the metric specified at any vertex
P; in the classical Euclidean space and to consider the quality of the triangle K
which is the triangle image of K. This means that -

Q% = Qx, . (18.14)

Let (Mi)ls,-sg be the metrics specified at the vertices (P;)1<;<3 of K. We
have : T

M =PiAPTT 1<i<3, (18.15)

where P; is the matrix enabling us to transform the canonical basis into the basis

assoclated with the eigenvectors of M; and A = ( /\6‘1 )\0 ) is the diagonal
‘ i,2

matrix formed by the eigenvalues of M;. Let (hi:j)lsisjs,g be the quantities
defined by hi; =1/, /Ai j; these values represent the unit length in the direction
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of the eigenvector related to the eigenvalue Aij of M;. The rpatrix T trar.xsforming
the Euclidean space associated with M; in the usual Euclidean space is defined
by :
’ Ti = HiPi, (18.16)
. . 1/h; 4 0 .
where H; is the diagonal matrix ( 0’ his ) As a result, the vertices of

K; are H;P; Py, HiP; P> and H,;P; P, respectively, and we have :
h/

Lo > PR

i 1Sj<k<3 - (18.17)
Ok =« Det(H;P; PP, H:;P; P, P3)

with o the same normalization factor as in the classical case, and

=
Pz = | max |IH:PiP; Pl

However, as
Det('P,) =1 ’

Det(Hi) = /A hi2 = \/Det(M;)

and . ) ;
”H{Pz‘PjP]:” = \/tPijM;'Pij )

we have
max \/*P; Py M;P; Py Z ‘P P M Pj Py
A 18j<k<3 1<j<k<3 818
Q1 =301 = 5 : (l ’ )
K \/ Det(M;)Det( P, Py, Py P3)

Exercise 18.8 Show that the above relation reduces to the classical aspect rafio
formula when we consider the case of isotropic metric maps (i.e., the corresponding
matrices are identity matrices with a given ratio).

Elements other than simplices. A quad with unit length edges a.und v/2 length
diagonals are the targeted values. In practice, t.hese values are §uﬂic1ept to aptpre(i
ciate the element (and no angle consideration is needed). Similar notions exten
to hex and pentahedral elements.

18.3.3 Optimal mesh

A formal notion of an optimal mesh is relatively tediogs to‘ define. This ql{zstlzg
was already raised in Chapter 1, while noticing that optimality must be consi efr 5
with regard to the reason for which the mesh has been constructed and therefor

with regard to its further use.

Given Qg a quality measure for the element K in mesh 7, we have previously |

defined the mesh quality as :

=max Qg .
Qr KeT
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In a later section we will see that other characteristic values may be suitably used
to analyze a mesh, such as the mean of the element qualities, the distribution of
the elements based on their quality, etc. Whatever the choice, it may be noticed
that the notion of optimality lies in theory in a family of meshes. For instance,
given several meshes, one can say that the optimal mesh is that for which the
chosen measure is optimal (minimal if we return to the usual definition about the
shape of the elements in an isotropic simplicial mesh). In practice, the size (the
number of vertices or elements) must also be used as one of the parameters in the
analysis (so as to minimize the computational cost in a numerical simulation using
this mesh, for example). Therefore, it could be stated that an optimal mesh is
that for which the chosen quality function is optimal while, at the same time, its
number of vertices (elements) is minimal.

In practical terms, it may be concluded that the optimal mesh is the one which
gives a suitable compromise between various criteria. The problem then reduces
to only one quality measure. In fact, in the isotropic case in two dimensions and
for a mesh composed only of triangles, a quality value of 1 (i.e., close to 1) implies
that :

¢ the elements in the mesh have a quality value close to 1,
e the number of elements is minimal.

A quality value close to 1, for a triangle, implies that its edges have a length close
to 1 (or a constant value k). For a given size map, we again see that this means
that the edge lengths are close to ] (with respect to this size map). Therefore, the
definition we propose now is rather natural (and intuitive) :

Definition 18.3 A unit mesh is q mesh with unit length edges.

In two dimensions, a unit triangle (with unit edges) is optimal (it is equilateral)
while this is not the case for a tet. In fact,

Remark 18.7 A triangle with unit length edges is necessarily a good element
whose surface area is ﬁg. In contrast, a tet with unit length edges* may have

@ volume as small as we want thus corresponding to a ill-shaped element (the
mfamous sliver ).

