520 MESH (GENERATION

result preserves the initial topology in a plausible way. It might well be imagined
therefore that repairing a surface is, at present, a hot topic.

We must however mention that work regarding the automation of suc.h pro-
cesses, [Barequet et al. 1998], is being carried out. The idea is then .to infer a
possible topology of the surface and then to modify the patches accordingly.

Chapter 16

Meshing implicit curves and surfaces

Introduction

In practical terms and notably in applications related to geometric modeling and
graphical visualization, the usual representation of curves and surfaces is the para-
metric one (cf. Chapters 12 and 13). Nevertheless, other representations exist and
are employed to some extent depending on the applications envisaged. An explicit
representation is based on functions of the form z — f(z,y). This approach is
quite limited in practice, as the surfaces defined in this way are usually rather
“rudimentary” or do not correspond to concrete cases. A third approach consists
in defining a surface as the set of points (z,y,z) in R3 that are solutions of an
equation of the type f(z,y, z) = 0. The study of such surfaces, called implicit
surfaces is the subject of this chapter.

Interest in implicit curves and surfaces has increased over the last few years,
notably due to the emergence of discrete (sampled) data for modeling computa-
tional domains. Discrete geometry attempts to transpose the results of classical
(affine and differential) geometry to the discrete field. However, as pointed out by
[Hoﬂ"mann-1993], the application field of implicit functions seems to remain largely
underestimated.

*
* ok

‘ Given an implicit curve or surface representing the boundary of a computa-
tional domain, we focus here on the problem of meshing this boundary. In the
first section, we recall some basic definitions and properties of implicit functions.
Then, we deal with the mesh generation of implicitly defined planar curves. In
the third section, we indicate how the meshing techniques for curves can be ex-
tended to the meshing of implicit surfaces. Application examples are shown at the
end of this section to illustrate the various meshing techniques for these surfaces.
; he last section briefly presents the basic principles of constructive geometry for
Mplicit domains before dealing with mesh generation of implicit domains (whose

522 MESH GENERATION

boundaries are implicit curves or surfaces), presented here as a natural extension
of meshing techniques for curves and surfaces.

16.1 Review of implicit functions

In this section, we recall the main definitions and properties related to implicit
planar curves and surfaces. In particular, we see how the main results of differential
geometry introduced in Chapter 11 are involved.

16.1.1 A preliminary remark

As meshing techniques suitable for parametric curves and surfaces have been ex-
tensively developed, as seen before, one might ask if it were not possible to convert
an implicit function into one (or more) equivalent parametric representation(s), so
as to find a known problem (Chapter 14).

Notice first that any parametric rational curve or surface assumes an implicit
form, the way of obtaining it being widely known (see [Sederberg-1983], among
others). However, obtaining the parametric form corresponding to a given implicit
function is not trivial, for many reasons that we need not concern ourselves with
here [Hoffmann-1993]. In practical terms, this old problem! turns out to be ex-
tremely difficult to solve in the general case, which justifies the development of
direct meshing methods for implicit curves and surfaces.

16.1.2 Implicit planar curves

Let f:Q — E be a function of class C* (k > 1) on an open set Q of the affine
plane E (here E = R?). The set I' of points M(z,y) € Q such that f(M) =
f(z,y) = 0 is the so-called implicit curve defined by f =0 :

[={M(z,y) € Q, f(M) = f((z,y) = 0}.

Definition 16.1 A point M(z,y) of the curve I' is said to be an ordinary (or
regular) point if it is such that :
M M
oI MY

v =« (R 20

where the operator V denotes the gradient. Thus, the curve ' is said to be regular
if V(M) # 0 for each point M. The point M is said to be singular if Vf(M) = 0.

Notice that the inverse image of a value k of R is the solution to the equation
f(M) =k, at a point M of R?. Thus, the curve I, defined by f = 0, is f~1(0),
the inverse image of 0. More generally, a curve 'y defined by f(z,y) = k is called
an iso-value curve (or level curve), k being the level of f.

The geometric interpretation of the theory of implicit functions makes it pos-
sible to deduce the following result :

'In the last century, [Salmon,1885] already proposed a way of getting rid of the parameters

of parametric equations.

MESHING IMPLICIT CURVES AND SURFACES 523

Theorem 16.1 (implicit functions) Let My be an ordinary point of the curve
I', there ezists a neighborhood V(Mo) such that TNV is the support of a parame-
terized arc T'g of class C*.

Hence, it is important to bear in mind from this result that the implicit curve T’
admits local parameterizations at each of its regular points? Theorem (16.1) makes

it possible to write in explicit form y = y(z). Figure 16.1 illustrates a parameter-
1zation of I'.

(=(8),y(t))

Figure 16.1: A parameterization x(t),y(t) of the implicit function flz,y) =0
passing through the ordinary point (zg,yo).

Study of critical points. In the case where the implicit function theorem holds,
the study of the extrema of f requires a preliminary study of its critical points.

Definition 16.2 We say that a function [has a local maximum (resp. local
minimum) at a point P, if there exists a neighborhood V of P such that :

YMeV, f(M)<f(P) (resp. f(M) > f(P)).
An extremum is a mazimum or a minimum.

The curve T has a critical point, say M(z,y), if :

0 0
VIM)=0 << —f:—f:O.
dr Oy
By extension, a critical value represents the value of the function at a critical point.
Thg study of the Hessian H; of f makes it possible to specify the nature of this
critical point. More precisely, if H;(M) > 0 we have a minimum, if Hy(M) < 0
we have a mazimum and if H;(M) = 0 we cannot conclude (we must then study
the “sign” of the derivatives at order 3).
. For an ordinary point M (z,y) of an implicit curve T to be a point of inflection,
Its coordinates must satisfy the equation H(z,y) = 0, where the function H is
defined by :
H = 1212 = 2000 + P21,
which can also be written as follows
A
L R4
5o

2From the numerical point of view, it is important to know that the value close to the regular
values are regular as well.

524 MESH (GENERATION

Tangent vector. using the implicit function theorem, we deduce that the tan-
gent at an ordinary point My (zo, yo) to the parameterized arc I'y is the line defined

by the equation :
(VF(My), MMy)=0.

In fact, there exist two intervals I and J and an application ¢ of class C* verifying
¢(x0) = Yo, such that the relations :

(z,y) €I xJ and f(z,y)=0

are equivalent to x € I and y = ¢(z). Thus, the set of corresponding points M is
Iy, the arc of Cartesian equation y = ¢(z).
The tangent at My to T is the line of equation y — yo = ¢'(z0)(z — xo) and

thus we have :
f; (‘/L‘(H yo)

¢ (zg) = ATASE

Hence, the tangent is defined by :
(z — @o) fz (0, %0) + (¥ — ¥o) fy (20, 30) = 0 (16.1)

Hence, we note 7 the unit tangent vector at an ordinary point My to T.

Principal normal. The normal 7 to the curve I' at a regular point M(z,, Yo)
is parallel to the vector of coordinates f;(zo,yo), fy (%0, %0), that is to the gradient
vector V f. The vector

, Vf(Mo)
H(My) = =7+
o) = s
is called the principal normal to the curve at My and verifies ||7(My)|| = 1. Notice

that, as expected, (7,7) = 0, the two vectors being orthogonal.

Curvature. The calculation of the local curvature at a regular point Mq(zo, yo)
1s based on the relation (7, 7) = 0. From a practical point of view, we again use the
implicit functions theorem and we introduce the curvilinear abscissa s (considering
this time the arc ') :

d{vVf, 7)) _ [dVSf . E>_
ds —<ds ’T>+<vf’ds =0,

which will allow us to retrieve one of Frénet’s formulas linking the local curvature
at My to the derivative of the tangent (Chapter 11) :

¥ _ - VI 16.2)
s - T (

using a similar approach, the other Frénet’s formula would be written :

dv
ds

= —CF. (16.3) |

MESHING IMPLICIT CURVES AND SURFACES 3525

Distance from a point to a curve. In Chapter 14, we discussed the tedious
problem of geometric mesh generation for (parametric) curves. In order for the
mesh to follow the arc geometry, the maximal distance § between the arc and
the segment discretizing it must be bounded (i.e., the length of the curve and the
length of the chord are close to each other). Thus, if h is the length of the segment,
it is desirable that, for a given value ¢ :

d<eh.

One of the problems encountered consists of evaluating this distance §. We will
focus on calculating the Euclidean distance of a given point P to a planar curve T
implicitly defined by f = 0.

If the function f is a polynomial, numerical techniques can be used to evaluate
this distance [Kriegman,Ponce-1990]. However, in most cases, it is rather tricky to
obtain an accurate answer to this question and usually a first order approximation
of this distance is sufficient to decide whether or not to pursue the algorithm.

The distance d can be defined as the minimum of the distances from P to any
other point Q of T :

d(P,T) = min||Q - P, (16.4)

which leads to a minimization problem.
If P is a regular point, a Taylor series of f in the neighborhood of P makes it
possible to write :

F(Q) = F(P) + (b, VI(P)) + S (hH,(P)h) + ...,

where h = Pa is sufficiently small to ensure the validity of this expansion. By
truncating this expansion at the order 1, we have :

@) =F(P)+(h, V(P)+O(|A?) .

In practical terms, we simply consider the approximation :
HQ) = f(P) +(h,Vf(P)).
The triangular inequality then makes it possible to write :
[F(P)+ (R, VAP > |F(P)] = [(h, V£(P))]

then, using Cauchy-Schwartz’s inequality :

(@ = AP = lIRIV £ (P (16.5)

Finally, the distance d(P,T), defined as the value of ||h|| such that the right-
hand term of the previous expression vanishes [Taubin-1992], is approached by the
formula :

- _1f(P)]
d(P,T) ~ P (16.6)

526 MESH (GENERATION

Practical aspects. In applications, to reduce the number of distance calcula-
tions, we can use the properties of the lipschitz functions. For such a function f,
we have [f(P) — f(Q)] < M|P — Q| for all P,@, X being a positive parameter
characterizing f. In fact, Lipschitz’s constant A (the smallest A satisfying the
equation) defines the lower bound of the module of the derivative function. If f is
a continuous function, then Lipschitz’s constant is the maximal slope of the func-
tion, which is reached at one of the zeros of the second derivative of the function
(i.e., at a global minimum of f’).
Hence, for a given point P, let us denote @ € f~!(0) the point such that :

IP = Qll = d(P, f~(0)).
Then, we can write that :

[F(P)] < Ad(P, f71(0)) .
Hence, A~! f(P) represents a distance bound for f (the sign is meaningful).

Remark 16.1 This result makes it possible in practice to use a Newton’s method
(that locally converges at the order two) to find the coordinates of the root in only
a few tterations using the formula :

e e JIPRVI(PY)
P = S e

PP being a given starting point. We can thus search the first intersection between
a gwen line and the function f.

We will go into more detail on how to use this result in the section related to
the mesh generation of implicit planar curves.

16.1.3 Extension to implicit surfaces

We will now focus on implicit surfaces defined by a function f(M) = f(z,y,2) = 0.
Most of the results on planar curves can be extended to the case of surfaces.

Normal, tangent. For a regular surface X, the vector V f defines a vector that
is orthogonal to X. In fact, a regular surface is orientable. The unit normal vector
to the surface at a regular point P is given by :
VI(P)
A(P) = ———t . (16.7)
O = s

Critical points. As for planar curves, a necessary condition to have a critical
point is the following :
of _of _of _

Vf=0<:>a—z—%—a—z—

MESHING IMPLICIT CURVES AND SURFACES 527

We introduce then the Hessian matrix :

1! 11 1
T Ty T2

_ " " "
Hf - yx vy Yz) (168)
" 1 1"
zT 2y 2z

which is a symmetric matrix if the function is of class C2. The study of the
determinant Det(f ;) of the Hessian matrix makes it possible to conclude : if
Det(Hy) < 0 we have a saddle point, if Det(H;) > 0 we have an extremum (if
Hy >0 (resp. Hy < 0) it is a minimum (resp. mazimum)) and if Det(Hy) = 0,
we cannot conclude, we must then study the partial derivatives at the order 3.

Principal curvatures. To find the principal curvatures and the principal di-
rections at a regular point My (2o, yo), we use again the fact that (F, 7y = 0. Let
i and ¥ be two vectors forming an orthonormal basis of the tangent plane 11(Mo)
and let 7 be a unit tangent vector at My. We can write :

T = cos 04 + sin 07,
From the formula giving the curvature &, in the direction 7 :

YFHF
v

Kr

we can deduce the formulas of the principal curvatures «; and x5 and the principal
directions 71 et m (that are expressed in the basis [i, 7] [Monga,Benayoun-1995]) :
t= ~ = ~
T Hf T T2 Hf T2
Ky = ————=, (16.9)
IV 1]

Kl = —————

v

Supplied with this theoretical background, we will now discuss the problem of
meshing a domain defined by an implicit function. But, prior to focusing more
closely on meshing techniques for implicit curves and surfaces, we will first intro-
duce a general formulation of this problem which then makes it possible to find a
general meshing scheme, in two and three dimensions.

16.2 Implicit function and meshing

We will first attempt to formulate the problem in a practical way, that is in view
of the envisaged application, the geometric meshing of an implicit domain for a
Numerical simulation using finite element methods. For the sake of simplicity, we
will limit ourselves to the two dimensional case only.

16.2.1 Problem statement

Let T be an implicitly defined curve, i.e., the solution to an equation of the form
f(z,y) = 0, f being a differentiable function admitting 0 as a regular value.

528 MESH GENERATION

The problem of discretizing T' can be seen as the search for a polygonal curve
I' of same topology as I' that forms a sufficiently accurate approximation of
I'. This problem can be formally described using the following conditions (see
[Velho et al. 1997]) :

e I' is a piecewise linear approximation of T,

e there exists a homeomorphism® h : I' — T such that :

VPeT, d(Ph(P))<ce, (16.10)

where ¢ > 0 is a user-specified tolerance and d is the usual Euclidean distance
in R2.

