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If the torsion is sufficiently small (the radius of torsion 7" is large), we can neglect
the gap according to b to the plane (7, 7] and, locally, use the meshing method
in the plane. In the opposite case, the parabola of the plane [7, 7] is not a good
approximation of the curve and the analysis must be extended to the next term
so as to account for the torsion. Thus we approach the curve by a cubic of R3 and
we control the gap between this cubic and the curve via the following term in the
development. It is obvious that the calculations required are very technical and,
for that reason, we will go no further into this topic.

14.5.2 Curves of a parametric surface
We distinguish here several types of curves :

o the curves interface between patches,

e the curves traced on a patch,

e the curves images of a segment in parametric space which, approached by a
segment, form the edges of the surface mesh elements.

All these points will be dealt with in the next chapter.

Chapter 15

Surface meshing and re-meshing

Introduction

In this chapter, we discuss some methods that make it possible to construct the
mesh of a segment or a curve traced on a surface, as well as the mesh of a surface
itself. As in the previous chapter, there are two possible approaches to dealing
with this meshing problem, depending on the definition of the geometric model. In
practical terms, the problem is of a different nature, depending on whether a CAD
type definition is known or the sole data available corresponds to a discretization
(2.e., a polyhedral approximation) of the given surface. The first case leads rather
to envisaging the development of appropriate mesh generation methods, while in
the second case, mesh modification methods will be preferred.

Mesh generation for surfaces representing the boundaries of a three-dimensional
domain is, undoubtedly, a crucial point, especially for the computational schemes
in finite element methods. As well as this field of application, the construction of
surface meshes is also an important feature in applications such as visualization,
virtual reality, animation, etc.

*
L 4

This chapter contains several sections. First, we briefly discuss curve meshing
(already mentioned in Chapter 14), in the particular case where they are traced
onto a surface (or along the sides of a patch, for example).

Then, using some examples, we illustrate the different types of surface meshes
that can be constructed, a priori. These examples allow us to specify the nature
of the given problem and to indicate the various possible approaches. We will see
that there exists a direct approach (where the surface itself is meshed) and an
Indirect approach (where a mesh is constructed in a parametric space and then
mapped onto the surface).
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We have decided to exclude here the case of implicit surfaces (discussed in
Chapter 16) and explicit surfaces!, and focus on the case of a surface defined by
one or more patches (i.e., a parametric surface). To this end, we examine first
the case of a single patch, before considering composite surfaces. In the latter
situation, we discuss a possible alternative, depending on whether the resulting
mesh is patch-dependent or not.

Then, we change data types to focus on surfaces defined in a discrete way, i.e.,
from a mesh. We study an approach that tends to provide an adequate mesh of
the given surface, based on a series of modifications of the initial mesh, which
forms the sole data of the problem.

All that has been mentioned, except the last case, assumes that the patches
defining the surface are correct (in particular, that global conformity between
patches is ensured, and that there are no overlaps, no holes, no folds nor any
other undesirable artifact). To conclude, we deal with what can be termed a true
problem. In practice, the surfaces to be meshed are usually not suitably defined
with regard to the desired objective. Geometric modeling systems (C.A.D.) allow
us to define composite surfaces from a (bottom-up or top-down) analysis for which
the constraints (imposed by the manufacturing or visualization process) are rather
different from those required by the meshing techniques. Among the divergences,
let us mention the problem related to the numerical accuracy of the models.

15.1 Curve meshing (curve member of a surface)

The curves that are of interest here are essentially the curves interface between
two patches and/or the curves traced on a surface.

The different methods for curve meshing have been reviewed in Chapter 14 and
the reader is referred to this chapter. In this section, we will simply make some
practical remarks about the specificities of this problem, i.e., when we consider
that the curves are part of a surface.

We should immediately point out that a classical meshing technique for curves
in R3 (such as described in Chapter 14) is still valid here, provided that care is
taken with :

o the local curvatures of the surface (in the vicinity of the curve) and/or,
o potential specifications and, obviously,
o the envisaged application.

Indeed, from the strictly geometric point of view, the mesh of a straight segment
requires a unique element. However, this straight segment is a (potential) edge of a
surface mesh triangle that forms a polyhedral approximation of the surface. Hence,
the edge lengths are proportional to the principal radii of curvature of the surface.
In the isotropic case, the construction of an equilateral element then needs to

!Such a surface can always be expressed in a parametric form (as indicated in Chapter 11), §

thus making it possible, in principle, to apply the techniques described in this chapter.

SURFACE MESHING AND RE-MESHING 491

bound the mesh element size. This operation can be performed by considering, not
only the intrinsic properties of the curve, but also those of its close neighborhood.
In the anisotropic case, the reasoning is quite similar, except that this time the
classical equilateral (Euclidean) element is not longer the aim.

When the curve considered is an interface curve between two patches (a bound-
ary curve), the meshing problem is rather similar. The desired edge size of the
discretization also depends on the local curvatures of the curve and of its two (or
more) adjacent surfaces.

15.2 First steps in surface meshing

In this section, we try to give a global view of surface mesh generation and we make
some remarks about this interesting problem. To this end, we start by introducing
several examples of surface meshes obtained using different mesh generation tech-
niques?. This will then allow us to state the expected properties of such meshes.
Finally, we introduce various possible solutions (the main techniques employed
being described in detail later).

15.2.1 Various approaches to surface meshing

Before going further in the discussion of the principle, we will illustrate, on a
given geometry?, several examples that are representative of different mesh related
aspects (Figures 15.1 to 15.2).

Surface mesh by example. Let us focus first on structured mesh generation.
The mesh in Figure 15.1 (left-hand side) was obtained using a multi-block type
method, the different patches having been meshed using a transfinite interpolation
on a quadrilateral (Chapter 4). In such an approach, the geometry of the surface
is simply governed by the geometry of the four sides of each patch. Therefore, the
surface mesh is defined only by the discretization of the boundary edges (composed
here by 10 segments).

The mesh in Figure 15.1 (right-hand side) was generated by mapping a regular
grid (a 10 x 10 structured grid) onto the surface. Hence, in contrast to the previous
case, all resulting mesh vertices belong to this surface.

Let us now turn to unstructured meshing techniques based on the use of para-
Mmetric spaces associated with the patches. The mesh in Figure 15.2 (i) was con-
structed by mapping onto the surface uniform isotropic meshes in the parametric
spaces.

The mesh in Figure 15.2 (i) was obtained by mapping onto the surface aniso-
tropic meshes in the parametric spaces. These meshes were constructed so as to
ensure that the resulting mesh, after mapping, will be uniform.

2The aim here is not to examine the different approaches used in detail, but rather to point
out the key problems in surface mesh generation.