Following this remark, the notion of optimality is made more precise. It in-
cludes a length aspect combined with a surface (volume) aspect.

Definition 18.4 An optimal simplicial mesh is a unit mesh in which the element

surface areas are 3@ in two dimensions or in which the element volumes are g
i three dimensions.

Remark 18.8 Notice (again) that opltimality is here related to a quality measure
with regard to a size map and not directly related to the number of elements (see
the above remark about this aspect).

*Consider a tet where four edge lengths are one and where the two other edge lengths are

strictly /2. The edges have therefore a length “close” to 1 and nevertheless, the tet volume is
nul] !
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After the two above definitions together with the previous remarks and in
practical terms, the efficiency index is a consistent way to judge a mesh in two
dimensions. In three dimensions, the same analysis must be based on edge length
appreciation and on the aspect ratio of the elements (in order to see whether the
element volumes are consistent or not).

Remark 18.9 For elements other than simplices, unit edge length could be a rea-
sonable requirement as coupled with other considerations in some cases (for in-
stance \/2 length diagonals for a quad as previously mentioned).

18.3.4 Remarks about optimality

Discussing optimality may raise to some interesting issues. Various questions may
be discussed. For a given problem (based on what data are known) :

e is there a mesh with unit quality ?
o is there a mesh with minimal size ?
For an a priori given number of elements :
e is there a mesh having this number of elements and, if so, what is its quality ?

Note, in practice, and mostly in three dimensions, that the objective is to have
good quality meshes (z.e., with a quality value close to the theoretical value) and
that a mesh not too far from this abstract target is generally considered to be
satisfactory.

18.4 Tools for mesh optimization

Various local tools can be used for optimization purposes. The most popular
include the following :

¢ node relocation,

e edge collapsing (to remove a vertex),
o edge swapping,

o face swapping,

o vertex degree relaxation (which, as will be seen, can be achieved by a judi-
cious combination of the three above tools),

o edge splitting (to add a vertex), etc.

Actually, mesh optimization tools can be classified into two categories. Those
maintaining mesh connectivity (i.e., acting on the vertex positions) and those
acting on mesh connectivity (while the vertex locations are preserved).
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18.4.1 Optimization maintaining the connectivities

In this category of local tools, we basically encounter those methods which result
in moving the element vertices. All methods that can be developed in this sense
can be seen as a variant of the well known Laplacian smoothing, [Field-1988],
[Frey,Field-1991].

Basically, a process acting on node relocation concerns the so-called balls. Let
us recall that :

Definition 18.5 Let P be a verter in mesh T, the ball associated with P is the
set of elements in T having P as a vertez.

A ball could be a closed ball (the vertex is an internal vertex) or an open ball
(the vertex is a boundary vertex). In the following, we only consider closed balls.
The simplest node relocation method can be written as -

1 n
PI: ;l- E Pj, (1819)
i=1

where the P;’s are the vertices of the ball other than P. A first variation consists
in adding some relative weights, thus, we obtain

(18.20)

where a; is an appropriate weight associated with point P;.

Nevertheless, before going further, we propose replacing the above scheme by
a relaxation method. In fact, efficiency reasons can be involved along with the two
following observations.

Remark 18.10 Above point P’ (one or the other) could fall outside the ball in
the case of a non-conver ball.

and, as a consequence

Rem‘ark 18.11 Moving a given point to its “optimal” location may result in an
tnvalid mesh, thus cancelling the operation. A non-optimal relocation, however,
may improve the mesh quality to some degree.

' Hence, an auxiliary point, P*, is introduced. For instance such as in Relation-
ship (18.19) :

1 n
pP*= _ P;
- ]E_l i (18.21)
and a relaxation scheme is defined as :
P=(1-w)P+wpP*, (18.22)

where w is the relaxation parameter®. Following this method, we now introduce
various vertex relocation methods.

51t seems advisable to set w close to one in two dimensions and smaller in three dimensions.
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Laplacian smoothing. The relaxed variant of this well-known method uses
auxiliary point defined in Relationship (18.21). Following the previous remark, an
explicit check of the positiveness of the surface areas (volumes) is required.