Remark 16.2 The tolerance value ¢ corresponds to the quality of the geometric
approrimation of the curve geometry.

In practice, we have seen that with a piecewise linear approximation, the lengths
of the edges of the discretization are locally proportional to the radii of curvature
(Chapter 14).

16.2.2 Geometric mesh

The problem we are interested in is to mesh an implicit curve so as to correctly
approach its geometry. In other words, the metric to follow is of a purely geometric
nature.

Desired properties and related problems. The first property desired is to
assume a relative control over the curve, such that the length of the curve (the
arc) and that of the chord locally approaching it (the underlying chord) are close.
To this end, if h denotes the length of a segment and if § measures the largest
distance between this segment and the curve, then, for ¢ given, we want to have
the following condition :

§<eh.

Notice that with parametric curves, the length of the arc can be easily obtained
using the curvilinear abscissa s. With implicit curves, such a feature does not exist
(the implicit function theorem allowing only a local parameterization). One way
of evaluating the distance between the segment and the curve consists in sampling
the segment and in calculating the largest distance between the sampled points
and T :

é = maxd(P;,T),
Pel

where I represents here a small interval along the segment considered.
The second problem is related to the location of the points along the curve.
From a given point My, one needs to find the series of points M; ,i = 2,3, ... such

3Thus ensuring that I" and I" have the same topology.

MESHING IMPLICIT CURVES AND SURFACES 529

that the length of the segments M; M;, is compatible with the given accuracy «.
It 1s obvious that the points of discontinuity (the singular points) must be part
of the mesh (Chapter 14). We still have to find the number and the location of
the other points. If we consider a neighborhood that is sufficiently small around
the point My, we can apply the local study introduced in Chapter 14. This leads
to locating the point M; at a distance a p(Mp) from the point My, where the
coefficient « is given by Relation (14.7) and p(My) is the radius of curvature of
[at My. The point M; is then defined as the intersection of the circle of radius
a p(My) centered at My and the curve T.

General scheme. A geometric mesh of an implicit curve can be obtained in the
following manner :

e 1dentify the extrema (of the radii of curvature) of the curve and the singular
points,

¢ initialize the mesh with these points,

e approach the curve using sub-curves corresponding to the curves joining two
such consecutive points,

e mesh each piece using the previous principle.

The main difficulty of this approach is related to the calculation of the lengths
of the portions of curve. An easy way consists of using a sufficiently small (uni-
form) sampling to evaluate the desired length numerically. Obviously, this method
can be costly. A “binary-searching” type method or a “divide-and-conquer” type
method (Chapter 2) can also be envisaged. We will study different possible types
of approaches below.

Before going in more detail about the meshing of implicit curves, notice that
for a given accuracy threshold ¢, it is possible to obtain different meshes of the
same implicit curve, depending on the nature of the meshing algorithm employed.
Hence, the notion of optimal result must be considered.

Optimal mesh. In Chapter 1, we already mentioned the notion of optimal mesh
and indicated that this notion is related to the application envisaged (i.e., amesh is
optimal with respect to a certain criterion and not necessarily optimal for another
criterion). Here, we will consider an optimal mesh to be one which corresponds to
a good geometric approximation (see below) and which contains a minimal number
of vertices. In fact, we consider that :

Definition 16.3 The optimal piecewise linear approzimation is that which, among
all possible solutions having the same quality of geometric approrimation, mini-
mizes the number of elements.

However, this simple geometric criterion is not sufficient in practice to estimate
the optimality of a solution (see also Chapter 18). Thus, for example, for a finite
element computation, the number of elements of a mesh is an important factor

530 MESH GENERATION

(as it conditions the size of the matrices). Moreover, the (shape and size) element
qualities are also important as they relate to the numerical accuracy of the results
and the convergence of some computational schemes [Ciarlet-1978]. It is thus
important to avoid the creation of (poor quality) badly-shaped elements.

In practical terms, it is convenient to consider as optimal a mesh that achieves
an acceptable compromise between the different criteria considered. Thus, for
1sotropic triangles in two dimensions, a quality close to 1 defines well-shaped el-
ements. Such a quality indicates that the lengths of the edges are close to 1
(possibly in a given metric). We bring the notion of optimal mesh down to the
notion of unit mesh :

Definition 16.4 In two dimensions, a unit mesh is a mesh whose edge lengths
are close to 1.

Such a mesh is considered to be optimal.

16.2.3 General principle

Implicit curves and surfaces offer less flexibility than parametric curves and sur-
faces. In particular, it is rather tedious to determine the intrinsic properties of
these curves and surfaces. In addition, tracking an implicit curve is a difficult
problem (we will see that, from a given point, numerical techniques make it possi-
ble to locate a neighboring point on the curve). This is why, meshing techniques
are largely inspired by heuristics. In particular, the classical approaches (see for
instance [Allgower,Schmidt-1985] and [Allgower,Gnutzmann-1987)) consist in :

¢ sampling the domain of definition (using a covering-up of the domain),
o searching the roots of the function in the cells of the covering-up,

e constructing a topology (¢.e., a mesh) whose vertices are the root of the
function.

In other words, a spatial partitioning (a set of disjoint and congruent cells en-
closing the domain) of the domain is created and the implicit function is locally
approached in each cell of this covering-up. These approaches usually involve
numerical techniques to find the points along the curve (surface) in a given cell.

Remark 16.3 Notice that creating a sampling makes the problem a discrete one,
the value of the implicit function being known at the vertices of the sample. In
fact, most of the envisaged methods are capable of dealing directly with discrete
data (for instance, those obtained using a scanning device).

Remark 16.4 Notice that this problem is slightly different from that aiming at
reconstructing a topology from a set of points all belonging to the boundary of the
domain (see [Hoppe-1994] and [Boissonnat et al. 1999], for example).

In the next section, we examine different approaches to constructing a geomet-
ric mesh of an implicit curve in two dimensions (the meshing problem for implicit
surfaces will be dealt with in the following section).

MESHING IMPLICIT CURVES AND SURFACES 531

16.3 Implicit curve meshing

As we have already mentioned, meshing an (implicit) curve consists in discretizing
it into a finite number of segments of suitable lengths. It is obvious that these
lengths depend on the envisaged application (i.e., on the constraints related to the
application) and on the given metric information.

16.3.1 Construction of a spatial covering-up

Consider a given implicit curve I'. The sampling stage consists in finding a set
of points P; € I sufficiently dense for the geometry of I' to be approached within
a tolerance of . The several techniques proposed can be classified into different
classes, based on whether they proceed :

e by (exhaustive) enumeration,
¢ by continuation,
¢ by (adaptive) subdivision, etc.

To see this more clearly, we will first consider a naive approach to finding the
points of I".

A “naive” approach (ray-tracing). To find the points on the curve, we can
intersect T' with a family D of lines (the domain is somehow sampled by a beam
of lines).

Thus formulated, the problem consists in solving a set of one-variable equations
of the type f(x;,y) = 0 for a sample of uniformly distributed points z; € R
(Figure 16.2).

;
_f
|

i
i i |
|

|
|
i

|

Figure 16.2: Naive method for an implicit curve. Notice that the same curve T
leads to different samplings depending on whether the family of lines is horizontal
(left-hand side) or vertical (right-hand side).

This example illustrates simply the influence of the lines. Clearly, there does
not exist any suitable criterion (i.e., working in all cases) to fix the size and the
density of the rays a priori. In fact, some lines do not contribute to the sampling
while others can “miss” some intersections.

Close to the naive approach, we then find an approach of the exhaustive enu-
meration type.

532 MESH (GENERATION

Exhaustive enumeration approaches. The existence of discrete data, sup-
plied by scanning devices for instance, leads to a problem for which the spatial
covering-up is given. Usually, this covering-up is a regular grid (uniform and axis-
aligned) or a Coxeter-Freudenthal triangulation (each cell of a regular grid is split
into two triangles, [Freudenthal-1942], [Coxeter-1963]), the values of the implicit
function being known at its vertices.

Figure 16.3: Uniform approzimation of a parametric curve (left-hand side) and of
an tmplicit curve using a method of the exhaustive enumeration type (right-hand

side).

We can make here an analogy with the mesh of parametric curves : the segment
representing the domain of the parameters is split into equally-sized sub-segments
and the function f is used to find the vertices and to construct the polygonal
approximation of the curve (Figure 16.3).

The principle of the ezhaustive enumeration method consists in examining all
cells of the partition and to process only those that are intersected by the curve.
At the vertices of such a cell, the signs of the function are not constant. The
curve I intersects a given cell side if the values of f at the two endpoints of this
side are of opposite signs (Figure 16.4). The intersection points of I' with a cell
sides are either determined by a linear interpolation based on the values at the
two edge endpoints, or using a procedure to find the roots (see below). We will see
later that this technique allows us to approach the curve using a piecewise linear
approximation I'.

As for the naive approach, the main difficulty of this type of approach (espe-
cially well-suited to discrete data) is to fix the resolution (i.e., the cell size) so as
to capture the local behavior of the curve as well as possible. Again, too coarse
a sampling can lead to intersections being missed or to reconstructing a topology
that is different from that of the curve?.

This leads us to envisage methods that allow the curve to be tracked (in a sense
that we will specify later).

Methods by continuation. The techniques by continuation aim at finding,
from a given point M; € T', a point M;1; close to it on the curve. Depending on

4However, too small a size is penalizing as it slightly increases the number of intersections
checks and requires more accurate algorithms.

MESHING IMPLICIT CURVES AND SURFACES 533

Figure 16.4: Ezhaustive enumeration method : intersection of the implicit curve
[with two cells of the Freudenthal triangulation.

the manner of predicting the position of M, 1, the methods are of the progression
type or of the prediction-correction type.

o Methods by progression.

This concerns incremental methods. From a basic cell (i.e., containing a portion
of the curve), the curve is approached by a set of cells, the partitioning being con-
structed “on the fly”. Adding a cell can be performed by adjacency, the adjacency
direction being determined by studying of the sign of the function at the vertices
of the current cell (Figure 16.5). The neighboring cell is thus the cell sharing the
edge of the current cell having its endpoints of opposite signs (the values of the
implicit functions being evaluated at the cell vertices). The process stops as soon
as the curve is fully enclosed in the cells. A coloring scheme can be used to avoid
going back to cells that have already been analyzed. A stack (Chapter 2) is used
to store the cells to be processed.

Figure 16.5: Method by progression, the partitioning is constructed “on the fly”
Jrom a root cell.

Such an approach is sensitive to the cell sizes which, if too coarse, do not
allow the local behavior of the implicit curve to be captured (see the ambiguity
problems below) and, if too fine, lead to a too great number of samples (thus
penalizing further processing). Notice that, as for the naive approach, no criterion
exists to fix the cell size a priori.

534 MEsH GENERATION

e Methods by “prediction-correction”.

These methods allow us to calculate the position of a point on the curve from a
known point M; € I and a small displacement. The point M; is “moved” along the
tangent 7(M;) to the curve at M;, to get a point M, . The position of this point
(which does not belong to I') is then (iteratively) corrected, for example using a
Newton-Raphson method (Chapter 11), to find a point M;,; € T (Figure 16.6).

In this approach, the covering-up is virtual. One difficulty consists in fixing the
stepsize of the displacement to avoid too fine a sampling or, on the other hand,
to “miss” the curve (the correction method is not converging, especially in highly
curved regions). Another problem consists in finding a starting point My in each
connected component of T.

Figure 16.6: Method by continuation of the prediction-correction type. From a
position Mo, we determine a series of points M,,..,M, along the curve T.

This type of method is based on the property of orthogonality (in two dimensions) of
the gradient vector V f and the vector H = (—=0f/8y,df/0x). The latter is thus tangent
to the level curves® of f and, in particular, to f(z,y) = 0. Given a point My = (0, yo),
the points of the connected component containing Mo are solutions to a system of the
form :

dz = _of and z(0) = zo,
j; Bfay (16.11)
I " oe and y(0) =yo.

The position of the new point M, is estimated as M| = My + 8ﬁ(Mo). The point Mj
does not belong in principle to I. A correction scheme of the Newton-Raphson type aims
at moving M| back to a point M; of T

Method by recursive subdivision. From the study of the previous approaches,
we can observe that controlling the geometric approximation of T is rather deli-
cate. We have seen that there does not exist a general criterion to fix, a priori,
the size of the cells of the partition (supposed to be uniform so far). In particular,
the curves with discontinuities of the order G are difficult to approach with such
methods.

On the contrary, it seems reasonable to suppose that if the cell size is variable
and, for example, related to the local curvature, the approximation of the curve

5The level curves of f correspond to the curves defined by f(z,y) =k, k € R.

MESHING IMPLICIT CURVES AND SURFACES 535

would be better (even without talking about a reduced number of elements). That
is the basic idea of adaptive subdivision methods.

According to the principle of spatial decomposition methods (Chapter 5), from
a bounding box of the domain, this type of approach constructs the partitioning of
the domain in a recursive way. The bounding box is subdivided into four equally
sized cells that can be organized hierarchically (using a quadtree, for example).
The cell refinement is linked to a criterion related to the local curvature of T.
Among the useful criteria commonly used, we should mention :

o the planarity (i.e., the angle between the normals at the intersection points),
o the variation of the radii of curvature at the intersection points,

o the number of intersection points, etc.

Figure 16.7: Adaptive subdivision based on the evaluation of the local curvature.
The normals U(M;) at the intersection points M; of T with the edges of the covering
up are calculated and from their variation (gap), we deduce a possible refinement
of the cells (right-hand side).

This type of approach raises again the problems already discussed in Chapter 5
for the meshing of the domain boundaries. Notice here however that the tree
structure is not necessarily balanced (using the [2:1] rule, for example). Actually,
the aim of the decomposition is to provide a sample of points belonging to I' and
which is sufficiently representative of the behavior of the curve.

Once the sampling has been done (and independently of the approach chosen),
We must connect the points of I' together so as to obtain a mesh of the curve.

Remark 16.5 Notice that if the objective is to visualize the curve T, it is sufficient
to create a cloud of points that is dense enough to capture the variations of the
curve and to provide its visual aspect.