3The perspicacious reader may have recognized the spout of the well-known Utah teapot,
composed of four parametric patches.
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Figure 15.1: Multiblocs method based on a local transfinite interpolation (left-hand
side). Naive parametric mesh, uniform grid, and projection onto the surface using
the surface definition itself.

The mesh in Figure 15.2 (iii) was obtained by mapping onto the surface the
anisotropic meshes of the parametric spaces, controlled by the minimal radius of
curvature (so as to bound the angles between the mesh edges and the tangent
planes to the surface).

The mesh in Figure 15.2 (iv) was obtained by mapping the anisotropic meshes
of the parametric spaces, controlled by the two principal radii of curvature.

The mesh in Figure 15.2 (v) was obtained by mapping the anisotropic meshes
in the parametric spaces, controlled this time by bounding the ratio between the
two principal radii of curvature.

Finally, the mesh in Figure 15.2 (vi) was obtained in a similar fashion, by
controlling more subtly the use of the two radii of curvature.

It is thus easy to realize that numerous possibilities exist to obtain a surface
mesh, some of which may be more relevant than others. Therefore, the question
arises :

“What 1is really needed and what has to be done to get it 2”

We will now try to answer this tedious and haunting question as precisely as
possible.

15.2.2 Desired properties

As can be easily imagined, the desired surface mesh must verify certain properties.
Obviously, or rather a priori (as will be seen later), the vertices of the mesh
elements must belong to the surface (that is to the geometry, defined in one way
or another).
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Figure 15.2: Unstructured meshes : i) Uniform unstructured mesh in the paramet-
ric space and mapping, it) unstructured mesh projected onto the surface to obtain
a uniform mesh at this level, iii) Isotropic mesh based on the minimum of the
radii of curvature, iv) Anisotropic mesh without a stretching limit, v) Anisotropic
mesh with a (user-specified) control on the ratio between the two principal radii
of curvature, vi) Anisotropic mesh with an automatic adjustment of the marimal
ratio between the two principal radii of curvature.
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Let ¥ be the given surface and let P, Q, R, ..., be the vertices of mesh 7. Thus,
we want to have :

VPeT = Pex, (15.1)

As certain methods do not guarantee this feature (for all vertices in T), we can
simply require that the minimal distance between any point P and ¥ is as small
as possible. In this case, we introduce an accuracy threshold ¢ that controls this
gap. N

Nevertheless, this feature is only a usually desired necessary condition (cf.
Chapter 14) that does not guarantee however that the resulting mesh will be
satisfactory. Hence, a stronger constraint can be expressed. For instance, we can
require all mesh edges to be as close to the true surface as possible. In this case,
for each edge PQ of 7, we want to have :

d(PQ,T)<c¢, (15.2)

where ¢ represents the desired tolerance value and d(PQ,X) is the maximal dis-
tance (the gap) between the edge PQ and the surface ¥.

Pursuing the analysis, it appears that Property (15.2) is a necessary although
not a sufficient condition. The following property comes to reinforce this condi-
tion :

d(PQR,T) < ¢, (15.3)

for each triple of points (P, @, R), vertices of a triangle of 7 (simplicial mesh).
This relation indicates that the distance (the gap) between any triangle PQR and
the surface ¥ must be bounded. For quadrilateral (or hybrid) meshes, we have a
similar property.

Finally, the surface mesh must have the same aspect as the surface (i.e., it
must reflect the geometry). Hence, if the surface is locally of order C! or G,
the mesh must represent this feature as closely as possible (possible oscillations
must be avoided in this case). Similarly, discontinuities (singular points, ridges
or crest lines) must be present in the resulting mesh. These requirements can be
formulated more concisely as follows :

Smooth surface mesh. (15.4)

Exercise 15.1 Find some ezamples where Property (15. 1) holds while Property
(15.2) is not satisfied. Similarly, discuss the relation between the two other prop-
erties.

Remark 15.1 Note that the above properties concern only the geometrical point
of view of the surface. In the case where element sizes (densities, directions, e‘tc.)
are specified, this constraint must be coupled, in some sense, with the previous
ones.

To conclude, the problem here is to express the desired propertifes in terms of
requirements that are usable by the mesh generation method considered. Thus,

it is easy to imagine that a suitable method is one that can be controlled up to a §

certain level (via a metric field).
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15.2.3 Direct surface meshing

A direct mesh generation method is a method acting directly at the level of the
surface considered (without using, for example, a parametric space). Among the
most commonly used techniques, we find some of the methods already discussed
in the general chapters.

Method related to a specific definition. When the surface 1s defined in a
particular way, for example as a sweeping surface, it is possible to take advantage
of this feature to construct the surface mesh. Thus, if the surface is constructed by
sweeping a curve I'; along a curve I'y, a mesh can be easily obtained by sweeping
a discretization of I'; along a discretization of 'y (or conversely).

This type of method is obviously limited in its range of application and, more-
over, does not allow the quality of the geometric approximation (the mesh) of
the true surface to be effectively controlled. Moreover, special care must be
taken regarding potential degeneracies that can appear locally on the resulting
surface [Rogers,Adams-1989)].

Extension of a two-dimensional method. An algebraic method (when the
surface defines a quadrilateral-shaped domain) or an advancing-front type method
(Chapter 6) can be extended to process surfaces. This extension feature is less ob-
vious for a Delaunay type method (Chapter 7), which is more adapted to meshing
a surface by meshing the associated parametric spaces.

For an algebraic method (Chapters 4 and 13), the resulting surface is strongly
related to the generation method. In fact, the geometry of the surface is defined
by the method, usually from the mesh of the domain boundaries only. Notice that
1o explicit control of the gaps (at the level of the edges or faces) between the
discretization and the surface can be obtained. Therefore, this type of method is
of interest for particular geometries (although the low cost may be considered an
advantage). From this point of view, parts of surfaces are frequently well processed
by such approach (a more sophisticated method then being unnecessary, or even
too costly, to implement).

The advancing-front approach, or more precisely its extension to surface pro-
cessing, is more general?). This type of approach is also widely used in industrial
meshing technologies.

The main principle of this method follows, broadly speaking, the classical
scheme of an advancing-front method in two dimensions (see [Lohner,Parikh-1988],
[Nakahashi,Sharov»lQQE)], etc.) :

¢ identify the key features of the boundary of the patch considered. These
points are those making it possible to define a set of almost regular lines
along the side of the patch. We then naturally retrieve the singular points
of the surface among those points,

4Notice by the way that it is common to find, when dealing with the extension of a known
Mmethod, the assertion that this operation is both natural and easy. In practice, this judgment
Must be strongly qualified, the difficulties encountered not being of the same order.
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e define a mesh vertex for each of these points and identify the set of lines
Jjoining two such vertices,

o mesh these lines (refer to the different curve meshing techniques discussed
previously),

o connect the meshed lines together so as to define closed curves®,

e use in each of the parts so defined a classical advancing-front approach.
From a front edge (the initial front being formed by the discretized lines of
the contour), construct (or choose) a candidate point on the surface to form
an equilateral triangle. Several ways exist to construct (choose) a candidate
point. The simplest idea is to consider, for a given front edge, an average
tangent plane (II) in the middle of this edge (for example, by considering the
tangent planes at its endpoints). An ideal point is defined in this plane at
a distance that makes it possible to create an equilateral triangle, and then
projected onto the surface, the corresponding triangle then being formed.
The front is updated,

e repeat the previous stage, as long as the front is not empty.