Remark 18.12 Classical optimization strategies can be used for smoothing pur-
poses. A cost function is defined which is assumed to be sufficiently smooth. De-
scent directions are then exhibited and the process is governed as in a classical
optimization process, [Freitag, Gooch-1997]. It should be noted that most of the
quality functions described above are non differentiable thus leading to a tedious
optimization process.

Weighted smbothing. In this case, a weight is associated with each point mak-
ing it possible to define the auxiliary point by

n
2 P
Jj=1
n )

> o

Jj=1

P = (18.23)

where an appropriate choice of the a;’s must be made (see below).

Smoothing based on element quality. Provided with a simplicial mesh, we
consider the ball of a given point P. Let f;j be the external edges (faces in three
dimensions) of this ball. Then the elements in the ball are nothing more than the
combinations (P, f;) (where j = 1,n, n being the number of elements in the ball).
Thus an ideal point J; is associated with each fj in such a way as to ensure an
optimal quality (aspect ratio) for the virtual element (I}, f;). Using these points,
we define the smoothing process as :

(18.24)

where the a; can be defined as follows :

e a; = 1, the weights are constant and we return to the classical method,

e aj = 0, for every element of the ball except for the worst one (in terms of
quality) for which we take a; = 1,

® a; = Qf,, the weights are related to the quality of the elements,
e a; = Q%{j, the weights are related to the square of the element qualities,

e or, more generally, o; = g(Qk,), meaning that the weights are related to a
certain function g of the quality of the elements in the ball.

This method can also be applied in an anisotropic case by using the relevant
definition of the quality, which leads to a different positioning of the points I;.
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Sr’noothing basgd on edge lengths. In this case, the key-idea is to define the
I’s so as to obtain as far as possible a unit length for the edges emanating from

these points. The unit length notion is based on the metric map which is assumed.
Thus, a relation like :

P _
I =P+ =L,
i=F; ﬁ—IIPj T (18.25)

where thf; Pj’s are the vertices of the external faces in the ball and Ej 1s the
average size related to the edge P; P approaches the desired result. Indeed, the

above relation is nothing more than :

w

I = P+ —L—
O D

(18.26)

where {a(P; P) is the length of the edge P; P evaluated in the metric M associated
with the edge.

Non simplicial elements. To some degree, the above methods extend to this
case. In particular, for a quadrilateral element, an edge length based smoothing
operator must lead to unit edge lengths and a /2 length for the two diagonals of
the elements (as previously indicated).

Global smoothing. The above discussion concerns a local smoothing procedure
where the points are considered one at a time. A global smoothing procedure can
be developed leading to the solution of a global problem. It is, however, uncertain
whether such a method is really efficient.

Topologically driven node relocation. The objective is now to relocate a
vertex and, in addition, to

® move it away from a given edge,
¢ move it away from a given plane,
¢ move it along a given edge,

® ctc.

Any method of the above type can be used by adding the constraint during
the analysis of the criterion that must be optimized. In some cases, the goal is
ot to optimize the mesh but just to maintain some degree of quality, meaning
that the main concern is to remove an undesired topological pattern rather than
to effectively optimize the mesh.

Exercise 18.9 Reuvisit the smoothing techniques in the case where a ball may be
an open ball (for a boundary vertez for instance).
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18.4.2 Optimization maintaining the vertex positions

We turn to various local tools that leave the vertex location unchanged.

Edge swapping in two dimensions. Edge swapping®, or simply swap, is a
rather simple topological operation leading to swap the edge shared by two el-
ements. In the case of triangular elements, the swap is possible since the quad
formed by the two adjacent triangles is a convex polygon. Swap can also be per-
formed in quad meshes or mixed meshes (whose elements include both triangles
and quadrilaterals). In general, a swap procedure must first be validated to ensure
that the resulting mesh is still valid and, second, be evaluated with regard to the
optimization criterion that must be enhanced.

Edge swap can be seen as an optimization procedure in itself or it can be
used as one ingredient in some more sophisticated processes (node removal, degree
relaxation, etc.).

A VAN
(LT )N

\———\ /

Figure 18.9: Edge swapping for a pair of adjacent triangles (left-hand side) and
in the case of adjacent quads (right-hand side) where two solutions are possible a
priori.