16.3.2 Meshing an implicit curve from a point cloud

From the cloud of points defined at the previous stage, we now try to extract a mesh
of the given curve. Notice immediately that this problem is very similar to that of
the search for a curve passing through a given set of points (see [Hoppe et al. 1991],

536 MESH GENERATION

for example). However, unlike the latter®, we have here some additional informa-
tion provided by the spatial covering up.

Construction of a geometric mesh. Depending on the sampling technique
adopted, the mesh creation can be more or less trivial. Thus, with a continua-
tion method, the mesh is obtained by simply connecting the intersection points
(the M;’s) two-by-two in the order of their creation. With the enumeration type
methods, the task is more tedious. In this case, the discretization is obtained by
analyzing each cell intersected by the curve and by connecting the intersection
points belonging to the cell sides. It should be pointed out that some configura-
tions can lead to topological ambiguities (Figure 16.8).

Figure 16.8: Erample of topological ambiguities : we illustrate here two ways of
connecting the intersection points that violate the topology of the implicit curve.

Exercise 16.1 Identify the topological ambiguities possible with a enumeration
type method and propose a simple way of getting rid of these ambiguities (Hint :
ezamune the sign of the function at the vertices of the partition and use the intrinsic
properties of the curve).

From a practical point of view, the mesh edges are created by using predefined
patterns (templates) based on the sign of the implicit function at the cell vertices.
For a uniform decomposition or a quadtree type decomposition, only the terminal
cells intersected by the curve need to be considered. We identify thus 24 = 16
distinct patterns.

At completion of this stage, the implicit curve T is thus approached by a polygo-
nal segment. However, the geometric mesh obtained is not necessarily correct with
a view to numerical computation (the size variations between two edges incident
at a vertex might be great). A control on the edge size variation can be imposed.
Here, we come up against a well-known problem.

Mesh of an implicit curve defined by a discretization. We find here in a
case where the metric to follow is not necessarily of a geometric nature. We must
then intersect this metric (Chapter 10) with the geometric metric. The problem

SWhich can sometimes be NP-hard, for example, when the goal is to find the closed polygon
of minimal perimeter having the given points as vertices (traveling salesman problem).

MESHING IMPLICIT CURVES AND SURFACES 537

can be identified with the rather difficult curve remeshing detailed in Chapter 14.
We can thus adopt a technique which consists in reconstructing a geometric sup-
port (a parametric arc this time) and then remeshing this support using classical
optimization tools (point insertion, vertex removal and node relocation). But we
can also use the information extracted from this covering up (singular points,
normals, tangents, etc.) to control the remeshing procedures. Notice that point
insertion can be performed via the spatial covering up (to facilitate root searching).

In this section, we have mentioned root searching several times (i.e., the in-
tersections between the curve and a given edge). Before dealing with the surface
meshing, we will go back to several practical aspects of curve meshing.

16.3.3 Computational aspects of implicit curve meshing

In this short section, we briefly mention several practical aspects of the implicit
function meshing and especially the search for intersection points and the approx-
imate calculation of the gradient of the function at a given point.

Root finding. The methods previously discussed all rely on the identification of
the intersection points between an edge of the covering up and the curve I'. When
the implicit function is continuous and monotonic, the intermediate value theorem
ensures the existence of (at least) one solution along the edge AB, if the values
f(za,ya) and f(zp,yp) of the function at these points are of opposite signs. If
the derivative of the function is known exactly, a Newton type method can be used
to find the root, that is the point P(z,y) such that f(z,y) = 0. However, this
method can be quite impredictable and may not converge for some functions.

In all cases, a binary searching method allows us to quickly find the root within
a given tolerance . The tolerance is usually based on a fraction of the edge length
or on a maximum number of iterations [Bloomenthal-1988]. In some special cases,
the algorithm can be modified so as to improve the localization of the intersection
point, notably when the function f vanishes on a sub-segment of AB (Figure 16.9
and see [Blinn-1982], [Frey,Borouchaki-1996], for example).

Figure 16.9: Search for the intersection point using a binary searching method
along the edge AB. Left-hand side, the intersection point is identified as the point
M3s. Right-hand side, the vertex A is a root, but the modified algorithm makes it
possible to find a point M; as the intersection point.

538 MESH GENERATION

When the curve I' is known in a discrete way, (i.e., the corresponding implicit
function is not known explicitly), the intersection points may be approached us-
ing a linear interpolation based on the given values of the function. Given an
edge AB for which the values f(z4,ya) and f(xp,yg) are of opposite signs, a
linear interpolation along AB makes it possible to find the value of f at P(z,y)
(corresponding to the parameter t) using the formula :

fle,y) = (1 —1) f(@a,ya) +t f(xB,yB), (16.12)

where the function f varies linearly between f(z4,y4) for t = 0 and flep,yp) for
t=1.

Remark 16.6 The detection and the identification of singular and critical points
can be performed during the binary searching of the roots by modifying the corre-
sponding algorithm so as to take into account information regarding the gradient
of the function at each of the evaluation points [Attili-1997], [Schéberl-1997].

Estimation of the gradient. At a regular point P = (z,y), the normal (P)
to the curve I' can be estimated as the unit gradient vector at this point. If the
partial derivatives are not known analytically, the gradient can be approached
numerically, using a finite difference scheme :

(VI(P),d(P)) ~ f(P +8(P)) - f(P), (16.13)

where §(P) represents a small size (generally chosen as a fraction of the cell size
of the covering up) vector. A centered difference scheme, which is also possible,
then gives :

(VF(P), 26(P)) = f(P+3(P))— f(P—4(P)). (16.14)

Posing 6(P); = he; where e; is the unit vector related to the i-axis and A is a small
value, we obtain, for the first approximation :

1 (f(P) - f(P)
VIiP) ~ z(f(P,) - £(P)) !

where P; = P+ he; and this approximation relates the error to A while the second
approximation relates the error to h?. Depending on the value of h, either of these
approximations can be chosen.

Remark 16.7 At singular points, where the gradient is not defined, the normal
can be obtained as a mean value of the normals at the neighboring vertices.

We will now show that mesh generation for implicit surfaces involves similar
approaches to those used for meshing implicit curves.

MESHING IMPLICIT CURVES AND SURFACES 539

16.4 Implicit surface meshing

The techniques used to mesh an implicit surface derive from the techniques devel-
oped for meshing implicit curves. However, several problems that are particular
to surfaces will be dealt with in this section.

For the same reasons as in two dimensions, the meshing of implicit surfaces
relies on a sampling stage and a mesh construction stage given a point cloud.
Constructing a spatial covering up makes it possible to localize the processes. In
other words, the goal is to capture locally the behavior of the surface in a small
volume element. Hence, each element of the covering up intersected by the surface
is analyzed and the roots of the function (i.e., the points of X)) are identified along
the edges of this element.

16.4.1 Construction of a spatial covering-up

The objective is here to find a covering up of the domain of study that allows us
to extract a set of points P; € ¥ which is sufficiently dense for the geometry of the
surface ¥ to be approached within a given tolerance . As in two dimensions, we
have the following classification of spatial covering methods :

¢ methods by exhaustive enumeration,
e methods by continuation,

e methods by adaptive subdivision.

Methods by exhaustive enumeration. In this type of approach, the covering
up R is usually an input of the problem and this covering up is then a regular
grid or a triangulation (Coxeter-Freudenthal type, for example). This is notably
the case when the implicit surface is an iso-surface defined in a discrete way using
scanning devices (scanners). The implicit function is sampled and its value is
known at the nodes of a lattice of (usually cubical) cells, that is both structured (for
cach point, the number of adjacent points is constant) and uniform (the distance

being two points is constant). The principle of an ezhaustive enumeration method
consists in :

e identifying the elements of R intersected by the surface and
¢ locating the intersection points (of ¥ with the edges of the elements of R).

The surface ¥ will then be discretized using a piecewise linear approximation %
1 each element of R.

As in two dimensions, this type of approach is sensitive to the grid resolution
(this being given or constructed). Figure 16.10 shows the influence of the element
size on the accuracy of the geometric approximation.

540 MEgSH GENERATION

3

)

v

Figure 16.10: Discretizations of a sphere by successive refinements. At each stage,
the covering up is uniform (i.e., formed by equally-sized cells).

Continuation methods. Continuation methods for surfaces are on all points
similar to continuation methods for curves in two dimensions. We thus find meth-
ods by progression and methods by prediction-correction.

Recall just that a progression method consists in starting from an element of
R, the seed and progressing by adjacency towards the neighboring elements. The
direction of the progression is defined by the sign of the values of the function at
the vertices of the current element. A stack is used to store the elements to be
processed. In principle, this method makes it possible to process a single connected
component for a given seed.

As for implicit curves, prediction-correction type methods can be applied suc-
cessfully to “track” an implicit surface. From an initial point My, we look for a
point M/ obtained by a small displacement of My in the tangent plane IT(Mj)
associated with Mo. The point M{ predicted is then iteratively relocated onto
the surface to a point Mj, via a correction stage based on a Newton-Raphson
procedure.

Remark 16.8 The tedious part corresponds to the determination a priori of a
seed for each connected component. Moreover, the set of vertices obtained is not
intrinsically ordered which may result later (during the structuration stage) in
overlapping elements.

Adaptive subdivision methods. For the same reasons as in two dimensions,
1t is desirable to construct a covering up R that is representative of the intrinsic
properties of the surface.

An adaptive subdivision method consists in including the domain of study into
a bounding box which is recursively subdivided into identical elements’. We thus
obtain a structure that is naturally organized hierarchically, an octree for example
in the case where the basic element is a cube (Chapter 5).

"The requisite of getting identically shaped elements is justified by the need to avoid the
degeneracy of volumes resulting from the subdivision.

MESHING IMPLICIT CURVES AND SURFACES 541

Remark 16.9 A covering up based on tetrahedral cells is also possible. Hence
the Kuhn tetrahedron, based on the ponts (0,0,0), (1,0,0), (1,1,0), (1,1,1) cm;
be subdivided into similarly shaped tetrahedra. The subdivision procedure leads to
eight sub-tetrahedra, four of which share a verter of the initial tetrahedron and the
four others being internal (Figure 16.11).

N
\

Figure 16.11: Decomposition of Kuhn’s tetrahedron (left-hand side) into eight tetra-
hedra (right-hand side).

Exercise 16.2 Enumerate the tetrahedra of Kuhn’s decomposition. Show that the

decomposition cannot be applied on the tetrahedron based on the points (0,0,0),
(1,0,0), (0,1,0), (0,0,1).

An element of R is subdivided whenever a specific criterion is not satisfied for

this element. The criteria considered for refining an element of R are mainly based
on [Schmidt-1993]

o the variation between the normals at the vertices (or the faces) of the current
element (planarity criterion) :

max(v;, 7(P;)) < cos (1),
.where ¥; represents the unit vector supported by the segment PPy, U(F)
1s the unit normal at P, and €1 1s a given tolerance,

e the divergence of the normals at the vertices P; with respect to the normal
at the center of the element M, measured by the quantity :

1= min((5(P;), 7(M)) < cos(es)

e the changes between the signs of the values of the function at the vertices,
e the proximity of a singularity, etc. .

We will see in Chapter 19 that some criteria can also be used to optimize the
surface meshes.

542 MESH (GENERATION

With this type of approach, the subdivision leads to a partitioning for which
the element density (thus that of the sampling points) is proportional to the loca]
curvature (for a geometric triangulation, that is for which the geometric approx-
imation to the surface is controlled by a given tolerance value €). However, the
discontinuities of order C° of the surfaces are more tedious to capture exactly
and require more sophisticated algorithms. Figure 16.12 illustrates the problem of
searching for the intersection points along the edges of the elements of R.

o
R
U7 ¥

i’)—‘zfy@,ﬂgﬁ
N
!} "fﬂ/? 4

]

Figure 16.12: Ezample of root finding, “wiffle cube”. left-hand side, a linear
interpolation is used to find a root along an edge of the decomposition. Right-hand
side, a binary searching algorithm is used to find a change of sign of the function
along the edge, thus improving the approzimation of the sphere.

Remark 16.10 Another approach consists of starting from a coarse partition of
the space into tetrahedra. The latter are analyzed to decide on a possible refine-
ment, according to the criteria mentioned. The difference lies in the fact that
when a tetrahedron is subdivided, its barycenter (or any other suitable point) is cre-
ated and inserted in the current triangulation using the Delaunay kernel procedure
(Chapter 7) [Frey, Borouchaki-1996]. This approach constructs, incrementally, @
triangulation of the domain conforming to the Delaunay criterion.

We now deal with the construction of a surface mesh from the point cloud |

obtained at completion of the sampling stage.

16.4.2 Mesh of an implicit surface defined by a point cloud ‘

At this stage, we have a cloud of points located on the surface, as dense as the :
partitioning was fine. We now have to connect these points in order to obtain .a. ;
geometric mesh of the surface. It seems obvious that the tedious aspect of this
operation consists in making sure that the topology of the discretization conforms |

to that of the implicit surface it represents.

For the sake of convenience, we will detail here the construction of a m‘?Shv
where the cloud of points comes from a enumeration type method® or an adapt1ve

8This choice is also justified by the fact that this type of technique is widely used in practic

MESHING IMPLICIT CURVES AND SURFACES 543

subdivision method. We will leave it up to the reader to see how a mesh may be
obtained from a continuation method [Bloomenthal-1988], [Wyvill et al, 1986].

Construction of a geometric mesh. When the covering up R is a uniform
grid, the connectivity of R allows us to use a very simple (and nowaday very
popular) algorithm to construct a surface mesh. This algorithm has also proved
to be especially well-suited for processing discrete data [Lorensen,Cline—lQS?].

e “Marching Cubes” algorithm

Based on a divide and conquer approach, the method consists in analyzing any
element of R intersected by X (the identification of an element K being based
on the study of the signs of the function at the vertices of K). Each vertex can
be either positive or negative (the case where the value is null is a peculiar case
that can be resolved by dilating the surface locally), the eight vertices of a given
element K allow us to construct an index with a value in 10,256[, (as 256 = 28).