Figure 15.3 illustrates the main steps of this method : 1) characteristic pf)'i.nts
are identified, ii) the contour of the patch is constructed and then meshed, iii) a
unique contour is defined and iv) an optimal triangle is formed.

S

i)

Figure 15.3: Main steps of an advancing-front type strategy.

The proposed scheme, while being conceptually simple, hides hoYvever' certain
difficulties. Such difficulties exist in two dimensions, up to a certain point, but

5This point, which is unnecessary in two dimensions, is a source of substantial simplification

here.
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they are relatively easy to overcome. An immediate example where such a problem
arises 1s the case where the candidate point is located outside the domain. In
two dimensions, this means that there must be an intersection between the edges
incident to that point (forming a new triangle) and one or more edges of the
current mesh. Hence, a simple intersection test allows us to detect and to avoid
this configuration.

It is more or less obvious that, for a surface, the same situation does not neces-
sarily lead to an intersection. Therefore, the detection of this situation requires the
use of more complex data structures (a neighborhood space, in three dimensions).

The case where the projection of the point considered (supposed optimal) on
the true surface does not exist, meaning that this point is probably located straight
down a hole, outside the surface or even leads to a topological ambiguity (for
example, two neighboring surfaces exist and it is not possible to decide which one
is the surface on which the point must lie).

In practice, provided the validity of the point creation process is ensured, as
well as its valid connection with an edge, it is usual to conduct this creation stage
iteratively. An initial optimal point is defined a priori and the corresponding
solution is analyzed to possibly optimize the location. In other words, the pro-
cess consists in using the additional information now available, about the point
considered.

The topological and geometrical difficulties being supposedly resolved, notice
that the proposed method must however incorporate a control on the accuracy
of the approximation of the surface obtained. This control® can be performed by
looking at the gap between a mesh edge and the surface (control of the interpo-
lation error between a segment and a curve) and, more precisely, by controlling
the gap between a mesh triangle and the surface (control of the interpolation er-
ror between a triangle and a surface, this control cannot be restricted to the sole
control of the triangles edges). We propose here to reexamine the ideas developed
in Chapter 10, which make it possible, using the second derivatives (the Hessian),
to obtain such a control.

Remark 15.2 The coupling between a direct approach and a parametric space
offer additional information that makes it possible to overcome some of the diffi-
culties mentioned previously [Frykestig-1994].

Octree-type method. We have seen (Chapter 5) that an approach based on
a spatial decomposition of the domain of interest makes it possible to generate a
mesh of this domain. This type of approach also allows us to construct a mesh
of the domain boundary if the discretization of the surface is not a data of the
problem. We will now examine this last feature.

Given a bounding box of the domain, it is possible to generate directly a
mesh of the surface, without using a parametric space (cf. [Grice et al. 1988] and
[Shephard,Georges—lQQl]). The construction of the decomposition tree follows the
general classical scheme already described, with only a few slight modifications (in

8 And this will be true for the whole range of methods discussed in this chapter.
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fact numerous variants exist). The basic idea consists in inserting in the tree the
entities of the geometric model” in the increasing order of their dimensions. More
precisely, the construction scheme includes the following stages

e identifying corners and points of discontinuity of the model,

e inserting these points in the current tree, the stopping criterion for subdivi-
sion being unchanged (i.¢., at most one point per cell),

e then, for each terminal cell, using the local properties of the surface in order
to decide on the possible refinement of the cell. Recall that the element size
is related to the cell size, the latter also being related to the local curvature
of the surface (which can be estimated at a finite number of points in the
cell by sampling),

e and, when all cells have a size compatible with the given size map (intrinsic or
specified), the critical point consists in determining the interactions between
the tree cells and the geometric model, which can lead to refining the cells.

The analysis of the interactions between a cell and the geometric model involves
calculating intersections. In fact, one has to determine exactly (¢.e., to the re-
quired accuracy) the intersections of corners, edges and faces of the octants with
the surface [Kela-1989]. The intersection points are then used to create edges
(connecting to such points) and loops (joining several edges and forming a closed
contour) in each terminal cell. These entities will provide the vertices, edges and

faces (possibly subdivided into triangles) of the final mesh. When the result of

these tests is not known (if the intersection points are not returned by the modeler)
or if this result is ambiguous, more costly operations may be used.

Before discussing the meshing stage itself, a balancing procedure is applied on
the tree structure, using the [2:1] rule (limiting the difference between neighboring
cells to 2 levels).

The creation of the mesh elements is performed as in the classical case. Here
however, only the boundary cells are of interest. There is no a priort limit on the
geometric complexity of the entities contained in a tree cell. In practice, several
criteria allow a cell to be refined when the complexity becomes too great to handle.
Notice that meshing the portion of surface enclosed within a cell is an operation
which is approximatively of the same order of complexity as a classical automatic
meshing technique. More details on creating mesh elements in boundary cells can
be found in [Shephard et al. 1988b] and [Shephard,Georges-1991], among others.

The main difficulties associated with the octree approach are mainly related
to :

e the creation of badly shaped elements (the intersections between the octants
and the surface are not well handled),

o the topological ambiguity problems mentioned above that can compromise

the meshing process of boundary octants.

"Instead of the entities of the boundary discretization.
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Figure 15.4 shows an example of a surface mesh obtained using a direct octree-
based method. Notice that the resulting mesh has not been optimized, the align-
ment of vertices clearly denotes the octants-surface interactions.

Figure 15.4: Erxample of a surface mesh generated using a direct octree-based ap-
proach, without optimization (data courtesy of Mac Neal-Schwendler Corp.).

Other methods. Among the other possible methods, we find those methods
based on grid mapping and all methods based on iso-surfaces (implicit surfaces,
Marching-cubes type algorithms, voxels, etc., Chapter 16) and the methods for
which the input data is a cloud of points located on the surface (for example,
[Hoppe et al. 1991], [Boissonnat et al. 1999)).

In this section, we only give some idea of the approaches based on the map-
ping of a predefined grid (which are indeed close to certain methods discussed in
Chapter 8).

¢ Grid-mapping methods.