Generalized edge swapping (the three-dimensional case). In what fol-
lows, only simplicial meshes are discussed. Within this context, we first consider
the extension to three dimensions of two-dimensional edge swapping. This leads to
a face swapping where the face common to two tetrahedra is removed, an edge is
created and the two-element initial polyhedron is replaced by a three tetrahedron
polyhedron (note that only convex polyhedra can be successfully dealt with).

The inverse local transformation can be defined leading to replacing three tetra-
hedra sharing an edge by two tetrahedra by suppressing the edge considered. Ac-
tually, a more general transformation corresponds to this operation. It acts on a
so-called shell. Recall :

Definition 18.6 Let af be an edge in mesh T, the shell associated with o8 is the
set of elements sharing this edge.

As for balls, a shell could be opened or closed. In what follows we only discuss
the case of closed shells where the edge of the shell is an internal edge.

Then the key-idea is to consider such shells. Formally speaking, the generalized

edge swapping operator leads to considering all the possible triangulations of a

6 Also referred to as diagonal swapping or diagonal flipping.

MESH OPTIMIZATION 605

pseudo-polygon associated with the edge. The vertices of this polygon are defined
by the shell vertices other than a and B, the two endpoints of the edge defining the
shell. Figure 18.10 shows these possible remeshings in the case of a five-element
shell, every triangulation being formed by joining all the triangles of the polygon

with both o and 8, so as to define the pair of tetrahedra which are part of the
desired mesh.

P5 P5 P5
. /
P1 1 P1
P4 P4 P4
Py Py P Py pp
Pl P1
Py
P2 P2 P3

Figure 18.10: The five triangulations related to a five-point polygon.

The Catalan number of order n

2n — 2)!
Cat(n) = _ﬁ_yfl(n — 1))'

gives the maximal number of topologically possible triangulations, N, of a shell”
of n elements. Indeed, we have

Ny = Cat(n-1). : (18.27)

Exercise 18.10 Establish the previous relation.

n 314 5] 6] 7 8 9 10 11 12 13
No |1 ]2 51442132429 1,430 | 4,862 | 16,796 | 58,786
Tr, |1 14]10(20 35| 56| 84 120 165 220

Tabl(? 18.2: Number of topologically different triangulations that are valid as a
function of the number of vertices in the polygon related to one edge.

7 X X X . . .
The t?pologlcdly possible solutions in three dimensions are constructed by enumerating all
the two-dimensional geometric valid remeshings of a convex (bBlanar) melovemm el o a0
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Table 18.2 gives N,,, the number of possible triangulations as a function of n. It
also indicates 7'r,, the number of different triangles in each possible triangulation.
In this enumeration, the validity of the triangulations is not considered (only the
topological aspect is taken into account).

Remark 18.13 As previously mentioned, the swap procedure requires that the
polyhedron under treatment is convex for a two or three element pattern while this
requirement is not strictly needed for patterns involving more than three elements.
Indeed, the swap must be validated by checking explicitly the positiveness of the
element volumes that are concerned.

Remark 18.14 The generalized swap is a tedious problem for elements other than
sumplices.

Edge collapsing. Provided with an edge, af, we replace this edge by only one
point A. Formally speaking, this leads to positioning a on 3, or conversely or
again finding a point location between « and 3. Figure 18.11 shows the tl}ree
possible solutions on an example. From a practical point of view, it is sufficient
to check if the ball of point A, resulting from the reduction, is valid. To this end,
we examine the shell o3 and we check the validity of the balls of o and B when
these two vertices are replaced by the point A.

This operator may be classified among the geometric operators as it maintains
the connectivities, if the new connections to A are seen as the “union” of the
former connections to a and S. '

>

Figure 18.11: Edge collapsing. The initial pattern can be replaced by three. different
configurations, vertex (3 is collapsed with verter a, verter a is collapsed w'zth yertex
B or these two vertices are collapsed using vertexr A, for example the midpoint of
the initial edge.

MESH OPTIMIZATION 607

Degree relaxation. First, we give the definition of the degree of a mesh vertex.

Definition 18.7 The degree or the valence of a mesh verter is the number of
edges® emanating from this point.

We consider the edges and not the elements because in the matrices used in finite
element calculus and for P! simplicial meshes, the edges determine the matrix
bandwidth.