In practice, with each value of the index is associated a list of polygons used
to locally approach the surface. The 255 potential lists can be reduced to 15
representative cases, using symmetrical and rotational properties. These 15 cases
lead to 15 predefined patterns (templates) that serve to define a piecewise linear
approximation of the surface in each element.

Exercise 16.3 Retricve the cases representative in Figure 16.13 from the 256
possible cases.

Such an algorithm constructs polygons that have 3 to 6 vertices (Figure 16.14).
To get a mesh composed only of triangles, we have to subdivide the polygons of
a higher degree than 3 into triangles. This involves a combinatorial procedure (to
find all the possible topologies) as well as a geometrical procedure (to chose from
all the possible ones, the one that leads to the best geometric approximation).
Theoretically, Catalan’s number of order n

2n — 2)!
Cat(n) = 3

s a formula giving the number N,, of different triangulations of a polygon with n vertices :
N, = Cat(n — 1). Thus, when n = 3,4,5 or 6, we find respectively N, = 1,2,5,14
(Chapter 18).

The drawback of the method is related to the fact that topological ambiguities
and/or non-closed surfaces can be created. This is the case when an element of
R contains a face in which vertices of opposite signs are diagonally opposed two-by-
two (Figure 16.15) [Diirst-1988], [vanGelder,Wilhelms-1992], [Montani et al. 1994].

Several techniques enable us to remedy this problem, for example using :

* the value of the function at the center of the face [Wyvill et al. 1986] (al-
though this solution may fail [Matveyev-1994])

)

*a bilinear representation of the function, a hyperbolic curve describing the
Intersection of ¥ with an edge, the value of the function at the intersection
points of the asymptotes of the hyperbola makes it possible to predict the
topology [Nielson,Hamann-1991].

544 MESH (GENERATION

: 8
Figure 16.13: “Marching Cubes” algorithm : intersections sur'face-cel‘l. Tﬂe 2 -—t :
256 possible patterns can be reduced to a set of 15 configurations using different .

properties of symmetry and rotation preserving the topology of thfe triangulate:
surface (notice here that the polygons having more than three vertices have bee

subdivided into triangles).

MESHING IMPLICIT CURVES AND SURFACES 545

// " 7;:47! //’T—‘-//,l
\ |
A [| . B 1

/! | | " /i J /| L/ yan [

/ . /‘ . | . &) “, - ‘,. ~ /'/,/

S LALL LA e L

Figure 16.14: Different types of polygons constructed using predefined patterns
(“templates”) by a ‘Marching-Cubes” type algorithm, if the numbers of vertices
are 3,4,5,6, from left to right, respectively.

Notice however, that these approaches cannot in practice be used for discrete data,

Figure 16.15: Faces presenting a topological ambiguity. Several connections are
possible between the vertices.

Adaptive subdivision methods. In this type of approach, the elements of the
spatial partitioning R are all of the same type (cubes or tetrahedra) although their
shapes and sizes can vary locally, based on the local properties of the surface.

If the partitioning is represented by an octree, the construction of the geomet-
ric mesh is close to that used in the “Marching Cubes” type algorithm (see, for
instance, [Wilhelms,vanGelder-1990], [Frey-1993)).

When the partitioning is simplicial, vertices of opposite signs can be separated
by a single plane, thus leading to only 2* = 16 possible configurations, the only
polygons formed being triangles and quadrilaterals (Figure 16.16). The quadrilat-
erals obtained can then be subdivided into triangles according to geometric criteria
(Chapter 19). The degenerate cases (a tetrahedron vertex belongs to the surface)
can be avoided by locally ezpanding the surface [Frey,Borouchaki-1996].

Eigure 16.16: Different triangulations possible, depending on the sign at the ver-
tices, of a cell for a simplicial covering up.

Meshes obtained by such approaches are geometric meshes. However the size
Variations between neighboring elements are not controlled, thus this type of mesh

546 MESH GENERATION

may not be suitable for a finite element type calculation. Here we are confronted
again with the problem of surface mesh optimization.

16.4.3 Surface mesh optimization

The purpose here is not to specify the optimization operations used for surface
meshes which will be described in Chapter 19, but to present the context of such
an optimization.

Shape quality optimization. The objective is to optimize a pertinent quality
criterion with respect to the envisaged application (here a finite element type
calculation). A shape quality measure for a triangle K is given by the formula :

hmal‘
Ok =« or (16.15)

where hp,q; represents the diameter of the element and pk the radius of the
inscribed circle (« is a normalization coefficient so that Qx = 1 for an equilateral
triangle). The goal is to obtain a quality value close to 1 for all mesh elements.
To this end, topological modification operators are used (which preserve the point
locations but modify their connections) as well as metric modifications (which
modify the points locations while preserving their connections).

Mesh simplification. The number of elements in a geometric mesh is related
to the gap between the element and the underlying surface. However, depending
on the application envisaged, too great a number of elements can be penalizing.
Simplification (or decimation) methods reduce the number of elements of a mesh
while preserving the quality of the geometric approximation (Chapter 19). Such
methods involve the same modification operators as optimization procedures.

16.4.4 Computational aspects of implicit surface meshing

In some applications (such as computer graphic visualization or when the surface
mesh is the input of a volumetric meshing technique), the consistent orientation
of the triangulation can be a very important requirement (Chapter 6).

Orientation of the triangles. The orientation of the triangles in the surface
mesh can be performed either a priori, or a posteriori. In the first approach, the
polygons of the patterns used to mesh are oriented counterclockwise (for example)
based on a canonical orientation at the cell level (Figure 16.17 for a tetrahedron).

In the second approach, the polygons are oriented by adjacency in a consistent

way, in each connected component (see Chapters 1 and 2 for data structures and
algorithms appropriate to this type of process).

MESHING IMPLICIT CURVES AND SURFACES 547

Figure 16.17: Consistent orientation of polygons in a tetrahedron.

Memory resources and data structures. Memory resources correspond to
the data structures necessary to store the information related to the mesh (nodes,
triangles, etc.) as well as the structures related to the spatial partitioning. The
main internal data structures contain :

e an array of mesh vertices (coordinates),
® an array of triangles (list of vertices),
e an array for the neighboring elements (edge adjacency),
¢ an array for the vertices of the covering up,
e an array for the elements of the covering up,
* additional resources (for example to store the value of the function at the
vertices of the covering up), etc.
16.4.5 Examples of surface meshes

To conclude this section, we provide several examples of implicit surface meshes
created by some of the methods described above. To help the understanding of
these meshes, Table 16.1 indicates some characteristic values, np, ne denote re-
spectively the number of vertices and elements of the triangulation and Qy, Qpire
indicate the mesh quality and the quality of the worst element before optimization.

- np ne | Oum | Qpire
case 1 6,656 12,816 | 1.88 | 22.07
case 2 36,208 | 72,432 | 3.57 190.
case 3 | 122,940 | 244,431 | 4.02 | 925.

Table 16.1: Statistics related to several examples of implicit surface meshes.

The evaluation of (implicit) surface meshes is based on geometric criteria re-
lated to the quality of the geometric approximation (see [Frey,Borouchaki-199§]
and Chapter 19). On the other hand, depending on the envisaged application,
(i.e., a finite element calculation), it is important to guarantee a good element
shape quality. ‘

The example in Figure 16.18 corresponds to the reconstruction of an iso-surface
using an exhaustive enumeration method based on a resular erid

548 MESH GENERATION

Figure 16.18: Ezhaustive enumeration method applied to the reconstruction of a
surface from a regular grid. Initial mesh (left-hand side) and optimized mesh
(right-hand side).

The second example (Figure 16.19) presents different meshes of an implicit
surface of degree six corresponding to the equation [Schmidt-1993)] :

fle,y,2) = (@® +y* —4)(2? + 22 = 4)(y* + 2° — 4) —4.0078 = 0.

The initial mesh (left-hand side) has been created using an adaptive partition
in tetrahedra. Notice that the geometric approximation of the surface is correct,
although the shape quality of the mesh is not acceptable (at least for a finite
element calculation). Hence, this mesh has been optimized (middle) and then

simplified (right-hand side).

)

Ao
VY
SEEA
R

352
S

S
A

s

Y
B
s,

UL
LR
S

150
%
v
AN
o8
)
5SS

L7T
7
A
i
XK
S

s
&
KA
N

W

Figure 16.19: Different meshes of an implicit surface : initial geometric mesh
obtained by an adaptive method (left-hand side), mesh optimized with respect to
the triangle shape quality (middle) and simplified geometric mesh (right-hand side).

Finally, the last two examples (Figures 16.20 and 16.21) show iso-surface

meshes for biomedical applications® created from discrete data.

9Here, the iso-surfaces are associated to anatomic structures.

MESHING IMPLICIT CURVES AND SURFACES 549

VAN &7
PRSEBZAN
SO
“%?A?%%
2\
RN\ Y

SrfA)

/
T
ava

e

DT

Figure 16.20: Mesh of an iso-surface of a head from volumetric data (left-hand
5zde,A data courtesy of Mika Seppa, Low Temp. Lab., University of Technology,
Helsinki, Finland) and simplified and optimized mesh (right-hand side).

In the example in Figure 16.20 it seems obvious that the original mesh (left-
hand side) contains too many elements to be numerically exploitable (67, 106 ver-
tices and 134,212 triangles). Therefore, a simplification procedure is applied to
obtain a geometric mesh where the density of the elements is related to the local
curvature of the surface [Frey,Borouchaki-lQQS].

Figure 16.21: Biomedical iso-surface meshes (an anevrism of the central cerebral
artery) from discrete data. Left, initial mesh obtained using a “Marching Lines”
type algorithm [Thirion-1993]. Right, optimized and stmplified mesh.

550 MESH GENERATION

16.5 Extensions

To conclude this chapter, we will briefly evoke the possibility of using implicit
functions for modeling purposes. We will then mention the construction of meshes
for such domains.

16.5.1 Modeling based on implicit functions

Classically, we can distinguish three geometric modeling systems, depending on
whether they :

o are based on a boundary representation of the solid (a B-Rep), the objects
being represented by the union of their boundaries,

¢ use a spatial decomposition, the domain being approached by the union of
the internal cells or the cells intersected by the domain boundary,

e involve constructive geometry (C.S.G.), the domain being represented by a
tree structure in which the leaves are the primitives and the nodes correspond
to boolean operations.

Constructive solid geometry. Constructive solid geometry (C.S.G.) stems
from the work of [Rvachev-1963] related to R-functions, in the context of the
numerical resolution of problems in complex domains. In this type of representa-
tion, the domain is defined via a unique function, which is at least CP-continuous,
with real values f : R? — R* called the representation function (F-Rep). This
function can be defined either algorithmically (that is encoded with an algorithm
that returns the value of the function at a given point), or in a discrete manner,
for instance at the nodes of a regular grid [Pasko et al. 1995]. With this approach,
the topology of the domain is preserved both implicitly (within the tree structure)
and explicitly (by the primitives).

A functional representation. Let us consider a closed domain defined by such
a function f, we assume that :

PeQ < f(P)>0
PedQ < f(P)=0 (16.16)
PeRIN\Q <« f(P)<0

which introduces a classification of the points of R Hence, the points P internal
to the domain are those verifying f(P) > 0, whereas the boundary points are such
that f(P) = 0. We can see how this approach relates with implicit curves and
surfaces introduced in the previous sections.

Primitives. In C.S.G., numerous geometric forms can be considered as primi-
tives, from the simplest ones to the more “exotic” ones, from planes and quadrics
(spheres, cones, cylinders, ellipsoids, etc.), to superquadrics (Figure 16.22).

MESHING IMPLICIT CURVES AND SURFACES 551

Figure 16.22: Ezamples of superquadric surfaces (supertorus) that can be used as
primatives in C.S.G.

More generally, each primitive can be expressed as a special instance (occur-
rence) of a function chosen from a finite set of possible types. Hence, for instance,
the equation :

fl@y,2)=r* = ((z—ca) + (y—¢,)? + (r = ¢,)?) = 0

defines, in three dimensions, the primitive corresponding to the representation of
a sphere of radius r and centered at the point C = (c,, Cy, Cz).

Boolean operations. As we have already mentioned, constructive geometry is
based on the combination of primitives using boolean unary and binary opera-
tions. In this context, the set operations is replaced by operations related to the
corresponding functions.

For example, the union and the intersection of two primitives, defined by the
function f; and f,, can be written as follows!© :

hVfe=h+ft\Jf+f and Anfa=f+fo— /2412 (16.17)

Notice that these functions C*-continuous (k > 1) present C! discontinuities when
f1 = fg = 0. :

The reader is referred to [Pasko et al. 1995] to find the definition of several
other operations.

16.5.2 Implicit domain meshing

We have seen that an implicit domain is one whose boundary is an implicit curve
(surface). Given this remark, two approaches are possible to mesh such a domain :

o the hierarchical approach which consists in meshing the boundaries of the do-
main using one of the meshing techniques described here, prior to providing
the resulting mesh to a “classical” meshing technique (Chapters 5 to 7),

10Using the symbols relative to the underlying sets.

552 MESH GENERATION

e the global approach which considers the mesh generation for implicit domains
as an extension of the meshing techniques for implicit curves and surfaces.

We will now briefly explain the global approach.

Global approach. Enumeration or adaptive subdivision methods are more adapted 8

to this problem than continuation methods, mainly because the latter “track” the
boundary and “forget” the elements not intersected by the boundary. The cre-
ation of the point cloud and then of the boundary mesh (curve or surface) is thus
considered to be resolved.

The internal point creation and thus of the elements is related to the type of
the spatial partitioning used. Hence, in three dimensions, when the covering up
is of composed of vozels (uniform regular grid), or of the octree type, predefined
patterns can be used [Frey et al. 1994]. For a simplicial covering up, the tezel
approach proposed by [Frey et al. 1996], consists in introducing a point in each
simplex (this point is chosen so as to guarantee a suitable mesh gradation) and in
using the Delaunay kernel as the element creation procedure (cf. Chapter 7).