The principle underlying these methods is very simple. We define a grid (a
regular mesh) in a plane located above the surface, in such a way that the projec-
tion of this grid, in a suitable direction d, encloses entirely the surface. Supplied
with this assumption, we analyze the projection of the grid cells on the surface in
the direction d. To this end, we examine (Figure 15.5) the projection of the grid
nodes :

o if the direction line cfcorning from a node intersects the surface, the inter-
section point is kept as a mesh vertex,

¢ otherwise, we find mainly two configurations : either the projection goes
through a hole (a loop of vertices exist in some neighborhood of the projected
point that belongs to the previous class) or the projection falls outside the
surface (an external side of the surface exists in some neighborhood).



500 MESH GENERATION

Figure 15.5: Projection of a grid onto the surface. Two cases are visible, the
projection is found (right-hand side), the projection does not exist (left-hand side)
because of a hole. The third case, where the projection is outside the surface, s
not described here.

Notice that this approach makes the mesh independent of the patches describ-
ing the surface. However, it is obvious that the main drawback of the approach is
related to projection problems (independently of the fact that the approximation
of the surface by the mesh is not controlled and that, in addition, a uniform grid
is always used).

In such an approach, several problems must be taken into account. Among the
pertinent questions that arise, let us mention the following ones :

¢ How should the plane support of the grid (with respect to the surface) be
chosen ?

e Is such a plane always defined (bijectivity of the projection) ?
e What are the potential perverse effects following a bad choice of the plane ?

e What is the (possible) dependency between this choice and the presumed
result 7

Assuming these questions to be settled, several points need to be discussed.

The first obvious observation is that if the four nodes of a cell have a projection
on the surface, then the resulting quadrilateral so formed is a candidate mesh ele-
ment. On the other hand, any different situation requires a more subtle discussion
as will be seen later.

If the four projections of a cell vertices exist, it is possible to form a quadri-
lateral. This element needs to be validated as a mesh element. This consists
essentially in finding if this quadrilateral does not mask a hole (whose size is nec-
essarily smaller than the grid stepsize) or does not overlap a “gap” between two
portions of the surface (connected component problem or topology violation). In
other words, we must verify the topological compatibility of the mesh, i.e., preserve
the surface topology.
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The case where one or more vertices do not project onto the surface corresponds
to the existence of a portion of boundary (internal, a hole, or external, an external
side) in a neighborhood whose size can be determined by looking at the projections
of the adjacent nodes. An analysis of these cases is needed in order to find the
corresponding configuration (or, at least, a plausible configuration from the point
of view of topological compatibility) :

e the existence of a projection defect for a point, although there exists a loop of
its neighbors that projects without difficulty, presumes the existence of a hole
whose size is related to this loop. Provided this configuration is identified,
it is possible to find a mesh that also includes a hole (in fact, a potentially
rough approximation of the true hole) that therefore maintains the topology
of the surface. To this end, we first detect an approximate side of this hole
and we modify the neighboring elements so as to account for;

e the same phenomenon without a suitable loop of neighbors representative of
the existence of a surface border. As above, it is possible (although tedious)
to find an approximation of this border preserving the initial topology.

These remarks indicate the complexity of the problems to be taken into account
and suggest that, in order to be applicable, this type of method must be coupled
with rather complex techniques (adaptation, i.e., local refinement, quick search
for intersection, verification of the topological consistency of the surface, etc.)

Hence, to conclude, this type of method is only really applicable for relatively
simple surfaces (low curvature, no hole and no topological ambiguity).

15.2.4 Construction in two dimensions and mapping

Unlike the methods mentioned above, here the mesh generation method is applied
in an adequate R? domain, then, via a projection function, the mesh constructed
in this domain is projected onto the R3 surface. Three types of method may
be considered, the so-called “classical” methods (quadtree, advancing-front and
Delaunay). In this context, the problem to be solved consists in governing the
mesh generation in the one or the several parametric space(s) in order to guarantee
the resulting mesh to be adequate after being projected onto the surface. In the
following, we discuss more specifically the Delaunay type approach while observing
that the other classical methods can also be used (at least, if the mesh in the
parametric space is isotropic, a classical limit for the quadtree type methods).

15.3 A single patch

We focus first on a surface composed of a single patch. We will deal later with
surfaces composed of several patches, for which two situations need to be con-
sidered, the patch-dependent case where a discretization of the patch boundaries
is necessarily present in the final mesh and the patch-independent case where the
inter-patch boundaries are not necessarily present in the resulting mesh.



502 MESH (GENERATION

Remark 15.3 We will now detail some of the notions and methods that could be
used to complete the direct approach described previously.

15.3.1 Typical patches

Before dealing with the single patch case, let us recall the various types of patches
used in C.A.D. systems.

The simplest patches and ones which are widely used are polygons with a small
number of sides (thus, we usually find triangles and quadrilaterals). However,
this type of patch does not offer the flexibility necessary and desirable to define
certain surfaces. This is why more complex patches have been also developed. For
example, those where only part of the patch is used (hole(s)) and those where the
useful area does not correspond to the whole patch (the border limiting the useful

area is not the “natural” side of the patch).

L

Figure 15.6: Two examples of complex patches, left-hand side, only a part of the
patch is used, right-hand side, a hole erists in the surface.

For the sake of simplicity, we can, at first, leave to one side all these special
patches and deal with complete patches. Then, it is relatively easy to see what
may happen with the other types of patches.

15.3.2 Desired features in the parametric case

Let X denotes the surface, o its parameterization and § its parametric space
(2 C R?). Let us denote by A, B, ... the points of Q and by P,Q, ... their images
via 0. As stated previously, the surface mesh must satisfy certain properties
(Relations (15.1) and following). Relation (15.1) simply means that :

A=(u,v)€Q = P=0(A)=0c(u,v)eX, (15.5)

which is ensured if ¢ is the exact definition of . Otherwise, the distance from P
to X must be smaller than a suitable threshold e (relative or absolute).
Relation (15.2) indicates that the edges are close to the surface :

AB€Q = PQ=o0(A)o(B) issuch that d(PQ,%) < e, (15.6)

where ¢ is a given threshold of accuracy.

Remark 15.4 Saying that PQ = o(A)o(B) is only an approrimation, indeed, .

o(AB) is a priori a curve traced on ¥ and, in particular, 0(AB) # o(A)o(B).
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Similarly, Relation (15.3) becomes :
ABC € Q = PQR = o(A)o(B)c(C) is such that d(PQR,X) < ¢, (15.7)

hence, the distance from triangle PQR, the image® of the triangle ABC, to the
surface ¥ is bounded.

Finally, Relation (15.4) must be verified, in particular to preserve, via its mesh,
the possible regularity of the underlying surface.

The problem is then, if possible, to express these requirements in mesh require-
ments in the parametric space. To this end, we return to the basic definitions of
parametric patches (Chapters 11 and 13), to the notion of metric (Chapter 10)
and to that of control space (Chapter 1).