Now the question is deciding what an optimal degree is. In two dimensions,
a value of six is desired for simplicial meshes while a value of four is optimal for
quad meshes. In three dimensions, a value of twelve allows for tetrahedral meshes®
while six is the optimal degree of a vertex in a hexahedral mesh.

A point with a degree less than the targeted value is said to be under-connected,
while a point with a degree larger than this value is said to be over-connected. Note
that the same notion applies to an edge.

Relaxing the degree of a mesh consists in modifying the vertex (or edge) de-
grees, by means of topological operators, so as to tend on average to the targeted
value, see [Frey,Field-1991].

Remark 18.15 Optimizing a mesh with bad verter degrees may result in poor
results. This means that the optimization tools are penalized when dealing with
such situations. On the other hand, optimization tools may lead to nice results
when a degree relazation has been carried out beforehand.

ll-constrained entities. This notion applies to vertices (as previously seen) as
well as to edges, faces or elements, which will now be discussed.

Definition 18.8 A triangle is said to be over-constrained if two of its edges are
members of the domain boundary. Similarly, a tet with three boundary faces is
over-constrained.

Thus, in terms of edges or faces (extending the previous definition to elements
other than simplices), we have the following :

Definition 18.9 An internal edge is said to be over-constrained iof its two end-
points are members of the domain boundary. Similarly, an internal face whose
extremities are in the boundary is over-constrained.

For most problems, such ill-constrained entities must be avoided. Thus, optimiza-
tion tools can serve to suppress this kind of pathologies.

Exercise 18.11 Consider again the modification operators when the shells are
opened (i.e., those associated with a boundary edge).

81t is also, in two dimensions, the number of elements sharing the point.
9This value corresponds to a ball with 20 optimal elements, i.e., the triangulation by a regular
icosahedron of the space centered at the point defining the ball.
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18.4.3 Non-obtuse mesh

This point concerns simplicial meshes in two dimensions. Non-obtuse meshes are
required for some particular applications. For instance, a problem solved by means
of a finite volume method takes advantage of non-obtuse meshes. To specify the
notion of a non-obtuse mesh, we firstly give the formal definition of such a mesh.

Definition 18.10 A two-dimensional simplicial mesh is said to be non-obtuse if
it does not include any obtuse angles, such angles being defined by the pairs of
edges sharing a vertex.

Figure 18.12: Obtuse and non-obtuse meshes. The cells associated with the trian-
gles sharing a given vertezx are displayed. As mesh is non-obtuse, the cell around
the point is fully included in the ball of this point (left-hand side) while, on the
other hand, it has a part outside this ball (right-hand side) when the mesh is obtuse.

As mentioned earlier, non-obtuse meshes are of special interest in some appli-
cations. This is due to the fact that the cells around the element vertices are fully
included in the corresponding balls. Note that the cells are constructed from the
perpendicular bisector related to the element edges (Figure 18.12). The fundamen-
tal property is the orthogonality of these cells and the current mesh (more precisely
the mesh edges and the cell edges are orthogonal). Hence, this nice feature coupled
with the internal aspect of the cells can be a benefit for some problems.

Remark 18.16 We return here to the Voronoi cells , the duals of the triangula-
tion (see Chapter 7) only in the case of a Delaunay mesh. In this respect, one
could note that even a Delaunay mesh is not necessarily a non-obtuse mesh. See,
for instance, Figure 18.13 where a point outside the circle ensures the Delaunay
property but could be outside the two lines depicted in the figure thus resulting in
an obtuse angle.

Clearly, a non-obtuse mesh allows the construction of cells enjoying the above
properties (i.e., an orthogonality property while entirely inside the domain!®).

19Note that defining the cells around the vertices by means of the median lines results in cells
fully inside the domain but the orthogonality feature is lost.
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Thus, given a mesh resulting from such or such a method, it could be Interesting
to develop an algorithm that allows us to suppress the obtuse angles (if any).

|
\
|
I

Figure 18.13: Given an edge AB, we define the circle whose diameter is AB. Then
we construct the two lines orthogonal to AB passing through A and B. This results
in three regions. The interior of the circle, the exterior of this circle exterior to
the two above lines and the exterior of this circle inside the two lines. Clearly a
point like Py (or Py) leads to an obtuse triangle and a point like P3 leads to a
non-obtuse triangle.

