Chapter 12

Curve modeling

Introduction

A curve can be defined using various categories of methods. Indeed, there are
parametric, implicit or explicit curves. Using classical notations, a parametric
curve is given by a function v based on a parameter ¢. Then, given ¢ in some
interval, the curve is defined by +(t) where v(t) € R% d = 2 or d = 3. Implicit
curves in R? are given via a relation like f(z,y) = 0 where = and y denote the
coordinates. Explicit curves in R? are defined by the pair (z,y = f(z)). In R3,
non parametric curves are defined as the intersection of two surfaces.

In principle, functions f or v depend on modeling parameters (Pi)ig[1,np)- These
parameters can be defined in one of the following ways :

o through a direct definition of the design variables : with this approach, the
user of a CAD system directly defines the values of the parameters p; using
a graphic interface. This way of processing is actually the simplest but it
requires reasonably precise knowledge about the underlying models and their
intrinsic variables,

* through the specification of the curve characteristics : the curve is defined by
means of high level characteristics but the model, as completed by the CAD
system, does not necessarily store this information. For instance, a circle
can be defined while a NURBS type curve (see below) is generated inside
the system. This type of curve specification includes the curve generation
method based on a set of constraints,

* through an interpolation method : a set of points P; and, for some of these
methods, a set of derivatives at these points are supplied which form the
Parameters (the p;’s). Then, an interpolation procedure constructs a curve
that passes through all of these points,

® through a smoothing technique : a set of points P; (and, as above some
derivatives for some methods) is supplied. Then a smoothing algorithm
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completes a curve that passes through the given points (or only some of
them) while ensuring that a given criterion is minimized,

o through a combination of several of the above approaches.

*
L A ¢

In this chapter we discuss the methods that are the most widely used in practice
(for instance in CAD systems), namely a parametric definition. Implicit curves wil]
be discussed in Chapter 16 while explicit curves are mostly of academic interest
or are used only in some particular cases.

In the first section, we introduce the main ideas of the interpolation or smooth-
ing based methods for parametric curve modeling. In the following sections, we
describe the models that make use of a control polygon which form the basis of |
most curve definition systems.

Curves are defined from a set of points and various types of functions. First, |
a global definition can be constructed, which means that a single function is used |
to define the curve from Py to P,, irrespective of the range of n. Second the
curve from Py to P, is defined using several segments whose junctions verify some
regularity (in terms of continuity). In the first case, the curve passes through Py |
and P, and passes through P;, for i = 1,n—1, and we meet an interpolation method -
or doesn’t pass through these points meaning that an extrapolation method or a |
smoothing based method is used. ,

Among interpolation methods we first find methods such as Lagrange inter- |
polates using the control points as input data and Hermite interpolates where |
derivatives (tangents at the control points) are also involved. We can find other
types of definitions such as the well-known Bézier method based on Bernstein poly- |
nomials of degree n and the rational Bézier method using rational polynomials also }
of degree n.

While nice in terms of regularity, such global definitions may lead to some |
problems of a different nature (complexity, unnecessary computational effort, os-;
cillations, etc.). As a consequence, when n is large, methods with a low degree.’
(such as 3 or 4) have been introduced. Then, whatever the value of n, a series }
of segments is defined where a low degree method is developed. We then obtain |
a nice local regularity and the issue is to make sure that the junctions between
two consecutive segments is smooth enough to obtain sufficient global regularity-
In this class of methods we can first use low degree Bézier (or similar) definitions
or introduce the Spline-based methods leading to B-spline or more generally to
NURBS-based methods.

The first sections aim at briefly introducing the methods that have been men-
tioned above. We don’t claim to be exhaustive and for a complete view of curve,
definitions we refer the reader to the ad-hoc literature i.e., [Mortenson—1935]
[Bartels et al. 1987], [Bartels et al. 1988], [Léon-1991] or [Farin-1997) among many
others. At the end of the chapter, some numerical problems regarding curve ma
nipulation are discussed based on some comprehensive examples. '

then ¢,
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Notations. In what follows, ¢ is the parameter, y(t) is the parametric ex-
pression of the curve we are interested in (as a curve is usually noted by I in the
context of finite elements). If need be, we do not distinguish between (¢) (which
for a given value of ¢ is a point) and T' (the whole curve).