Briefly and before going into further detail, let us recall that the edge length
in R? can be expressed as a function of the corresponding edge AB in R? and of
the first fundamental form of ¥. Similarly, the control of the distance between an
edge and ¥ can be done by using the second fundamental form of the surface. On
the other hand, the control of the distance from a triangle to ¥ requires a more
subtle analysis.

15.3.3 Meshing a patch

As already mentioned, any meshing technique in the plane is a priori a conceivable
method. However, we will restrict ourselves to a Delaunay-type method (Chap-
ter 7). We have seen in fact that this type of method could rather easily follow
a given field of constraints (of specifications). The idea is to govern the mesh in
the parametric space in such a way that the desired properties are (automatically)
satisfied, after mapping on the surface.

Geometric aspects. Thus, we want to control the surface mesh by controlling
the mesh of the patch in the parametric space. At first, notice that the control
in the parametric space is essentially performed by controlling the lengths of the
mesh edges.

We must then evaluate the length of a mesh edge. To find this value, we go back
to the definition of the length of a curve, then we will improve this by considering
that the curve is an edge.

The context is illustrated in Figure 15.7. The surface is denoted X, its para-
metric space (u,v) is Q. Moreover, we consider an interval [a,b] in R. The curve
PQ of the surface ¥ is the image by a function 7y of the interval [a,b] in R. This
curve is also the image by the function ¢ of a curve AB of Q and this curve AB
is the image by a function w of the interval [a,b]. We then have :

o Q — R? (u,v) — o(u,v),
¥ [a, 0] — R3¢ s (1),

w:fa,b] — Q,t — w(t),

81n fact, the triangle PQR is the triangle whose vertices are the images of the corresponding
vertices in the parametric space (see the remark about the edges).
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with the relation linking v, w and o :

Yy=0ow.

Figure 15.7: The segment [a,b] in R. The curve AB of Q, image of [a,b] by w.
The curve PQ of X, image of ab by v is also the image of AB by o.

The length of the curve PQ, Chapter 11, can be written as :
b b
(@)= [Ivola= [ V@@

Using a vector notation, the dot product (y/(t),v(t)), is expressed by :
(V0,7 (0) = ()Y () = "W (1) e (w(t) o (wlt)w' (t),

as 7 = 0 ow. That is, by denoting 7 = ¢, and 7 = o/,

1), (1) = W (1) ( i ) (AR ().

T

If we now assume that w(t), for ¢ between a = 0 and b = 1, is an edge, the
edge AB, we have w(t) = A+ tAB and w'(t) = AB and, hence, we find :

ooy =18 (1) (7 AB

and, for PQ, the length is :

(PQ) =/1\/tZ‘B‘ (%) (7 7 Tt
0
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which is also the classical formula :

I(PQ) = / VABM, (4 +1AB)AB d.

where M is the matrix expression of the first fundamental form of the surface ¥,
We have thus found the link between the length of an edge AB in the parametric
space and the length of the curve of ¥, image by & of this edge.

In our case, during the meshing stage, the image of an edge of Q will be an
edge of X. In fact, this is equivalent to approaching the curve PQ by the edge PQ,
that is to have :

0(AB) = o(A)o(B),

which can be also written differently by saying o(A +tﬁ) ~ P+ tm, hence, to
say that :

PG| ~ 1(PQ) :/\/tﬁMl(A +tAB)AB dt

where PQ) is an edge and, thus, we have found a link between the length of an edge
AB in the parametric space and the expected approximate value of the length of
an edge PQ of X. This link allows us to control the mesh on X by controlling the
mesh of Q.

We now deal with the case where a metric is specified on the surface. Let
M3 be the associated current matrix. This matrix is a 3 x 3 matrix (hence the
index 3). The problem is then to find the relation between a length on ¥ and
the corresponding length in €, which is equivalent to exhibiting the matrix Ms,
a 2 X 2 matrix, relative to Ms.

In principle, it is sufficient to follow the same reasoning as previously, simply
changing the definition of the dot product (Chapter 10). We now have :

('), @) = Y ()M3sy' (1),

or :

71
((),7 (1) = W' () l( 7 ) M (71 7 D)J w'(t),
v
2
with 77 the unit normal and the notation [ |, that indicates that only the first two
lines and two columns of the matrix are considered. By denoting IT the transition
Matrix from the canonical basis of R3 to the local basis at the current point
M=p4+ tm, this relation can be written :

<Y(1),4(t) >= tW'(t) [TIMSIT |, o'(2).

Posing :
M2 = I_tH./\/t,gH_l2 y
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which is, as mentioned, the matrix formed by the first two lines and two columns
of the matrix 'TIM3IT. Thus, we have found the matrix M corresponding to the
given matrix M3z. The length of the curve PQ for the metric Mj is then :

1

1PQI ~ tans(PQ) = [/ ABMs(4 + (AR ABatt.

o]

To construct a mesh, we approach the length of the edge PQ by the length of
the curve PQ and we say that PQ = P + tPQ), then, we want to have as above :

1
Lty (PQ) :/\/nTB*MQ(AHﬂ;‘)Kédt.

Remark 15.5 By taking M3 = I, we find M, = [T, = ‘I, =
My, the first fundamental form of ©. We then find the classical case as a particular
case of the general situation.

This leads to the following remark :

Remark 15.6 A Euclidean length of 1 in © corresponds to the choice My = M,
for Q. In other words, the unit circle of ¥ corresponds to the ellipse My of Q.

The control of the gap between an edge and the surface is performed by using
a metric M3 that still needs to be defined. To govern the surface mesh, the mesh
of ¥ when a metric M3 is specified, we must then govern the mesh of Q for a
metric My (2 x 2 matrix) constructed as indicated above. This control will allow
us, depending on the choice of M3, to the edge to satisfy such or such property.
For example, as will be seen later, an adequate choice of M3 will mean that this
edge will not be further from the surface than a given threshold value.

From the metric point of view, we consider M3 and we want to have :

I(PQ)=1 for M3y,

that 1s :

1:/\/tWM3(P+t17@)P_Q‘dt.

To this unit value for M3 on ¥ corresponds a unit value for M in Q :

1= /\/tﬁ/MQ(A +tAB)ABdt .

The aim is then to construct a mesh in Q for which the edges are of unit length
so as to ensure the same property for the corresponding edges on .
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Exercise 15.2 Verify that :

1
o 00
1
M3: 0 - 0
Py
00 4

umplies that the edges on ¥ are of uniform length of size h. On a simple example,
to be defined, show the control matriz M.