A precise analysis of Figure 18.13 can be fruitful to define an algorithm based
on local modifications that makes it possible to suppress the obtuse angles.

A rough idea of the method could be to process all balls in the mesh (see
Definition 18.5). Let P be the vertex defining a ball, we consider the edges external
to this ball (thus, these edges act as the edge AB in Figure 18.13). We define the
ftircles and the two orthogonal lines associated with these edges to exhibit a region
Intersection of the suitable area where P can be located. If this region is non
empty, then P is relocated inside and all the elements in the ball are non-obtuse!!.
Otherwise, a more subtle process must be defined. For instance one can try to
move A and/or B along AB so as to obtain a smaller edge thus resulting in a
smaller circle. Note also that vertices opposite a boundary edge have some degree

of rigidity. To overcome this fact, points can be required to further subdivide the
boundary edges.

Remark 18.17 In the above method, essentially based on heuristics, no proof of
convergence is given. Nevertheless, careful use of the classical optimization tools
governed by the previous scheme, results in the desired solution in most cases.

N Eor the sake of simplicity, we use the term non-obtuse triangle to describe an element whose
angles are non-obtuse.
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To conclude, one should note the analogy with the condition of Delaunay ad-
missibility for an edge as described in Chapter 9.

Delaunay triangulations and non-obtuse meshes. As pointed out, a Delau-
nay triangulation in two dimensions is not necessarily a non-obtuse triangulation.
In fact we have a property of maximization about the minimum angle included in
a pair of adjacent triangles and not the opposite property. Nevertheless, a method
for point placement can be found in [Chew-1989b] which results in a bound for the
angle of the mesh element in the case of a Delaunay strategy for vertex connec-
tion. Given a domain, i.e., a polygonal discretization of its boundary, a Delaunay
algorithm based on the boundary vertices and using as internal points the circum-
centers of the elements allows a mesh where the angles are bounded. Note that
when a circumcenter falls outside the domain, the corresponding boundary edge
is subdivided by introducing its midpoint.

Following this remark where an upper bound on the angles exists, one could
observe that a Delaunay triangulation is not necessarily non-obtuse. Conversely,
a non-obtuse triangulation is necessarily a Delaunay triangulation.

Now, we look at what could be the extension to three dimensions of the notion
of a non-obtuse triangulation. Before introducing a reasonable characterization,
we return to the two-dimensional case. Given a triangulation, if we consider the
circles of minimum radius (the smallest circles) that enclose the triangles, then for
a non-obtuse triangulation, we have the following properties :

e the smallest circle enclosing a non-obtuse triangle is its circumecircle,

e a non-obtuse triangle is self-centered, meaning that its circumcenter falls
inside the triangle.

Thus, based on the above property, a triangulation in three dimensions is termed
non-obtuse if all of its tets are self-centered.

18.5 Strategies for mesh optimization

First we compute the initial quality of the point, the edge, the element or the set
of such entities included in the initial configuration. We then compute the same
quality for the entity or all the entities related to the solution or the different
possible solutions based on a simulation. Finally, we decide to effectively apply

the optimization process, as a function of the quality evolution. Several strategies A

can be chosen to govern the decision. The process is applied :
o if the resulting configuration is strictly improved,

o if the resulting configuration is improved to some extent,

e in the case of multiple possible solutions, by selecting the first valid solution }

occurring in the simulation or by choosing the best solution among all,

MESH OPTIMIZATION 611

e and so on.

Another issue consists of defining the way in which the operator is used. Qne
can decide to process

o all the mesh entities starting from the first and going to the last,

e only some entities selected ad-hoc (using a heap based on a relevant criterion,
edge length if edges are to be processed, or using a quality threshold, etc.)

b

e all the entities, or only some of them, randomly picked,
e and so on.

The question is now to design an automatic and global optimization method
by deciding on a strategy for both the choice of the local operators and the order
in which to use them (cf. hereafter), assuming that the strategy related to a given
local operator is fixed.

Several observations can be helpful in defining such a strategy. Assuming that
a local operator sequence is given, a stopping criterion must first be defined. In
fact, several classes of criteria are possible, as indicated below. The process is
repeated as long as :

e the mesh is affected by one operation,
¢ the mesh is affected by one or several operations,

e a given threshold (in terms of quality) has not been achieved,
e and so on.