Finally, an optimization procedure based on the element shape quality is ap-
plied, first on the boundary elements, then on the interior of the domain (refer to
Chapters 18 and 19 for more details about the modifications used).

Chapter 17

Mesh modifications

Introduction

The aim of this chapter is to review some methods designed for mesh modification
and manipulation (except for those concerning mesh optimization which will be
discussed in the next two chapters). Provided with one or several meshes we are
concerned with the methods that manipulate this (these) mesh(es) in various ways.
Among the points of interest here, we first review mesh transformations with a
geometric nature, the way in which two meshes can be merged into a single one,
refinement techniques and various operations related to the attributes associated
with the mesh in question.

*
L 4

Geometric mesh transformations are briefly reviewed together with transfor-
mations resulting in a global or a local mesh refinement and methods for geometric
type change. In addition we discuss how to merge two meshes (sharing a common
boundary part). Then, we give some information about node construction and
node numbering for elements other than P! elements (namely where the nodes
can be different from the vertices). Various representative finite elements are
listed to illustrate how to construct (to number) the nodes. Then we focus on how
to optimize, in some sense, both the vertex (node) and the element numbering
in a mesh. To end the chapter, various other aspects are discussed (including
how to manage the mesh physical attributes properly, how to use two different
Meshes, etc.).

17.1 Mesh (geometric) modifications

Depending on the geometry of the domain we want to mesh and the capabilities
of the mesh generation method that is used, it is often tedious to construct a

554 MESH GENERATION

mesh that satisfies certain repetitive properties (such as symmetry) enjoyed by
the domain itself.

Thus, one way to achieve such repetitive features is to design the mesh genera-
tion process by defining explicitly what is expected. In other words, a domain with
a symmetry (if we consider this example) is split into two parts. One of these is
effectively meshed (using a mesh generation method), then a symmetry is applied
to the resulting mesh and both meshes are merged so as to complete a mesh of
the whole domain that obviously includes this symmetry.

17.1.1 Popular geometric transformations

For the sake of simplicity, we only consider P! meshes (the element nodes are the
element vertices, the element edges are straight and the element faces (in three
dimensions) are planar, see Definitions (17.1) and (17.2) below.

Given a mesh, the goal is to create a new mesh resulting from a classical
geometric transformation (symmetry, translation, rotation, isotropic or anisotropic
dilation or a more general transformation explicitly defined by a transformation
matrix).

If the transformation corresponds to a positive isometry, it only affects the
position of the mesh points; thus both the connectivity and the numbering of the
elements remain unchanged.

Otherwise, a transformation corresponding to a negative isometry, acts on the
position of the mesh points and, in our situation, on the numbering (or connec-
tivity) of the element vertices, in such a way that the resulting elements maintain
positive surface areas (in two dimensions), or positive volumes (in three dimen-
sions). To achieve this, a permutation of the list of the element vertices must be
carried out (for example, a triangle with vertices (1,2, 3) must be transformed into
the triangle with vertices (1, 3,2)). The different transformations of interest are :

¢ symmetries with respect to a line or a plane,
o translations or shifts of a given vector,

e isotropic or anisotropic dilations about a given center, whose dilation coeffi-
cients are given,

¢ rotations of a given angle around a point or an axis (in three dimensions),
e or general transformations (given through their explicit matrices).

In addition, any combination of these operators defines a new transformation.

In practice, a transformation can be defined using a matrix 7;,. Thus, if P is
a vertex in the initial mesh, the corresponding vertex, P’ is obtained as :

P’ = T.a(P). (17.1)

MESH MODIFICATIONS 555

This simply means that we have, in R2 :

(7)=ma(2),

with 7:q a 2 x 2 matrix (or more generally, a d x d matrix, in d dimensions).

Nevertheless, in order to give an explicit and easy description of the trans-
formations considered, we use a coordinate system where these coordinates are
homogeneous (i.e., vertex with coordinates (z,y) is seen as the triple (z,y,1)).
The matrix is then a (d 4+ 1) x (d + 1) matrix (regarding these matrices, one can
consult [Rogers,Adams-1989]). Hence, in two dimensions :

1+ A*’F ABF ACF

Toa=| ABF 14 B2F BCF withF:%

corresponds to a symmetry with respect to the line Az + By + C = 0. While

1
7;'a: 0
0

O = O
—3 5

is a translation of vector (7, Ty). A dilation of coefficients (ag, @y) whose center
is (Cz, Cy) is characterized by

ar 0 Cp(l-ay)
Tra=1 0 ay Cy(l-ay)
0 0 1

and a rotation of angle a about a point P = (P, Py) is defined by

cosa —sina P,
Tia = | sihna cosa P,
0 0 1

In three dimensions, we have respectively (with similar notations)

1+ A’F ABF ACF ADF

Ta=| ABE 1+BF BCF BDF | .. . _ ~2
"7 | ACF BCF 1+C°F cpF | YU S mrpoio

0 0 0 1]

for a symmetry.

7;0.:

SO O -
O = OO
":ﬂtzﬂtﬁ

556 MESH GENERATION

for a translation and

a; 0 0 Cr(l-ay)

T = 0 ap 0 Cy(l-ay)

re 0 0 a; C;(1-a,)
0 0 o0 1

for a dilation. For a rotation about the z-axis, we have :

1 0 0 0 1 0 0 P, 1 0 0 —-P,
0 cosa —sina O 0 cosa —sina P, 0 1 0 —-P

Tra = 0 sina cosa 0| % |0 sina cosa P, 0 0 1 —-P,
0 0 0 1 0 0 0 1 0 0 O 1

depending on whether the rotation is made around the origin or an arbitrary point
P. For the rotations about the other axis, we find similar expressions, i.e., (with
P at origin) :

cosa 0 sina 0 cosa —sina 0 0

0 1 0 0 sine cosa 0 0

7= _gna 0 cosa 0] | o 0 1 0
0 0 0 1 0 0 0 1

about the y and the z-axis respectively. Matrix 7;, defined by :

a’? — Sd 4+ CSayyg ab — Se + CS,h ac—Sf+CSyi 0
SCra+ Cd+ SSag SCob+ Ce+ SSoh SChc+ Cf + SSoi 0
—Ssa + Cayg —S3b+ Csh =S¢+ Chi 0

0 0 0 1

corresponds to a rotation of angle a, of axis 4 = (4,, Ay, 4,) around point P =
(0,0,0). In this matrix (cf. Figure 17.1), we have :

o if A, #0, ¢ = arctan <%>, § = arctan (T\/ijF—A_f,))

C =cos¢ and S =sin¢g, C; =cosf and S, =sin¥,

o otherwise, if Ay # 0, § = arctan —Az—~ ,
VAI+ A

C=0,S=1and C; =cosb, S» =sind,
e otherwise C =0, S=1and C; =0, S5, =1,

where
a=C-C, b=C,S, c=-S52 and d= —cosaS —sinaS,C,
e=cosaC —sinaSSy and f= —sinaC, and finally

g = —sinasS + cos aS,C, h =sinaC + cosaSS, and ¢=cosaCy.

As an exercise, we now check that the above matrix is nothing other than the
combination of the matrices

Tra(#,Z) 0 Tra(0,Y) 0 Tra(a, X) 0 Tra(—0,Y) 0 Tra(—4, Z)

MESH MODIFICATIONS 557

Figure 17.1: Rotation about azis A = (Az, Ay, A;). The angles ¢ and 0 enable us
to return to a rotation in terms of o about the z-azis.

where 7;.4(angle, vecteur) stands for the matrix related to the rotation of angle

angle and axis vecteur.

We consider the case where A, # 0. Then, writing only the sub-matrices
corresponding to the rotation, the above expression leads to computing the product
of the five following matrices :

¢ -S o0 C, 0 S 1 0 0 C, 0 -5 ¢ S o
s C o0 0 1 0 0 coa -sa 0 1 0 -S C o0 |,
0 0 1 —S;) 0 02 0 sa co 52 0 02 0 0 1

using the above notations (where ¢« is short for cos @ and s « is short for sin a).
It is then easy to write this operation as follows :

T1 T2 T3 T4 T5 .

Now, we compute the product 7} 75, thus :

CCy =S C8,
SCy; C S8,
=S 0 O

We note the product T3 74 T by :

b
e
h

@ Q. Q
S0

And we return to the above matrix T}, after completing the product of these two
matrices. To end, we express T3 T4 T as a function of T3 and the product Ty Ty,
thus leading to the coefficients a, b, ..., 7. m]

558 MESH (GENERATION

Remark 17.1 The center of rotation is supposed to be at the origin; to return
to a general situation, it corresponds to adding the translation which takes into
account the adequate point P = (P, Py, P,) This comes down to applying first
a translation of vector ' (— Py, —Py,—P;) and, after applying this to the result of
above matriz T4, to applying the opposite translation.

Remark 17.2 In the case of a rotation, the definition of angles ¢ and 6 by an
arctangent gives a determination at modulo m. When programming such an op-
erator, this ambiguity must be removed using the sine and cosine of the angles in

such a way that they are well determined. Thus, we compute the coefficients C,

S, Cy and Sy directly according to A,, Ay et A, to avoid this indetermination.

17.1.2 Local and global refinement

We briefly discuss methods resulting in a global or a local refinement in a mesh.

Global refinement method. Provided with a global subdivision parameter, n,
a global refinement method involves a “uniform” partition of all elements in the
mesh. Each element is then split into n? (d being the spatial dimension) elements
with the same geometric nature. One could note that splitting triangles, quads, as
well as hexahedra or pentahedra results in similar elements. On the other hand,
the same method results in non similar sub-meshes in the case of tetrahedral
elements.

A global refinement method can be used both for mesh construction and for
analyzing the quality of a solution. In the first case, a coarse mesh is constructed
which is then subdivided so as to achieve a fine enough mesh. In the second case,
repeated global refinements is one way to check some convergence issues about the
solutions computed at the different levels. Note that such a method rapidly leads
to large meshes (in terms of the number of elements). In this respect, the different
refined meshes can be used to compare a mesh adaptation method with variable
and local stepsizes with a “reference” solution computed on a uniform fine mesh.

Remark 17.3 A particular process must be carried out when the element under
partition has a boundary edge (face). This must be subdivided by taking into ac-
count the geometry of the boundary.

Local refinement method. Unlike the previous global method, a local refine-
ment method allows the creation of meshes with variable densities (in terms of

Figure 17.2: Global partitioning of a triangle for n = 3.

MESH MODIFICATIONS 559

element or vertex spacing). Thus some extent of flexibility is obtained. Such a
method can serve as a way to achieve some adaptive features and can therefore be
used to deal with adaptive processes (as will be seen in Chapter 21 for example).

Figure 17.3: Some local possibilities for splitting a triangle.

In practice, a list of vertices is given around which a refinement is expected. The
way in which this list is defined depends on the criteria used in the computational
process. For instance, edges in the current mesh which are judged too long can be
defined and their endpoints can be put into the above list of vertices. Then, the
elements are split according to the local situation. Figure 17.3 shows an example
where a point is created along one edge (left-hand side), three points are defined
as edge midpoints (middle) and a point is inserted inside the initial triangle (right-

hand side).
; s

Figure 17.4: Several local partitionings of a quad.

Figure 17.4 considers the case of a quad. The initial quad (left-hand side) is
split into four sub-quads by introducing the edge midpoints (middle) or into three
sub-elements by introducing two points along two consecutive edges (right-hand
side). Figure 17.5 illustrates a tet example. One point is created along one edge
(left-hand side), one point is created in a face (middle) while a point is created
inside the initial tet (right-hand side).

Figure 17.5: Several local partitionings of a tet.

Remark 17.4 The important point is to ensure a good quality of the resulting
elements, which means seeing whether the shape of the initial elements is preserved
or altered by the local process.

560 MESH GENERATION

Remark 17.5 Another topic to be addressed is that of maintaining a confqrmz'ng
mesh. To this end, elements in some neighborhood of the elements which are
refined must be considered as candidates for some extent of refinement.

Numerous theoretical works can be found on how angles, shapes, etc., are
preserved or not when applying local splitting (see, for instance, [Rivara-1984b],
[Rivara-1990], [Rivara-1997]). .

The reader is also referred to Chapter 21 for more details about local mesh
modification tools and to Chapter 8 where some other possibilities for local split-

ting are given.

17.1.3 Type conversion

Geometric type change of the elements in a mesh proves to be useful in yarious
contexts. A quad element can be split by means of triangles using three different
patterns (Figure 17.6). A triangle may be split into three quads (sgme ﬁgure)
but the resulting quads may be poorly-shaped (see Chapter 18 regarding quality
measures for both triangles and quads).

N IX
/A\ /‘%\

Figure 17.6: A triangle leading to three quads (bottom) and a quad leading to two
or four triangles (top).

Similar change type operators can be formally defined for three-dimensional
elements. The above transformation of a triangle into quads extends to three
dimensions which allows a tet to be split by means of hexahedra. Nevertheless.‘.,
as will be seen in Chapter 18, the degree of the vertices in the resulting mfesh is
very poor. Pentahedra can be split using tets (actually three tets are required).
Hexahedra can be split into tets using five or six tets (Figures 18.3 and 18.4).

Remark 17.6 There are 74 possibilities for remeshing a given hex into tets, with
two solutions for a five-element splitting and 72 for a siz-element pattern.

Exercise 17.1 Find this number of splitting (Hint : find all the types of tet one
can construct based on the hex vertices (58 cases are encountered), then, examine
all the possible valid pairs, Suppress the pairs of tets separated by a face plane,
look at the case where a face plane is common to two tets and show the 72 cases

where the face is really a common face).

MESH MODIFICATIONS 561

17.2 Merging two meshes

Various other mesh modification or mesh post-processing are also of interest.
Among these is a process for merging two given meshes into a single one when
these two initial meshes share a boundary region.