Choice of the control metrics. A matrix of the form

1
72 0
M3z = 0 7 0 (15.8)
1
0 —
0 W2
specifies, as already seen, a field of uniform sizes h on the surface.
A matrix of the form :
1
w0
= 0
M3 (P) R2(P) 0 : (15.9)
0 1
h2(P)

where now, h depends on the position, specifies a variable field of sizes on the
surface. If we pose h(P) = ap(P) where p(P) is the smallest of the radii of
curvature p; and py at point P of ¥ and a is a adequate coeflicient, we obtain an
tsotropic control of the sizes related to the radii of curvature (thus to the geometry
of X).

A matrix of the form :

1
r T B
Ms(P) ='D(P) 0 L 103 (15.10)
B2 p3(P)
0 0 A

with D(P) the principal directions at P, o and  adequate coefficients and A an
arbitrary scalar value gives an anisotropic control over the geometry that takes
the two principal radii of curvature into account.

Also, a matrix of the general form :

1

CI R
Ms(P) = "R(P) 0 we) R(P) (15.11)
1
0 0

L2/( D)
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with R(P) directions and h; three sizes, gives a control on the three directions of
R(P) and specifies the length expected in these specific directions.

Control obtained depending on the choice fixed : the edges. We have q
priori four types of control matrices (Relations (15.8) to (15.11)).

Let consider a matrix of the form (15.9) and the choice h(P) = a p(P). The
question is to fix a so as to obtain a certain control within a given ¢ of the gap
between the mesh and the surface. Recall that p is the smallest of the two principal
radii of curvature p; and p, at P.

By definition (Chapter 11) the circle of radius p centered at point O = P +pU
1s an approximation at the order two of the curve intersection of the surface with
any plane supported by 7 with p the radius of curvature in this particular plane.
Hence, approximating the surface by an edge while controlling the accuracy is
equivalent to controlling, for this particular case, the gap between a discretization
of the osculating circle (the circle above) of the plane and the latter.

We can see immediately that fixing o = 1 is equivalent to discretizing this circle
with 6 edges. The length of the circle for the metric (15.9) is indeed 2 7 ~ 6. Then,

Figure 15.8 (left-hand side), taking an edge of length p, we obtain § = p (1- \/g)
6 _ ~ . . .
and thus ¢ =1- \/g ~ 0.15. The relative gap to the circle is 15% .

AN R

e a(P)@ \\

LN \} ! | J/P(P) \
| (0]

| © /N /
\ \azl/ \\///

o= ()

Figure 15.8: Discretization of a circle with a stepsize p(P) (left-hand side), or with
a stepsize a p(P) (right-hand side).

On the other hand, let us assume that the discretized edge is of size a p, then

we found :
i o2
(5:p(1— 1——;1—)

and thus, setting % < € comes down to fixing :

a<2\e(2—¢) (15.12)

and, hence, an accuracy within a given ¢ imposes that « is bounded as previously.

Remark 15.7 We define thus a relative control, within €, of the distance between §

an edge and the surface.

i
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Let us consider now the anisotropic case, the control matrix is that of Rela-
tion (15.10) in which the coefficients o and 3 are involved. For a fixed €, the
simplest choice consists in following Relation (15.12) for o and to setting 8 = a.

For p; and the corresponding principal direction, we find a gap &, for p2 and
its direction, we have Js. According to the choice of « and B, we have §; = ¢ p,
while 63 = € p,. Hence, if ps and p1 are different, we have §; > 6;, the absolute gap
is not the same in the two principal directions and thus this value varies according
to the direction. Setting a constant gap comes down to setting §; = d5 and leads

to fixing :
a<2ye(2-¢)

B<2 |2t (2—5’1).
p2 P2

Remark 15.8 Thus we have a local absolute control, within €, of the distance
between an edge and the surface, depending on the directions.

as above and to defining :

(15.13)

The case of other matrices (i.e., non geometric a priori) prescribes sizes based
on physical criteria (related to the behavior of the solution to the problem consid-
ered). There is no specific reason while this specification must be consistent with
the surface geometry. Hence, we must deduce from the given metrics a metric that
reflects the desired physical aspect as well as taking the geometrical constraints
into account.

Control obtained : faces. The previous discussion gives hints about how to
control the gap between the mesh edges and the surface. However, such a control
gives no guarantee that the triangles created with these edges will be close to
the surface or that the resulting mesh has the desired regularity (the presence of
folds, for example). Hence, a specific process must be performed to ensure these
properties.

The basic idea is to modify the field M3 or to involve mesh adaptation prin-
ciples.

¢ Regarding the discussion in Chapter 10, we know that the gap between a
triangle and the surface needs to account for a upper bound of the Hessian
of the surface on this triangle. This bound allows us to find, within a given
tolerance, a bound on the edge size. This bound then serves to define the
matrix M3 and, more precisely, its coefficients.

¢ A rather different idea consists in using the mesh adaptation principle (Chap-
ter 21). An initial mesh is constructed, analyzed and, depending on the re-
sult, the process is iterated with the field of the metrics deduced from the
analysis.



510 MESH GENERATION

A meshing method. To clarify the ideas, let us consider a Delaunay-type
method (Chapter 7). Meshing a patch comes down to :

o choosing the type of control (the metric) allowing us to obtain the desired
mesh (i.e., to fix the field of matrices M3),

o deducing the field of corresponding matrices Mo,

¢ meshing the parametric domain boundaries based on the field of M, (Chap-
ter 14),

¢ meshing the parametric domain, from the boundary discretization, using an
anisotropic Delaunay-type method (Chapter 7),

e mapping this mesh on the surface ¥ via the function o.

The mesh in €2 following the approach described in Chapter 7 consists in con-
structing an initial mesh based on the sole boundary vertices and in adding points
along the edges. Then, these points are inserted and the process is iterated on
the resulting mesh. The key is thus to properly calculate the edge lengths. This
calculation naturally requires the use of the surface, hence the meshing technique
differs from a purely two dimensional meshing technique, in that it must have
access to the surface (in a discrete way, for instance).

We now provide an example. Figures 15.9 to 15.12, [Borouchaki et al. 1999],
show different meshes of the patch defined by :

o Q, the parametric space is the circle of radius 10,
e the function o defining the surface is

u 4+ 10u
v3 + 10w
100 sin u cos v

The surface meshes in Figures 15.9 to 15.12 (right-hand side) have been created
according to this principle. Figures 15.9 to 15.12 (left-hand side) show the four
two-dimensional meshes of the corresponding parametric spaces.
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Figure 15.9: Uniform mesh on X. Left-hand side : mesh of the parametric space,
right-hand side : uniform mesh with a stepsize h = 50.
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Figure 15.10: Uniform mesh on X. Left-hand side : mesh of the parametric space,
right-hand side : uniform mesh with a stepsize h = 20.

Figure 15.11: Left-hand side : mesh of the parametric space, right-hand side :
isotropic mesh controlled by p.
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Figure 15.12: Left-hand side : mesh of the parametric space, right-hand side :
anisotropic mesh controlled by p1 and ps.
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15.4 Multi-patches surface (patch dependent)

When the surface is defined by several patches (each of them being parameterized),
the previous algorithm (or a similar one) can be used, provided that the interfaces
between the different patches are meshed first, in a unique way, so as to obtain a
conforming join from one patch to another.