12.1 Interpolation and smoothing techniques

As we are concerned with parametric curves, the function 7 defining such a curve
has the form :

‘)/(t) = 7(p1)p2> -~-)pnp;t) )

where the p;’s are the parameters defining the shape of model v (i.e., that of curve
') and t is a real value parameter.

In the following we consider n+1 control points Po, Py, ..., P, which are supplied
in R4 The problem is to define a curve using a function and these points. Then,
various questions must be addressed including how to define these points and
what type of functions must be constructed so as to obtain a suitable and easy to
manipulate curve.

The purpose of any interpolation or smoothing method is to find the values
of the parameters p; involved in the definition, such that the resulting curve T is
representative, in some sense, of the given set of points Py, Py, ..., P,. At first, we
are not interested in what the functions v used to define the curve are. Then,
for a specific interpolation or smoothing method (using a parameterization of the
whole set of points), there exists a unique parameter that can be associated with
any point in this set. The given points define a polyline and an interpolation or
smoothing technique must complete a curve close to this line.

12.1.1 Parameterization of a set of points

The issue is to associate the parameters ¢; with the points in the set P;. At least,
l‘;Ve must achieve a certain correspondence! between ¥(t:) and P;. Once the points
a(;’e been sorted, the first assumption is that the t;’s are ordered in an increasing
order :
ti <itiyr.

:h(;s being satisfied, any set of ¢;’s is valid a priori. Nevertheless, for simplicity
d simple automatization, the most frequent choices correspond to :

i a unifprm parameterization : the parameters are uniformly spaced in the
8lven interval,
® a parameterization related to distances between the points : the parameters

are then spaced in accordance with the length of the different segments
[Pz'a Pi.}.l]’s.

ISu

ch . . . .
The 1. a parameterization is not strictly required. The purpose is to find the np parameters.

t S are only adt.iitional parameters. If, in addition, there are more equations than unknowns,
€ Parameterization allows us to reduce the number of parameters by fixing some ¢;.
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Uniform parameterization. If the interval of parameters is [tmin, tmaz], then
the t; are defined following the rule :

i
ti = tmin + E X (tmar - tmin)
Remark 12.1 Notice that the curvilinear abscissa along the approached polyline
does not follow, in general, the distribution of thet;’s. For instance, the parameter

tmi t, . . . .
value M, the middle of the interval [tmin,tmaz] 1S not, in general, the

parameter of the midpoint of this polyline.

Parameterization conforming to the length ratios. The parameters t;’s
can be defined in such a way as the ratio between to successive parameter values is
exactly the ratio between the lengths of the two corresponding consecutive points :

tiv1 — U [|Piy1 — P

tmax _tmin - on=l
ZO P41 — Bl
J:

7 to = tmin

where t,,;, and {4, are the bounds of the interval. In this case, the series of the |
t;’s can be obtained using the following algorithm :

Algorithm 12.1 Parameterization following the length ratios.

to = tmin
n—1

L= Zo || Ps+1 — Py
]=

FORi=1 ton

ti =t + (tmax - trntn) X ”R;L})'_l—l—l-

END FCR 1.

Remark 12.2 Taking these length ratios allows for a better match between the
variation in curvilinear abscissa and that of the parameters but, however, does not

, A ds
lead to the proportional ratio between these two values : yr # cte.

12.1.2 Interpolation based methods

The interpolant properties of any curve definition method are related to the fact
that the distance between the curve and any point P; is zero. The best way t0;
ensure this property is to impose that :

¥(p1,P2, s Prp, ti) = Pi Vi € [0,n]. (12-1)

Since the values of the t;’s must be chosen so as to be suitable for all the previousl
mentioned 1methods, we have (n + 1) x d equations with np unknowns. Then W

encounter three cases :
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e np < (n+ 1) x d and the interpolation problem is over-determined - Sys-
tem (12.1) cannot be solved,

e np = (n+1) x d and the interpolation problem is well-posed : System (12.1)
can be solved. However, since = is non-linear with respect to the parameters
P;i’s, the system to be solved is a non-linear system,

e np > (n+ 1) x d and the interpolation problem is under-determined - Sys-
tem (12.1) must be completed with additional conditions, for instance, about
tangencies, curvature values, etc.