Merging two meshes into a single one is frequently necessary. Several points
must be taken into account including how to find the common entities (vertices,
edges and faces), in spite of the round-off errors, and how to complete this task
quickly. Another question is to find a new numbering (labeling) for the vertices
(resp. elements) in the resulting mesh.

Before going further, let us give a more precise formulation of the merging
problem. Let Q; and Q, be two domains in two or three dimensions and let T
and 73 be the two corresponding meshes. We assume that these two domains share
a common boundary region. We also assume that these meshes have been pro-
duced by any of the suitable mesh generation methods in an independent manner.
Nevertheless (at least irrespective of the round-off errors) the meshes of the inter-
face regions are assumed to be strictly identical. This mesh is in d — 1 dimensions
and thus consists of segments (d = 2) or of faces (d = 3).

If 71 N 73 stands for the mesh of the above interface, the merging problem
consists of combining the vertices and the elements in 7; and in 73 in such a way
as to obtain a single mesh 7" = 7; U72. This question can be subdivided into three
sub-problems :

* a problem of a metric (geometric) nature which consists of identifying the
entities (vertices, edges and faces) common to the two meshes,

® a problem of vertex numbering that leads to finding an index (a label) for all
the vertices in the mesh resulting from the merging process. This involves
assigning, in a consistent manner, a numbering system to the three types of
vertices that are met in the resulting mesh, say the former vertices in 71 not
common with 73, those in 73 not common in 71 and, finally, those in 7; N7Ts,
the interface,

¢ and a problem of element numbering that consists of finding a global num-
bering system in the resulting mesh.

As assumed, the points in the interface are supposed identical (i.e., this interface is
meshed in a similar way once the two initial meshes have been constructed). Nev-
ertheless, in practice, and due to the potential round-off problems, these points
which are assumed to be identical are in fact identical for a given tolerance thresh-
old. Thus, a searching technique with an accuracy of € must be used. The common
entities being identified, it remains to find the numbering of both the vertices and
the elements. Let num(P)7, be the index (the label or the number) of vertex P
in 7; for i = 1,2. The problem becomes one of finding these values for the entire
set of vertices whereas the element labeling problem is obvious.

All these points will be discussed below, but first we discuss how to find the
common entities and then we turn to the numbering issues.

562 MESH GENERATION

Finding the common vertices (geometric point of view). Here, given a
vertex in 77 also included in 7; N 75, we discuss how to find the corresponding
vertex in 7 (and conversely). Using a hashing technique (Chapter 2) has proved
very efficient for this task. This operation consists of several stages :

o Constructing a hashing table based on mesh 77, the first mesh.

The two initial meshes are enclosed! in a quadrilateral ”box” (hexahedral box in
three dimensions). The box dimensions A;, A, and, in three dimensions, A, are
computed as well as A = max (A;, Ay, A;), see Figure 17.7. Given ¢, a threshold
tolerance, we define a sampling stepzize ¢ as :

d=2¢cA,

which is the resolution power of the method.

T2 ia

T

C Ay ¢ A

Figure 17.7: The bozx enclosing the two initial meshes and the virtual grid with the
parameter values associated with the merging algorithm.

A grid with boxes (cells) of size § is defined? which formally discretizes tl}e
space. The vertices in 7;, the first mesh, are classified with respect to the grid

boxes. To this end, if z,y and z are the coordinates of a given point P, we
LT =Ty
associated with this triple a triple of integers ¢, j and k defined as ¢ = _6"12,

j= Y= Ymin and k = Z—_-ﬂ, where Ziin, Tmin and zp,in are the coordinates
of the bottom left corner of the introduced box.

Then, a hashing function is used which associates a hashing value with the
triple 4,7,k (and thus with point P). For example, H func(i,j, k) = i+ j +
k modulo(mod), where mod is a given integer, is a possible hashing function (see
also Chapter 2).

This key serves as an entry point in a linked list containing the points of mgsh
T1. For example, let H func and Link be the two above “tables”, for a given point

INote that it is also relevant to define the enclosing box as the box based on only one mesh (for
instance, the smaller mesh, in terms of the number of vertices), this box being slightly dilated.
2In practice, this grid is not actually constructed.

MESH MODIFICATIONS 563

P with coordinates «,y,z, we compute keypgen = H func(P) = H func(s, j, k),
then, if Link(keynacr) # 0, Q1 = Link(keyhgcn) is the index of the first point
related to P while the other points (@Q;, if any) related to P are obtained via the
sequence :

| 1, keyhach «— Ql
REPEAT keynach = Link(keynach)
IF keYnach #0,
lel+1,
Q1 + keynach
OTHERWISE, END.

Then, this material® is used to find the vertices in the second mesh which are
common to the vertices in the first mesh.

Remark 17.7 In some geometric situations, the virtual enclosing grid can be de-
fined as the intersection of the two enclosing bozes associated with the two initial
meshes in which the interface necessarily falls. Depending on the relative posi-
tions of the initial meshes, the virtual grid is significantly reduced and thus the
corresponding parameters are better adapted.

Now, we can proceed to the next stage of the process.
¢ Analysis of mesh 7; with regard to the above hashing table.

Once all the points in 7; have been processed, we consider the vertices in T2. Given
point P in 73, we compute? keypqep = H func(P), the value associated with P,
i.e., the equivalent of the box in which P falls. If z,y are the coordinates of P (for
the sake of simplicity, in what follows, we assume a two-dimensional problem), we
also compute the keys associated with the virtual eight points whose coordinates
are (z,y % shift), (z & shift,y), (z — shift,y + shift) and (z + shift,y + shift)
where shift = % = ¢ A (in fact, a value smaller than this theoretical value must be
used, for instance, instead of shift = 0.54, it is advisable to take shift = 0.4994).

Due to the value of shift, only four different keys can be found (Figure 17.8).
Then, let keypaen be one of these entry points, we just have to visit table H func
in parallel with table Link to find the vertices of M 1 which are “close” to point
P under examination.

Let @ be such a point, then if max(|zp — zq|, |lyp — yg|) < 4, the pair (P, Q)
Is a candidate pair of common points, otherwise, table Link is visited to find any
other possible candidates.

Remark 17.8 In this algorithm, we can stop once the first candidate pair has
been obtained or we can continue in order to check if there exist more than one
point in Ty which forms a candidate pair. In such a case, a natural idea is to pick
the closest point as the solution. ’

3 Another use of this hashing is to find the points in 7] which are “close” to a given point.
4If the grid is based on the first mesh only, it is necessary to check that P falls within the
grid before computing its key, otherwise, point P is not considered.

564 MESH GENERATION

p shift

left

Figure 17.8: The eight virtual points result in four different hashing keys.

Remark 17.9 Following the previous remark, due to round-off errors or due to
the more or less strict coincidence of the “common” boundaries, it is possible to find
several points in Ty which are identified with only one point in T1, see Figure 17.9.
To prevent such a problem, we consider the pairs of “identical” points resulting
from the merging of T; with Ty along with those resulting from the merging of Ty
with T1. Then, the pairs which are in both lists are solutions.

Finding the common entities. Common geometric vertices are obtained using
the previous algorithm. Nevertheless, merging two meshes requires finding not only
the common vertices but the common edges and faces as well. In addition, the
merge can be based on a more general definition of the common entities involving
not only the geometric point of view.

e Pure geometric merging process.

In this case, the common vertices are determined using the above method. Then,
common edges are those whose endpoints are common while common faces are
those whose vertices are common. Exhibiting both the common edges and faces
and not only the common vertices allows for an easy check of the Euler formula
(Chapter 1) thus providing a way to guarantee the correctness of the resulting
mesh.

e More sophisticated merging process.

In this case, we consider both the geometric aspect and the physics of the problem.
Including the physics in a mesh (see Chapter 1) involves associating some physical
attributes (integer values, for instance) with the mesh entities (vertices, edges and
faces). Then two vertices are said to be common if they are geometrically common
and, in addition, if their two physical attributes are identical. Similarly, common
edges and faces are defined by taking into account the physics. For instance,

MESH MODIFICATIONS 565

o *B
- .
$ e
As Aze A4¢
As Aze
)
Figure 17.9: Merging 71 and T, results in the pairs

(B1, A1), (B2, A1), (B3, As), (B4, As), ... (left-hand side) while merging T, and T;
produces the pairs (A1, Ba), (A2, Ba), (As, By), (A4, Bs), (As, Ba), ... (right-hand
side). Then the points which are Judged coincident are Ay and By, A4 and Bs, Aj
and Bs, etc. Note that, for clarity, the two meshes have been slightly shrunk, in
fact the common boundaries are assumed to be coincident or, at least, very close.

introducing physical considerations is a simple way to define cracks (in fact, two
edges located at the same location exist at a given time and, due to the nature of
the problem under consideration, are then clearly different : a crack appears.)

Numbering issues. This point may concern two aspects, element numbering
and vertex numbering. Actually, depending on how the mesh data structure is
defined, the mesh elements have an explicit numbering (or index) or are simply
sequentially enumerated (meaning that the first element is that located at the
beginning of the “table” which stores them). Whatever the case, the elements
In mesh 7 are formed by the elements in mesh 71 sequentially followed by those

of mesh 75. On the other hand, vertex numbering must receive some explicit
attention.

Let ny (resp. ny) be the number of vertices in 71 (resp. 73) and let num(P)7,
the index® of vertex P in mesh 71, the aim is to define num(P)7 for all any point
P in T. The points in T are classified into three categories, those which are points
of the former mesh 71, those which are common to 71 and 7a, the interface, and,
finally, those which are points of the former mesh 75 not common to the interface.

Once the common entities have been established, the common points are known.

5Indeed, in general, num(P), = P.

566 MESH GENERATION

In other words, we know a correspondence table like
PeT, <= Q€T,

for all the points in the interface. Then, the following algorithm can be used to
find the vertex numbering :

num(P)7 =0 for all P € T,
n<n,
IF PeT
num(P)r « num(P)p,
IF PeT
IF PeTinT;
num(P)r ¢ num(Q)7, where Pec T, <= Q€ T,
OTHERWISE IF num(P)r =0
n+~—n+1
num(P)r < n.
END IF
END IF

In fact, initializing this table from n; + 1 to n; + n, ensures an adequate
initialization (since n; + ny is larger than the number of vertices in the final
mesh). Using the initialization stage of this algorithm allows us to number the
vertices by visiting the elements in the global mesh. Indeed, num(P)7 = 0 means
that the index of vertex P must be defined while num(P)7 # 0 means that the
index of P has been already established (P is a member of the (former) first mesh
or P is in the interface or, finally, P has already been labeled when processing an
element prior to the current element).

Remark 17.10 The verter numbering is a priori not optimal (in any sense), es-
pecially, merging T1 and Ty results in a different numbering to merging T3 and T;.
Thus, a renumbering algorithm can be necessary to optimize the final mesh.

Remark 17.11 The merging of two meshes, a very natural and frequent operation
in mesh generation packages, can be seen in a very different way. In fact, ba.‘f’ed
on the methodology used to define the mesh of the entire domain by partitioning
this domain into regions where a mesh generator is used, the regions common to
two (local) meshes are formed by a set of two lines or two surfaces that have b.een
explicitly defined beforechand. Therefore, the interfaces are a priori known, e,
not to be sought in one way or another. In fact, the storage of this information
in a mesh data structure is not trivial, and consequently we must regenerate them
by computation. This apparent weakness is compensated for, on the one hand, ‘by
the efficiency of the merging algorithm and, on the other hand, by the resgltzng
modularity in the sense that merge formally becomes independent of the design of
the local meshes.

To conclude, one should note that, in terms of CPU, the hashing technique
used to find the coincident vertices has proved to be rather inexpensive. Thus
the computational effort necessary to merge two meshes is mainly due to the I/O
steps of the process.

MESH MODIFICATIONS 567

17.3 Node creation and node labeling

Both the creation and the adequate numbering of finite element nodes is a crucial
task when finite elements other than P! are needed (a section, at the end of the
chapter, will come back to this question which is also discussed in Chapter 20).
In this section we discuss how to assign a number (an index) to the nodes of a
given mesh. We briefly consider this numbering issue at the mesh generation step
and we turn to the case of meshes whose nodes do not reduce to their vertices.
Renumbering issues (for optimization purposes) will be discussed in the next sec-
tion.

17.3.1 Vertex and element labeling

As discussed in many chapters, numerous mesh generation methods exist which
complete a so-called P! mesh (see Definition (17.2), below). Apart from some
specific methods which result in a specific vertex (element) numbering, there is no
particular reason for the vertex (element) numbering obtained should be optimal.
The creation of a mesh with nodes other than the mesh vertices leads to the same
conclusion since the sole aim of the node numbering (discussed in the following of
this section) is to assign a number to the mesh nodes without any concern about
the optimality of this numbering.

17.3.2 Node creation

To introduce the problem, we discuss how to define P2 finite elements. As previ-
ously seen, mesh generation algorithms implicitly construct P! meshes. To make
this notion precise, we first review Definition (1.16) in Chapter 1 :

Definition 17.1 A node is a point supporting one or several unknowns or degrees

of freedom (d.o.f).

A formal definition of a P! type mesh is as follows :

Definition 17.2 A P! mesh if a mesh whose geometry is P!, meaning that the
element edges are straight and, in three dimensions, the element faces are planar,
and whose nodes are reduced to its vertices.

Every mesh vertex is then considered as a node and the geometric elements®
are actually the finite elements (once the basis functions are defined, Chapter 20).