Once this has been decided, a strategy must be defined. There is some flexibility
regarding the possible choices. Indeed, one can

o apply every local operator to all the entities concerned by its application,
and then turn to a different operator,

* consider a given mesh entity and apply all the possible local operators before
turning to a different entity,

¢ combine the two above approaches.

It is also possible to classify the pathologies following the degree of optimization
that could be expected and to deal with the mesh entities accordingly. In other
words, the worst entities are dealt with first.

Remark 18.18 An immediate question about an optimization process is to know
if the optimum has been reached. In practice, the purpose is to improve the mesh
and achieving the optimum or not remains a purely theoretical, non trivial issue.
For example, the presence of wells, the fact that the function in optimization is
d?ﬁerentz’able or not, etc., are parameters that act on the conclusion. From a prac-
{lcal pownt of view, using some degree of randomization in the possible choices may,
‘n-most cases, avoid the cases where a well is found. On the other hand, looking

Jor a strict optimum may turn out to be costly and, ultimately, for a relatively little
gain in efficiency.
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18.6 Computational issues

In this section, we discuss some computational aspects related to the above tools.
First, we consider how to construct the balls or shells which, as previously seen,
are the local supports of the procedure. Then we give some indications about how
to develop optimization tools.

Ball construction. For a simplicial mesh, we refer the reader to Chapter 2
where some solutions resulting in a ball construction are described. For other
types of meshes, similar methods can be defined.

Shell construction. Again Chapter 2 presents a method for shell construction
in simplicial meshes that can be extended to the other mesh types.

Choice of a criterion. As previously indicated, there may exist several criteria
for quality evaluation. In such a case, it is necessary to decide which criterion to
choose. In practice, if we take two different criteria which vary in the same way
(i.e., both measure the quality in any case), optimizing one of these automatically
leads to optimizing the other.

Computing a criterion. When the simulation of a given optimization tool
includes a large number of possible solutions (as is the case when considering the
generalized swap for a shell), CPU cost considerations impose the optimization of
the “simulation-effective application” pair. The operations used in the simulation
are of a purely geometric nature (surface or volume computations, element quality
evaluations, before and after the process in question has been applied), while the
effective application of the operator leads to defining the new elements and the
new neighborhood relationships (if these must be maintained) that can be affected
in the process. A careful computer implementation of these two phases enables us
to minimize the global CPU cost of the whole process.

In order to reduce the cost it could be noted that some quantities involved in a
given optimization process, while part of the global evaluation of the configuration,
remain constant during the process (for instance the external faces of the ball of
a given point P are not affected by any relocation of point P. In this example the
neighboring relationships are also preserved).

General scheme for a local optimization procedure. Using an optimization
operator is quite simple. First, its result is simulated regarding both the validity
and the quality evolution of the elements concerned. If an improvement is observed
in the simulation phase, the simulated output is retained. When several solutions
are possible, the best one is selected (or the first possible solution which has been
observed). Thus, instead of computing the full criterion, one could look first
at the surface (volume) and if it is negative, there is no point in pursuing the
computation. As a consequence, when numerous criteria of this type must be
evaluated, one could first compute all the surfaces and, if one of these quantities
is wrong, stop the process.
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Exercise 18.12 Return to Table 18.2 and examine how the CPU cost could be
minimized.

18.7 Application examples

In this section, we first indicate how to judge a mesh and then we give some
particular examples of mesh optimization.

18.7.1 Mesh appreciation

Mesh analysis is a crucial and difficult point when investigating meshes with a
large number of elements, especially in the three-dimensional case. Two com-

plementary approaches can be followed : a graphic visualization and a purely
numerical analysis.

Both methods have advantages and drawbacks. First of all, in some cases,
using graphic software could be helpful to give some idea of the appearance of
the mesh aspect or its quality. Nevertheless, despite the powerful graphic software
available, this method of mesh appreciation could be unsuitable when meshes with
a large number of elements are considered (the screen is too black) or, simply, for
three-dimensional meshes. In addition, the CPU time necessary to display a large
mesh could be rather long.

On the other hand, numerical analysis of a mesh must be defined carefully.
T'he aim here is to find one or several pertinent criteria that are easily readable
and reflect unambiguously the aspect of the mesh one wishes to examine.