Exercise 12.1 Interpolate a circle from the Jollowing series of data points (when
this makes sense) :

* {(0,0);(5,8)},
* {(0,0);(5,8);(3,1)} and
o {(010))(518)a(3’ 1);(_472)}'

Hint : in the two points case, fix one parameter t; or ty so as to define a specific
circle (there is an infinity of circles passing through two points). With 3 points,
the t;;’s result from a non-linear system (which must be solved using an adequate
technique, cf. Chapter 11). With 4 points, there is no longer an interpolation
solution in most cases.

12.1.3 Smoothing based methods

Interpolation techniques are not suitable when the corresponding system is over-
determined. In this case, smoothing techniques allow for the definition of a curve
which is close, in some sense, to the set of points. This notion of a proximity is
evaluated with respect to a criterion C :

C(pl,pz, ooy Pnp, Po, Pl, very Pn) .

The aim is then to minimize this criterion C for the set of values p;’s. To this
end, we construct the system :
oC
Op:
- In thls system, there is still the same number of parameters and equations.
. us th.ls system can be solved. However, it could be non-linear, meaning that
Ppropriate methods must be used. The reader may refer to Section 11.4 where
Some methods suitable for this purpose are discussed.

0.

?emark 12.3 (Linear regression by means of a least square method) In
Umerous cases, the square of the distances is used in the definition of C :

‘n
Clp1, P2, s Prp, Po, Pr, ..., Pr) = Z 1P = v(p1, P2, ..., prp, i)
i=0
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If the curve corresponding to this series of points is a line, v is linear with its
parameters. Thus, C' is a polynomial of degree 2 and the resulting system is a
linear system. Indeed, we turn to the system of the classical linear regression.

Remark 12.4 When the parameters p;’s have been fully defined, the value of
C(p1,p2, .- Pnp» Po, Pr,y ..., Pn) ts used to judge the quality of the curve in its ap-
prozimation of the set of points.

Exercise 12.2 Generate a circle approximating the series of points in Evercise 12.1

when a least square criterion is prescribed.

12.1.4 Combined methods

When the number of constraints, interpolation points, tangency conditions, cur-
vatures, etc., is less than the number of parameters, one can combine a smoothing
method with an interpolation technique. Then, the minimization of criterion C
must be made under this interpolation constraint.

12.2 Lagrange and Hermite interpolation

12.2.1 Lagrange’s interpolation scheme

After this general survey, we turn to the first class of interpolation methods, called
the Lagrange type method. In this case, the control points are associated with a
series of parameter values t;, (i = 0,n), where t; corresponds to P;. The modeling
parameters, the p;’s, are the P;’s and the parameter ¢t consists of the set of #;’s.
Then the interpolation function :

n

y(t) =Y di(t) P with ¢i(t) =[] i Ny Y (12.2)
1=0

=0 ti - tl

defines a curve, called the Lagrange interpolate of degree n. This curve is governed
by the n+41 given points and passes through these points: in fact, since ¢;(t;) = di;
where d;; is the Kronecker delta, we have

v(ti) = Pi.

Remark 12.5 The ¢;’s form a basis of all polynomials of degree n. Moreover,

they sum to 1.

Remark 12.6 7(t) can be written by means of the monomial basts. Following this

form, we have
n

éi(t) = Zai tt or A(t) = iAi t,
i=0

=0

where the A;’s are indeed combinations of the given P;’s.
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This interpolation function is ¢ which is, at the same time, nice but prob-
ably unnecessary. On the other hand, when n is large this curve definition may
produce oscillations and lead to an expensive computational effort. Thus, this
type of polynomial function is mostly of theoretical interest or used In practice as
a component of another curve definition.