The patch-dependent approach consists in processing the patches one by one
and thus in preserving the interfaces between patches.

Synthetic scheme. The meshing scheme uses the idea of the multibloc methods
(Chapter 4). It involves two successive stages :

¢ meshing the interface curves between patches,

¢ meshing each patch using the discretization of its boundaries as defined in
the previous stage.

15.4.1 Meshing the interfaces between patches

The first stage of meshing a composite surface consists in meshing the interface
curves. This operation makes it possible to guarantee that the curves shared by
several surfaces are meshed in a consistent (conforming) way.

To this end, we apply the technique for meshing the curves of R3 already
described in Chapter 14 and reviewed at the beginning of this chapter. We will
not spend more time on this issue here.

At completion of this stage, the interface curves between patches are meshed
in a geometric way or to take a specified field of sizes into account.

15.4.2 Meshing the patches

Using the discretized patch boundaries, we will construct the meshes of patches.
The union of all meshes of the patches will lead to a correct mesh of the surface,
the interfaces having been correctly defined during the previous stage.

The principle of the meshing technique for a multi-patches surface consists in
meshing each patch separately via its associated parametric space. The final mesh
is the union of the meshes of the different patches. The conformity of the resulting
mesh is ensured by the conformity of the interfaces between patches (see above).

Notice that such an approach may lead to some rather large disparities between
the element sizes from one patch to another. This is notably the case when the
mesh is a geometric mesh, based on the model curvatures (Figure 15.13, left-hand
side).

To obtain a mesh in which the size gradation is controlled, the idea is to use the

resulting mesh to construct a control space. More precisely, with each mesh vertex

is associated information on the local size and, possibly, the stretching direction |
of the elements. This discrete field of sizes (metrics) being created, we can apply @ |
smoothing procedure on it to bound the size variations from one point to another }
(Chapter 10). Once this operation has been performed, it is then possible to use |
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Figure 15.13: Isotropic geometric mesh of the minimal radius of curvature of a
multi-patches surface, the Utah teapot (left-hand side) and isotropic geometric
mesh incorporating a size map correction (right-hand side).

this information to govern the creation of a new surface mesh in the parametric
spaces (Figure 15.13, right-hand side).

We will now deal with the processing of surfaces to construct patch-independent
meshes.

15.5 Multi-patches surface (patch-independent)

For various reasons, we now want the surface mesh not to follow the patches in
some regions. Consider first very small patches, which are probably not useful
from the numerical point of view and which, if meshed, would lead to very large
meshes. Consider also very thin patches having a small edge as compared with

the neighboring ones. This case necessarily induces the creation of very stretched
elements.

Figure 15.14 shows an example of such situations. In this figure, we show the
e.r‘ltire geometry (i) and the enlargement of an area composed of stretched patches
(i1). Any mesh respecting these patches (for example, the mesh in iil) contains flat
elements that are a priori inappropriate to the calculations.

' Thus, it seems necessary to get rid of the boundaries of some patches. To
this end, two approaches can be envisaged. We can follow an indirect approach
'that consists in constructing a mesh respecting the patch boundaries and then
In modifying this mesh to get rid of this constraint in the regions where it leads
to undesirable effects. We can also consider a direct approach that, prior to any
Meshing, get rid of this type of situation.
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15.5.1 Indirect approach

Each patch is processed via the previously described method (patch-dependent)
then, we get rid of (some) patch boundaries. The operators involved in this pro-
cess are the classical operators for surface mesh modification and surface mesh
optimization (as described more precisely later in Chapter 19). We distinguish
essentially a node relocation operator (that preserves the connections between the
vertices) and operators that, with fixed point positions, modify their connections.

Among these operators, we find the edge swaps (that change the common edge
between two faces) and refinement or derefinement operators that make it possible
to :

e subdivide a given edge and to modify the faces sharing the edge accordingly,

e suppress one or several edges either by merging nodes or by temporarily
creating a hole (Figure 15.15), and then remeshing it.

\

/

iii)

Figure 15.14: An example of mesh construction preserving the patches defining the
geometry and the perverse effects of this constraint on the resulting mesh. In i),
we show the limits of several patches modeling the geometry, in i) and in 111), we
show respectively the detail of a region of this description and the resulting mesh
in which two flat triangles are constructed.

Whichever the operator is used, one has to preserve the geometric and topo-
logical coherence of the result. Firstly, the result must stay close to the surfact?.
Then, the resulting topology must be identical to the initial one. Notice that it
1s important to classify the entities of the mesh (points, edges and faces) and to
propagate this information from the current mesh and the modified mesh (so as,
in particular, to be capable later of identifying the entities subjected to boundary
conditions for the problem considered).

15.5.2 Direct approach

A direct approach is based on the fact that meshing techniques are available to

process a patch. The idea is then to represent a set of patches by a single patch. ]
Hence, the difficulty is to construct this single patch. This is relatively easy to
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WOLDBE

Figure 15.15: Left-hand side, the initial mesh. From left to right, the sequence of
remeshing of a hole formed by removing the ball of the point deleted.

perform when the geometry is defined by a polyhedron (i.e., when the set of
patches of this definition forms such a polyhedron). Moreover, this method can
be extended to an arbitrary surface. Figure 15.16 illustrates an application of this
method®. We see in figure, i), the initial surface, ii), a planar mapping of the
complete surface where each triangle corresponds in a one to one way to a piece
of the surface. Therefore, an injective function ¢ can be constructed depending
on the parameters u and v to project any point of the parametric space onto the
surface. This being done, an anisotropic mesh of the parametric space must be
created, its mapping onto the surface leading to the desired mesh. The example
of the mesh in the figure is simpler, a regular (uniform) grid over the parametric
space Is developed, in iii) and, in iv), we show the mechanical mapping of this
regular mesh on the surface.
The main ideas of the method are the following :

¢ identification of the boundaries (principal and secondary) and of the sides of
the holes,

¢ subdivision into triangles of the parametric space associated with each patch,
¢ topological merging of the triangles,

e identification of the edges of the main boundary and of the secondary bound-
aries and sides of the holes,

¢ topological meshing of the secondary contours and holes (edges and faces are
associated with these contours),

¢ node distribution for the main contour along the boundary of a convex do-
main,

¢ determination of the positions of the other nodes using a barycentrage tech-
nique from their neighbors. The resulting mesh allows us to define the para-
metric space associated to the whole surface. A bijection exists between each
triangle of this two-dimensional mesh and a triangular-shaped portion of the
surface.