Visualization. For efficiency, graphic visualization must offer numerous tools
which allow the easy examination of the mesh under consideration. In addition,
these tools must be incorporated in a system which must be as user-friendly as
possible.

In terms of mesh correctness, a shrink applied to the mesh elements is a fast
way to detect any overlapping or defaults of connectivity. Nevertheless, it is not
S0 easy to detect a negative surface (volume) element. One possible way to make
this check possible is to associate a color with the element, this color being related
to an oriented normal.

In terms of quality functions, using colors and cuts (in three dimensions) allows
us to display some isocontours of these functions.

Numerical appreciation. The numerical verification of meshes is based on
the computation of quantities associated with them. For example, in terms of
mesh correctness, it is of interest to be sure that both the surfaces or volumes of
elements are all positive and that mesh connectivity is right. In terms of mesh
quality, element quality extrema, average element quality and histograms showing
the distribution of elements according to their quality give a quick understanding
of the mesh under consideration.
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Positiveness of element surface areas or volumes is obvious to check. by simply
computing these quantities. To check whether or not a mesh i's correc.t in terms of
connectivity, one has to construct the adjacency graph associated with the mesh
(i.e., to establish for every element the list of its neighboring elements) and to
verify that this graph is closed!?.

Mesh quality is easy to obtain by computing the quality of all the.entities
concerned based on the quality function we are interested in. Then various nu-
merical values (extrema, mean value, adequate norms, etc.) as well as histograms
of distribution of the analyzed entities according to their quality can be used.

18.7.2 A few examples

We now give an example in two dimensions (for the sake of clarity) th’atlcor.lcgr.ns
the optimization of a triangular mesh. Figure 18.14 showg the mesh in its 1n1t13.11
configuration (left-hand side) and after being optimize.d (right-hand Slde).. In this
case (in two dimensions), a simple view makes it possible to see the efficiency of
the optimization process since the mesh includes a reasonable number of elements.

Figure 18.14: Optimization of a mesh in two dimensions. Tﬁe brute mesh
(quadtree) of the domain (left-hand side) and the optimized mesh (right-hand side).

To demonstrate the effect of shape optimization in three dimensiogs, we ob-
serve the distribution of the mesh elements with regard to thel.r quality value.
As a visualization has no real interest, Table 18.3 presents various parameters
characterizing the mesh before and after optimization. The example given (after
[George,Borouchaki-1997]) corresponds to a tet mesh.

12For a non manifold mesh, a more subtle method must be considered. For instance, an edge
on a surface mesh could be shared by more than two elements.
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Q 1-212-3[3-10]>10 target Qr ne np
before 63 21 12 3 8.30 755 | 3,917 | 1,004
2,475 824 486 132

after 72 21 6 0 8.30 | 11.44 | 3,608 | 1,015
: 2,620 759 224 5

Table 18.3: Shape quality of the tet mesh before and after optimization.

Table 18.3 gives, in the first line, the distribution, as a percentage of the total
number of elements, of the elements according to their quality and the ranks from
I to 2, from 2 to 3, from 3 to 10 and larger than 10. In the second line, we give
the number of corresponding elements. The value denoted as target is the quality
value of the best possible tet that can be created based on the worst face in the
domain boundary. Q7 is the global quality value of the mesh, i.e., the value of
the worst element, ne and np respectively note the number of elements and the
number of vertices in the mesh. The last two lines show the same quantities for the
mesh after optimization. A rapid examination of these figures gives an immediate
impression of the efficiency of the optimization process.

Specifically, one can see that Q7 is close to target (i.e., in the same range) and
that the percentages of elements in the various quality ranges have been changed as
desired. Nevertheless, there are still some elements with a relatively poor quality.
This fact is generally due to two reasons. The worst quality (the value target)
is not necessarily attainable if the domain, for instance, is such that moving the
point related to the worst face in the boundary is not possible (or the required
swaps at some vicinity of this face are not permitted). Moreover, the optimization
process, due to its computer implementation in terms of strategy, does not always
lead to the optimum (as previously indicated). Note also that the optimization
procedures have been applied only on the internal vertices and edges in the mesh,
the boundary mesh entities remaining unchanged.

For other examples, when the optimization criterion is no longer the element
shape but includes some other aspects (via a metric, for example), we suggest that
the reader refers to some other chapters in the book which deal more specifically
with this problem.