In this section, we assume that a mesh implicitly of a P-type is given and we
wish to define a P%-type mesh. We assume in addition that the given mesh is com-
patible in a sense that will made clear hereafter, with respect to a P2 interpolation.
The problem is then to define the “midpoint” nodes along the boundary edges (for
a problem in two dimensions), Figure 17.10, as the extra nodes required for the
interior edges are trivial to obtain. Boundary nodes must be properly located on
the boundary and thus we need to know which edge is a boundary edee and for

568 MESH GENERATION

B
- o A
- - L/ ,/’ ’ . ,
// o N a | \\
o - | \\ /‘< , a
/ | SN |

Figure 17.10: Construction of a P? finite element. An element resulting from the
mesh generation method previously used is shown on the lgft where T’ deﬁotes the
boundary domain. The corresponding P? element is depzcted on the right-hand
side. This siz node triangle includes as nodes the three vertices P, o, 3 together
with the above three edge “midpoints” a;. Actually, for a straight six node tflangle,
the “midpoints” are the edge midpoints while for a curved (isoparametric) siz node
triangle, these a;’s must be properly located on T' (for a boundary edge).

a boundary edge, we also need to have a suitable representation of the geometry,

so as to permit the proper location of the new node. .
Hence, two problems must be addressed. First, how to find a proper location .for

the nodes (other than element vertices). Second, how to find a global numbering

of the nodes.

17.3.3 Node construction and p—compatibility

The most used finite elements (see below) involve either edge midpoints as nodes,
several points along every element edge and/or some points inside the element.
In three dimensions, nodes may be defined along element edges, element faces or
inside the elements. Note also that element vertices may or may not be nodes.

Definition 17.3 A given mesh, assumed to be P! is termed p-compatible if finite
elements of degree p can be constructed resulting in a valid mesh.

Actually a mesh is p-compatible if all of its elements are p-compatible. The
element depicted in Figure 17.10 is 2-compatible. ‘ o

At this stage, the p-compatibility is assumed and remains purely intuitive.
Let us simply consider that edges close enough to a curved b(.)u.ndary [result
in a p-compatible mesh. This will be discussed with more detail in Chapters 20
and 22 where conditions ensuring this property will be developed. II} fact, we
have introduced this notion to make the node numbering problem consistent (we
assume that creating these nodes poses no problem).

17.3.4 Node labeling

When the nodes are created, it is necessary to find a suitable numbering system
for them both at the element level (local numbering) and at the mesh level (global

61.c., the elements constructed by any mesh generation method.

MESH MODIFICATIONS 569

numbering). At the element level, one needs to find a number (an index) for a
given node. At the mesh level, one needs to associate a global index with the above
local indices. Furthermore, it could be of great interest to optimize the resulting
node numbering (see below).

Nodes are created along the mesh edges, in the mesh faces or inside the mesh
elements based on the type of the finite element which must be defined. In the
case where a constant number of nodes is defined for a given entity, the index of
a node can be easily related to the index of the underlying entity. On the other
hand, when the number of nodes varies for a given entity, finding a node index
requires more subtle attention.

¢ Local numbering.

The definition of a finite element includes the definition of its nodes (see N
hereafter). In other words the local numbering of the nodes is explicitly known.
For example, the P? triangle consists of six nodes. The first three nodes are the
three vertices while the mid-edge nodes form the nodes 4,5 and 6 of the element.
Usually, the first nodes are the vertices and they follow their local numbering while
the others, if any, are sequentially numbered based on their supporting entities (the
edges, then the faces and, finally, (the interior of) the element).

¢ Global numbering.

Given a finite element, i.e., its node list, the aim is to find a global node numbering
over the entire mesh. In practice, at the computational step, the elements are
considered one at a time and the correspondence (let us consider again the six
node triangle)

[1y2,3,4,5,6] et [n], Ng, N3, ""nG] ,

is used to perform the necessary calculation. Indeed, the labels ni, na and n3 are
known (as a result of the mesh generation step which completes a P! mesh) and
the numbering problem reduces to finding the three remaining labels. To this end,
Wwe can construct the list of the mesh edges, assign a number to any edge while
maintaining the relationship between this edge number and the element numbers.
Then, fix num = np, where np is the number of mesh vertices and we use the
following algorithm :

FOR 1 = 1,ne, ne being the number of elements
One visits the edges of element i in the mesh.
If the examined edge has not been previously visited
(while visiting an element with index i less than the current index),
one assigns the index of the known node to the edge node
one proceeds to the next edge.
OTHERWISE
one sets num = num + 1
one associates num with the edge and
one takes num as the index of the node in the examined edge.
END IF
END FOR

570 MESH (GENERATION

For a finite element with more than one node on a given edge, the previous
scheme must be slightly modified. Let k, be the (constant) number of nodes per
edge, then the following algorithm must be used :

FOR i = 1,ne

One visits the edges in the mesh.

If the examined edge has not been previously visited
one uses the index of the edge to find the various indices
for the nodes related to this unique index
one assigns these indices to the nodes of the edge when considering
it as indicated above based on the indices of its endpoints.
one proceeds to the next edge.

OTHERWISE, IF j is the edge index,
then the values num; =np+k.(j—1)+1, ...,
numg, =np+kn(j— 1)+ kn =np+k,j are the node indices
for this edge.
one considers the endpoint indices, i; and i, and

IF 11 < i2
one assigns num;, numz, ..., numg, to the edge nodes
while seeing it from i; to i
IF 13 > 17
one assigns numi, numz, ..., numg, to the edge nodes
now seen from i; to 1,
END FOR

For a finite element having some nodes on their faces (other than the nodes
located on the face edges), the previous algorithm allows the face node numberipg.
An index is assigned to the face and one has just to take care how the corresponding
node labels are assigned so as to insure a consistent numbering for a face shal.'ed
by two elements. Again, comparing the labels of the face vertices is a solution
to complete a consistent node numbering. Nodes inside an element are numbered
according to the same principle.

Remark 17.12 In this discussion we have assumed a constant number of nodes
for each entity. If this number varies, the global index is not obtained by a simple
formula as above but by adding one to the previous inder used (note thgt the
relationship between the entity index and the (first) node inder is also required).

17.3.5 Some popular finite elements

Due to node definition and numbering problems, we recall here some of the fi-
nite elements that are, for the most part, extensively used in the finite element
computational processes commonly included in available software packages.

A finite element is fully characterized by a triple (see Chapter 20 for more
details) :

(K, Pk, Xk],

where K is a mesh element, Xk is the set of degrees of freedom defined over K
and Pk denotes the basis polynomials (commonly termed as the shape functions)

on K.

MESH MODIFICATIONS 571

In terms of geometry, we are mostly interested in what K should be. In terms
of node definition, we have to focus on Yk . The other point, the basis polynomials,
does not fall within the scoop of this book (the reader is referred to the ad-hoc
literature).

About the geometry. Let us consider a triangle. The geometry of the three
node triangle (namely the Lagrange P! finite element) is fully determined by the
three vertex elements. Similarly, the geometry of the straight six node triangle
(Lagrange P? element) is characterized by the three element vertices while the
geometry of the curved (isoparametric) six node triangle is defined using the three
element vertices along with the three edge “midpoints”. Thus, in the defining
triple, K is the triangle resulting from the mesh generator or this triangle enriched
by three more points.

About the node definition. The nodes are the support of the degrees of free-
dom. A given node may support one or several degrees. There are various types of
degrees. The most simple finite elements, namely Lagrange type elements, involve
as degrees the value(s) of the unknown(s) which is (are) computed. For instance,
depending on the physical problem, the pressure, the temperature, the displace-
ments, the stresses, the velocity, the Mach number, etc., could be the unknown
functions. Then, a temperature leads to one degree, its value, while a velocity is
assoclated with two (three) degrees (one degree for one direction). More sophisti-
cated finite elements, such as Hermite type elements, involve as degree the value
of the unknown function together with some of its derivatives. Also beam, plate
and shell elements use various derivatives as degrees of freedom.

Now, given an element, the nodes can be located at various places. “Poor”
elements have only their vertices as nodes. Other elements use in addition some
nodes located along their edges, on their faces or inside them. Note also that there
exist elements whose vertices are not nodes.

In addition, finite elements exist where several types of nodes are encountered
for which the number of degrees of freedom varies.

Examples of popular finite elements can be found in Chapter 20.

17.4 Renumbering issues

As a consequence of vertex, node or element numbering problems, another issue of
interest concerns the vertex (node) or element renumbering methods that allow the
Minimization, in some sense, of the resulting matrices (i.e., based on the created
mesh) used at the solution step of a computational process.

Renumbering concerns the solution methods that will be used subsequently.
The aim is both to minimize the memory resources needed to store the matrix
associated with the current mesh and to allow an efficient solution step for some
solution methods where a matrix system must be considered

572 MESH GENERATION

17.4.1 Vertex renumbering

Various methods exist for mesh vertex (element) renumbering purposes. In what
follows, we discuss in some detail one of the possible methods, namely the so-called
Gibbs method ([Gibbs et al. 1976a]), and a variation of it.

For the sake of simplicity, we consider P!-type meshes and the case of arbi-
trary meshes is discussed afterwards. The basic scheme of this method can be
summarized by the three following steps :

e the search for a good starting point to initialize the algorithm (following
[A.George,Liu-1979]),

o the optimization of the numbering descent,

o the numbering itself based on the previous material using the Cuthill MacKee
algorithm ([Cuthill, McKee-1969]).

In order to describe the method, we need to introduce some notations and defini-
tions.

The mesh under consideration is 7, P; is a mesh vertex and np and ne are the
number of vertices and the number of elements, K; is a mesh element. In terms
of graphs, the vertices are also referred to as the nodes. Two such nodes are said
to be neighbors if there exists an element in 7 with these two nodes as vertices
(or nodes, in terms of finite element nodes). The degree of a node P, deg(P), is
the number of its neighboring nodes. The graph, Gr, associated with 7 indicates
the connections between the nodes (Figure 17.11). Note that a graph may contain
one or more connected components, the connected component number k being
denoted Cj. The neighbors of node P constitute N;(P) level one of its descent.
The neighbors of the nodes in Aq(P), not yet referenced, form N3(P), level two
of the descent of P and so on. The descent of node P, D(P) is the collection of
the levels Nx(P). The depth of P, d(P), is the number of levels in D(P).

—

i) i) iii)

Figure 17.11: Connections from nodes to nodes for a triangle i) and a quadrilateml a

it). All the nodes of the element interact. For a quadrilateral iii), a reduced graph }
can be constructed by omitting the connections corresponding to the diagonals.

MESH MODIFICATIONS 573

First, we establish the neighboring relationships from element to element. At
the same time, the degrees of the mesh nodes are found. Then, several steps are
performed :

e Step 1 : an initialization step corresponding to the following algorithm :

Pick in 7 the node P of minimal degree deg(P)
(1) define D(P), the descent of P,
consider the last level in this set, ie., Nx(P),
select the node @ of minimal degree.
form D(Q) and compare D(P) with D(Q),
IF d(Q) > d(P)
replace P by @
RETURN to (1)
OTHERWISE
the initialization is completed.
END IF.

This step merits some comments. Actually, the initial guess P is the point with
minimal degree. Indeed, P must be a boundary point but this way of processing
avoids explicitly establishing the list of the boundary points while leading to the
desired result after very few iterations.

On completion of the initialization step, we have found PQ the pseudo-diameter
of the renumbering graph which now serves to pursue the method.

e Step 2:

Given the pseudo-diameter PQ together with D(P) = {N;(P), N2(P), o Np(P)}
and D(Q) = {N1(Q), N2(Q), ..., Np(Q)} where p is the depth of both the descent
of P and that of @, we construct the mesh descent D and more precisely its level
N; which will enable us to find the desired renumbering of the nodes.

To this end, three stages are necessary. First, we construct the pairs (¢, j) as
follows :

for M a given point in T

find the level of D(P) and that of D(Q) where is M.
Let Ni(P) and Ni(Q) be these two levels,

form the pair (i,j) such that j=p+1—k.

Using this information, we can start the construction of the global levels :

If the pair (7,i) exists for point M
put A in the level A
suppress M from the list of nodes to be examined, i.e., from graph Gr.

If Gr is empty, we go to Step 3 of the global algorithm, otherwise, the remaining
Nodes must be classified in the different levels. '

The current graph Gr can now consist of a set of one or more disjoint connected
components. These are found and ordered following the decreasing number of
Nodes they have. Let Cj be the component of index k and let ncomp be the
Number of connected components, then we analyze the ncomp components :

574 MESH GENERATION

FOR k = 1,ncomp
FOR m = 1,p
compute n, the number of nodes in level Nm,
compute hm = nn,+ (the number of nodes) € Cx NNy (P),
compute ly, = n,m+ (the number of nodes) € Cr NNn(Q),
END FOR
compute hg = "rlrﬁxp(hm) where hym — nm, >0,

compute lp = max (Im) where Ly —nm, >0,
m=1,p

IF ho < lo
put all the nodes in Ck in level N,
where 1 is the first index in the pair (i,j) associated with
the node under examination,

OTHERWISE IF ho > o
put all the nodes in Ci in level N
where j is the second index in the pair (7,j) associated
with the node,

OTHERWISE IF ho =l
put all the nodes in Cj in the level with the
smallest dimension,

END IF

END FOR

In this way, each vertex of Gr has been assigned a level in the descent. Mgre-
over, a nice balancing is obtained in the different levels. Then the numben?lg,
following Cuthill Mackee, can be processed. This is the purpose of the following
step.

e Step 3 :

First if deg(Q) < deg(P), we reverse P and @ and the levels ob‘;ained at
the previous step to ensure that the numbering will start from the endpoint of the
pseudo-diameter of lower degree. Reversing the levels leads to fixing Ni = Np-it,
fori = 1, p. Then we want to obtain newnum(M), for M € M, the desired number
of the vertex M. To this end :

Initialization, one starts from P, thus M =P
n=1
newnum(M) =n
No = {P}
FOR k=1
If M € Nx with adjacent vertices not yet renumbered
construct the list C(M) = adj{M)N N where adj(M) notes
the vertices neighbor of M
OTHERWISE IF 35 € C(M) not yet renumbered (such points being
considered following the increasing order of their degrees)
n=n+1
newnum(M) = n.
END IF
END FOR

MESH MODIFICATIONS 575

FOR k=2,p—1
WHILE 3M € N, with adjacent vertices not yet renumbered
construct the list C(M) = adj(M) NNy, where adj(M) notes
the vertices neighbor of M
S OTHERWISE IF 35 € C(M) not yet renumbered (such points being
considered following the increasing order of their degrees)
n=n+41
newnum(M) =n.
END FOR

If some cases (in fact, if P and Q were reversed and if j was selected in the
previous step, i.e., hg > Iy was found when component C; was analyzed or P
and @ were not reversed but i was selected in the previous step) the previous
renumbering is reversed :

FOR :=1,np
te—np—1+1
END FOR

This vertex renumbering method has proved very efficient, and is, moreover,
fully automatic. It results in a significant minimization of both the bandwidth
and the profile of the sparse matrix that will be associated with the mesh being
processed.