The convex planar domain (corresponding to the parametric space) is meshed
S0 as to take the constraints into account, for example regarding the boundaries

9Work in progress at the 3S laboratory, Grenoble, by F. No&l.
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of the secondary contours or the holes. A governed meshing technique can thus be
used (for example an anisotropic Delaunay-type method) to mesh the parametric

space (see above).
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Figure 15.16: An example of mesh construction based on a single patch definition.
We see, i), the definition with patches of the entire surface. In it), we show thg
planar mapping of these patches. In iti), we define a regular grid in the parametric
space and, in 1), we provide the mapping of this reqular mesh onto the surface.

The resulting mesh in the parametric space is then mapped onto the surffmce
using the one to one function linking the mesh triangles to the corresponding
triangular cells on the surface.

Notice that this technique of planar mapping needs still to be improvgd and
that the example provided reflects only preliminary experiments on this very
promising topic.

15.6 Discrete surface (re-meshing process)

We consider here a situation in which the data of the problem is of a d%sgrete
nature. Actually, we have a meshed surface (a triangulation) with which additional
information may be associated. These specifications, when given, allow us to know
the particularities and specificities of the underlying geometric model (corners,
ridges and/or constraints, tangents, etc.). Without such information, the task of
the remeshing process will be more tedious, [Lohner-1995], [Lohner-1996a].
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We will first specify how the underlying surface can be defined from the given
triangulation. Then, we will focus on the remeshing problem, treated in practice
via geometric and topological modifications applied to the initial mesh. We wil]
indicate in particular the main features of a remeshing algorithm.

15.6.1 Definition of a discrete surface

We will see in Chapter 19 that the intrinsic properties of a surface (normals,
principal radii of curvature, etc.) can be extracted!® from an initial mesh of the
surface, so as to construct the metric of the tangent plane. Recall that this metric
(defined in the tangent planes associated with the given mesh vertices) makes it
possible to control (bound) the gap between the mesh edges and the underlying
surface.

Identification of the singularities. If the singularities of the model are not
explicitly specified, a pre-processing stage makes it possible to identify these fea-
tures. This stage, which is almost fully automatic, must be user-supervised. We
have already mentioned that a ridge can be identified using a threshold on the
adjacent face angle and that a corner is, notably, a vertex sharing three ridges.

Other entities (constraints) can be provided (by the modeling system) which
must be preserved in the final mesh.

Construction of a geometric support. This operation is central to the remesh-
ing approach. It is indeed aimed at defining, internally, a geometry (that is an
analytical representation of the underlying surface, the initial mesh being sup-
posed to be an approximation of this surface). In practice, the geometric support
is a composed surface of class G! (i.e., ensuring the identity of the tangent planes
between adjacent patches).

Among the various approaches possible, one of particular interest is that sug-
gested by Walton and Meek [Walton,Meek-1996], based on the Gregory patches
[Gregory-1974] (Chapter 13).

This support, suitably defined, can be used to know the exact position of a
vertex on a surface (usually the closest location), given a current mesh vertex and
a direction.

15.6.2 Re-meshing a discrete surface

The remeshing of a surface defined by a polyhedral approximation (a mesh) in-
volves topological modifications (edge swapping, vertex merging, edge splitting,
etc.) and geometric modifications (node relocation) which will be considered in
detail in Chapter 19.

10That is evaluated approximatively.
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Optimal mesh. The objective of the remeshing process if to get a mesh in which
the elements have a size (and possibly an orientation) conforming to the geometric
size field. In other words, the aim is to obtain an optimal mesh with respect to
the given geometric specifications.

To this end, the element edges of the current mesh are analyzed and possibly
optimized in size, so that any edge AB of the final mesh has a length {45 (in the
metric specified) such that :

1
— <lup<V?2, VABcT. 15.14
\/5_, AB > ( )

Remeshing algorithm. The general scheme of the surface remeshing algorithm
can be written as follows :

e initializations : identification of the singularities (corners, ridges, etc.);
e evaluation of the intrinsic properties of the surface (curvatures, normals, etc.);
o construction of a geometric support of class G!;
e remeshing :
— for each edge AB of the current mesh,

— if {4 > /2, subdivide the edge into unit length segments,

—elseiflyp < \/75, merge the two endpoints of the edges,

if the mesh has been modified, apply edge swappings on the newly
created faces;

|

¢ optimization of the resulting mesh using node relocation as well as edge
swapping.

The Figure 15.17 illustrates an example of a discrete surface remeshing. The
surface is defined from the mesh represented in Figure 15.4.

15.7 Ill-defined multi-patches surface

As pointed out, complex surfaces can be defined with a rather important number
of patches. In what precedes, we have implicitly assumed that the set of patches
defining the surface considered formed, by itself, a conforming mesh (actually,
rather a covering-up) of this surface (Chapter 1). In practice, this assumption 1s
most likely not verified.

Actually we find several situations preventing the desired conformity. This i§
related to the fact that the geometric definitions of the patches are not, a priort,
directly motivated by this criterion but are rather of a visual nature or related

to a possible manufacturing process. Moreover, the numerical accuracy used i}l ,
a C.A.D. system may be variable from place to place in a given model and, 1s

definitely not conceived in a meshing view.
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Figure 15.17: Geometric remeshing of a discrete surface.

In practice, the awkward situations encountered correspond to :
e overlappings between two or more patches,
e gaps (holes) between patches assumed to be joined,

e non conforming joins between patches regarding corners assumed to be but
not identical (within a tolerance) and supposedly common borders. For
example, the boundary of a patch matches only part of the boundary of
another patch instead of the entire patch, etc.

All these defects, detected from a mesh generator but not visible in general by the
user and with no effect in a manufacturing process, essentially concern defects re-
lated to points (absence or duplication of points), lines (bad join between successive
or common lines, absence or duplication) or surfaces (holes, partial duplication).
Moreover, as already mentioned, disparate edge sizes (patch boundaries) lead to
ill-suited patches with respect to a possible mesh. Attempting to mesh, for exam-
ple patch by patch, a surface composed of patches having these pathologies would
certainly lead to a failure!!.

Thus, before attempting to mesh, it is necessary to fix, with respect to the
objective, the surface components. This task is especially important, as pointed
out, but is rather tedious to carry out. To date, there is no fully automatic,
quick and of universal range method allowing such a surface to be repaired. Some
mostly interactive (i.e., that require the user intervention) software products exist,
that may ease this type of process. The idea is to offer a maximum of features
regarding the visualization and the detection of the defects as well as to provide
all types of local modification tools (node relocation, edge swapping, creation or
deletion of entities, etc.) in order to correct the surface while ensuring that the

"1 And, notice that it is the best desirable result. In fact, if the mesh generation algorithm fails
to detect these defects, there may be no other easy way of detecting that the resulting mesh is
wrong. Hence, any calculation performed on such a mesh would give surprising results.