Arbitrary meshes. Given an arbitrary mesh (in terms of the node definition),
the previous material can be applied for node renumbering. Let us consider a
simple example, a P? mesh where the nodes are the mesh vertices together with
the edge midpoints. A possible node renumbering method could be as follows :

e apply the previous method to the P! mesh associated with the current mesh.
This comes down to only considering the vertices of the P? mesh as nodes.

* use the resulting node numbering to complete the node numbering of the P2
mesh. To this end, initialize i = 1 and num = 1, then

— pick the node i in the P! mesh, find the ball of node 1, assign numbers
num,num+1, ... to the P? nodes of the elements in this ball that have
not yet been renumbered, update num and repeat this process (with
1=14 1).

Remark 17.13 This rather simple renumbering method is probably not optimal
but appears to be reasonable on average. To obtain better results, one could perform
the classical method by considering the full node graph of the mesh, which therefore
increases the effort required.

Remark 17.14 The case of adapted meshes, in specific anisotropic meshes, is not
really a suitable situation for the above numbering method.

576 MESH GENERATION

17.4.2 Element renumbering

A compact numbering of the elements may be a source of benefit at the solution
step as this could minimize some cache default or some memory access default.

A simple idea to achieve this feature is to make the element numbering more
compact around the mesh vertices. Thus, it could be of interest to renumber the
mesh vertices first before processing the element renumbering step. A synthetic
algorithm is then :

Initializations
num =0
newnum(l : ne) =0
FOR : =1,np
FOR j = 1,ne
IF P; is a vertex in K; and newnum(j) =0
num = num + 1
newnum(j) = num
END IF
END FOR j
END FOR 1

with the same notations as above (K; denotes an element and P; denotes a
vertex). At a glance, the complexity of this algorithm is something like O(n2)
where n stands for ne (or np), thus, this algorithm is not really suitable in terms
of computer implementation.

17.4.3 Application examples

To illustrate the efficiency of the above method (for vertex renumbering), we give

some selected examples related to various meshes.
Table 17.1 presents various characteristics of the meshes before and after being

renumbered. The first two meshes are in two dimensional space, the two others
correspond to three dimensional cases. The values of interest are the total profile,
the mean profile, the bandwidth and v the number of nodes dealt with per second as
a function of the size of the expected matrix, assumed to be an n by n symmetric
matrix (with n = np, the number of nodes of the mesh). The bandwidth, g, is

defined by
B = m?x[i—ji|,

where i = 1,n and j; is the index of the first row where an a priori non null
coefficient may exist. Indeed the value |i— j;|, denoted as §;, measures the distance
between the first “ non null” row and the diagonal of the resulting matrix (i.e.,
in terms of vertex indices, the distance, given vertex index i, between the vertex,
adjacent to vertex 7, which is as far as possible from vertex i). The profile and the
mean profile are then

n
r .
pr = Zdi and prmean = % with n=np

=1

MESH MODIFICATIONS 577

Mesh 1 2 3 4
np 36,624 59,313 43,434 92,051
ne 72,783 116,839 237,489 463,201
G (initial) 35,396 53,580 42,516 89,5630
pr 364,616,352 | 827,498,368 483,132,896 | 2,194,965,760
PTmean 9,955 13,951 11,123 23,845
B (final) 811 458 1,368 5,186
pr 11,115,036 9,166,162 | 39,944,464 172,534,912
DPmean 303 154 919 1,874
p_rf.:T,. 33 90 12 13
Lv l 29,000 l 27,000 | 11,000 l 10,6OT]

Table 17.1: Gibbs : bandwidth and profile before and after renumbering. Examples
one and two concern two-dimensional triangle meshes while the two other examples
are three-dimensional tetrahedral meshes.

The Gibbs method proves to be robust and efficient. In addition, it is fully
automatic and does not require any directive. Comments on these statistics can
be seen below (to allow the comparison with other renumbering methods).

-218

Fligure 17.12: Matriz occupation associated with a given mesh before (left-hand
side) and after node renumbering (right-hand side). For the sake of clarity, this
cxample concerns a “small” mesh different from those described in Table 17.1.

Remark 17.15 Any conclusion on the efficiency of a Gibbs based renumbering
method must be made more carefully in the case of adapted meshes where the
density of elements varies greatly from place to place or also when anisotropic
elements made up the mesh. In such cases, other renumbering methods may be
advocated (see below).

578 MESH GENERATION

17.4.4 Other renumbering methods

Among the various renumbering methods, the so-called frontal method” is now
briefly discussed (to make some comparisons with the Gibbs method possible and

to take into account the above remark).

In essence, this method consists of radiating from a starting front. Let Fy be
a set reduced to one node or a collection of adjacent nodes (generally chosen on
the domain boundary), then the algorithm can formally be written as follows :

ko0
(A) FOR 2= 1,card(Fx) (the number of nodes in Fy)

FOR all the elements sharing node ¢ in Fi
construct V;, the set of indices of the nodes neighboring

node ¢, not yet renumbered
FOR all the nodes in V; (let j be the index of such a node)
compute nbneigh(j), the number of neighbors of node j

END FOR
renumber the nodes in V, as a function of nbneigh(s),
the number of neighbors (in increasing or decreasing order

of nbneigh)
END FOR

Thus, set V; forms the new renumbering front, then :

k+—k+1

Fr=V

IF card(Fx) >0
return to (A)

OTHERWISE, END.
The process is completed (the numbering may be reversed).

Numerous variations exist. For instance, this method of node renumbering
depends greatly on the choice of the initial front and could therefore require the
user’s directive. It also depends on the way in which the nodes of the V;’s are

selected.

Finding the initial front can be the user’s responsibility or can be obtained using
the above technique for the construction of the pseudo-diameter of the mesh.

Choosing how to proceed the V;’s can be done :

o by selecting the node in V; with minimum degree,
o by selecting the node in V; with maximum degree,
o by selecting the node in V; with minimum index,

e and so on.

7 Also referred to as greedy.

MESH MODIFICATIONS 579

Tables 17.2 and 17.3, similar to the previous table, give the statistics related to
two different variations of a frontal method. Table 17.2 considers a method whose
initial front is the point with minimal degree (presumably a boundary point) while
Table 17.3 shows a method where the pseudo-diameter is used to initialize the
front.

Mesh 1 2 3 4
np 36,624 59,313 43,434 92,051
ne 72,783 116,839 237,489 463,201
3 (initial) 35,396 53,580 42 516 89,530
pr 364,616,352 | 827,498,368 | 483,132,896 | 2,194.965.760
Prmean 9,955 13,951 11,123 23,845
3 (final) 552 303 1,390 4527
or 16,145,040 | 12,647,528 | 30,873,528 | 254,601,584
Prmean 440 213 918 2,765
i L 23 65 12 9

Lo |

‘Table 17.2: Naive frontal method : bandwidth and profile before and after renum-
bering (the examples are the same as in Table 17.1).

55,000 | 50,000 | 15,000 | 15,000 |

Mesh 1 2 3 4
np 36,624 59,313 43,434 92,051
ne 72,783 116,839 237,489 463,201
[8 (initial) 35,396 53,580 42516 89,530
pr 364,616,352 | 827,498,368 | 483,132,896 | 2,194,965,760
PT'mean 9,955 13,951 11,123 23,845
B (final) 630 357 1,425 5,172
pr 12,296,281 | 10,045,739 | 41,060,840 | 235,954,128
Plmean 335 169 945 2,555
o— 30 82 12 9
[v | 39,000 | 37,000 | 13,000 | 12,300 |

Table 17.3: Frontal method starting from the pseudo-diameter : bandwidth and
profile before and after renumbering.

Comparing the three tables leads to some comments. In terms of bandwidth, in
our (limited) experience the two frontal methods give as the worst value one smaller
(i.e., better) than the Gibbs method. Nevertheless, the Gibbs method results in
a better profile (and, thus the ratio p—rn% is larger for any of the examples we
have tried). In terms of CPU, the naive method is less demanding than the other
frontal method and the Gibbs method réquires more effort. As a final remark, it
could be observed that the ratio of improvement due to a renumbering method
depends on the geometry of the domain. In this respect hin retame e g

580 MESH GENERATION

to large regions, loops (holes), etc., interact on the result.

iii) iv)

Figure 17.13: Gibbs versus frontal methods. The original mesh i), Gibbs it) naive
frontal 1) and frontal with pseudo-diameter iv). Colors are associated tq ver-
tex indices (from white (vertex #1) to black (verter #np). The color variation
indicates the way the methods proceed.

Element coloring. A method can be constructed to color the elements of a
given mesh. The goal is to obtain several disjoint packets of elements., each‘ of
which corresponds to one color while two elements in two different neighboring
packets have two different colors. Using ideas similar to the four colors theorem,
this method consists of renumbering the elements of a mesh by creating packets f)f
elements such that any neighbor of an element in a given packet is not located.ln
the same packet. When only two packets are created, this method clearly looks'hke
the “Red-Black” method [Melhem-1987] which permits separation of nodes into
two disjoint sets. Put briefly, the algorithm is based on searching for the r.leig.hbors
of an element with the aim of separating these elements. The main application of
this method is the numerical solution to a problem on a vector computer, but the
idea may be applied to various areas.

Other numbering (coloring) issues. Various methods can be developed based
on particular numbering or coloring techniques.

17.5 Miscellaneous

In this section, we briefly mention some topics about mesh modification that have
not already been covered.

MESH MODIFICATIONS 581

Mesh manipulation and physical attributes. As mentioned earlier, a mesh
devoted to a given numerical simulation does not include only a geometric aspect
and must contain information about the physics of the problem. In this respect,
the elements in the mesh are not fully described when the vertex coordinates and
the vertex connection are known. Actually, physical attributes are also part of the
mesh description. At the element level, it has proved to be useful to have some
physical attributes associated with the element itself as well as with the element
entities (vertex, edge, face). Therefore, any mesh modification includes two parts.
The part concerned with the geometric aspect of the mesh manipulation has been
already described while the way to manage the physical attributes of the given
mesh and to derive the corresponding information for the resulting mesh must be
now discussed.

In practice, the physical aspects of the resulting mesh inherit, in some way, the
physical aspects included in the initial mesh. The issue is to make the desired cor-
respondences precise, based on the type of mesh manipulation used. Figure 17.14
shows two basic examples and gives some idea of what must be done.

3 3
o (r—ad
IR
— 3 3
4 (<2 — 4 lﬁﬁ > 2

NN -
1 1

Figure 17.14: According to the transformation (translation (top), symmetry
(bottom)), attributes 1,2,3 and 4 remain unchanged or must be permuted as
1,4,3 and 2.

Non obtuse mesh. See Chapter 18.

Crack or widthless region construction. Defining one or several cracks or
regions with little thickness makes it possible to deal with some types of problems
in solid or fluid mechanics.

A crack (a thin region) is a line (a surface) which has a priori two meshes.
In the case of a crack, these two meshes are coincident, in some sense. After
Processing, the crack may open and become longer.

Constructing a thin zone makes it possible, for example, to introduce finite
elements like line elements between the two initial elements sharing the common
edge (in two dimensions).

Creating a crack of a zone with no thickness is not, an easy task for a mesh gener-
ation method. The fact that there is at least one pair of strictly coincident points at
the beginning implies that the classical methods (auadfree. omtres oo e 6t

582 MESH GENERATION

Figure 17.15: Left-hand side : a part of the domain, a set of edges that must be
duplicated (a), the boundary T' and the initial endpoint of the crack (A). Middle :
the crack appears and the initial point A is duplicated (in point A and another
point B which is distinct). Right-hand side : initial point A is not duplicated.

or Delaunay based) are not suitable, at least in their classical versions (Chapters 5,
6, 7). Such a situation is indeed seen as a cause of failure. Therefore, defining
such a zone is not possible without using specific post-processing®.

QKRN RE AR

Figure 17.16: Elements located on one of the side of the crack are identified, then
the crack s defined by duplicating the edges that have been detected in this way.

The first method consists in a suitable construction of two meshes which are
then merged while avoiding the points and the edges previously identified (see
above) to be merged. Thus, a merging operator is used to complete the desired
result. A second method (Figure 17.16) consists of finding all the elements that
share the edges to be duplicated, identifying the adjacencies and then suppressing
these adjacencies by duplicating the entities concerned.

Periodic mesh. Some problems show periodic properties at the boundary con-
dition level in some part of the domain boundary which, in turn, has the same
periodic aspect (think about a translation or a rotation).

Some computational software then make it possible to reduce the analysis to
only one portion of the domain provided the appropriate periodic conditions are
defined in such a way as to relate some parts one with another. It is then possible to
deduce the entire domain together with the solution in this entire domain whereas
the computation has only been done in one portion of this domain (for example,
an analysis of a single turbine blade allows us to obtain the result for the whole
turbine).

In terms of how to construct a periodic mesh, it is sufficient to be sure that
the two zones that must be in correspondence have been meshed in the same

80r, at least, some degree of tinkering inside the mesh generation method !

MESH MODIFICATIONS 583

way. Thus consistency will be ensured when the pair of nodes to be connected are
identified.

Remark 17.16 If the region to be processed is composed of quads (in three dimen-
sions) and if the elements (hexs or pentahedra) are split into tets, it is necessary
to constrain the element split in order to obtain a compatible mesh on both sides
(if mesh conformity is required).

In conclusion, mesh modification methods (with a view of mesh optimization)
have not been discussed in this chapter. This point is discussed in Chapter 18 for
planar and volumic meshes and Chapter 19 deals with surface meshes.