12.2.2  Recursive form for a Lagrange interpolation

The above Lagrange interpolate can be written in a recursive manner. We intro-
duce a polynomial of degree 1, which corresponds to the case n = 1 of the above
general definition. This polynomial is defined in the interval [ti,tig1]. Tt is given
by
tiy1 —t t—1;
Alt) = 2 P+ “—Pii1; i= -
z( ) tz’+1 _ ti 7 ti+1 —1 i+1y, 2 0,...,71 1.

Using this relation?, we construct a recursion. To this end, we assume that we
have found a polynomial, say Ag'l(t), that interpolates to the n first P;’s (i.e.,

i = O,v.‘.,n. — 1) along with a polynomial A?7Y(t) that interpolates to the n last
Pi's (e, i=1,..,n). With this material, we define the following sequence :
t, — 1t t—t
AP (4) = » An—1(¢ “OAn—l
0 = AT + A
Then, we have
Ag(ti) = B;.

P,I;()Of' First, for ¢ = tg, we have Ag(to) = Ap~'(to) which leads to having
0(to) = Af(to). Then, following the definition of the Al’s withi =0 and ¢ = ¢,
we have ,

t —_
AR (to) = tl to

P():P().
1 —to

Similarly, for ¢t = ¢,,, we have AR (t,) = AT (t,), thus A (tn) = A} _ 1 (ta), ice,
t, —1

n—1
2l p =P,
tn—-tn_l n Pﬂ

For the other 1, s, we just have to follow the way in which the recursion was defined.
Indeed, we have ApNt) = A7=Yt;) = P;, then Ap(t;) = P;. a

The above recursion can be generalized in :

t—1;

Ar tigr —1t
/‘1,(t) = LAr—lt +*_A7l‘—l o _
o O AW = 0 r= 1

the so-called Aitken algorithm.

As a conclusion, the Lagrange interpolate can be written as initially stated or
Y means of the above Aitken algorithm, namely

¥(t) = A3(1).

2 : : .
Where the notation A is short for Aitkens, as will be justified subsequently.
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12.2.3 Matrix form for a Lagrange interpolation

In practice, given an adequate set of ¢;’s, the Lagrange interpolate can be ex-
pressed, for each component, in a simple matrix form :

with :
[T =" ' .t 1]

[P] = t[Po P1 Pn]
where [M] is a (n + 1) x (n + 1) matrix.

12.2.4 Lagrange forms of degree 1 and 2

In the case where parameter ¢ is chosen as: t; —t;_1 = %, t.e., the sequence t; is
uniform, matrix [M] is written as follows® :

-1 1
m=(7 )
for n = 1 (assuming [to,t1] = [0,1]). A similar expression, whatever n is, can

be obtained (obviously unlikely to be suitable when n is large). For instance, for
n=21t=0,t3=1and t; = 0.5, we find :

2 -4 2
M=| -3 4 -1
1 0 0

Proof. Using the general formula for n = 2, we have :

(t—t1)(t —1t2) (t—to)(t —ta) (t—to)(t —11)
(to—t:i)(to—t2) " (ti—to)(ti—ta) ' (ta—to)(ta—t1)

v(t) = Py,

since we set {g = 0, ¢t; = 0.5 and t, = 1, we have :

v(t) = (2t* = 3t + 1) Py + (—4t> + 4t) P, + (2t> — t) Py,

thus, [M] is the above expression. o

Proof. Using the Aitken formula (under the same assumptions), we have suc-
cessively :

to — 1 t—1
2 2 1 0 1
= At — A7 (1),
Ap(t) I 0()+t2—t0 1(t)
t; —t t—1t
All)(t): ! P, 0P1,

ti — 1o 0 11 —1p

30ur interest in this simple case will be made precise hereafter.
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to — 1t t—1
Al = P P.
1(t) I 1+t2—t1 2,
(t—=t1)(t —ta) P, (t —to)(t —12) p (t—to)(t —t1)
1 3
(to—ti)(to—t2) " " (i—to)(ti—ta) ' (t2—to)(tz — 1)
which 1s the same expression as above, thus leading to the same matrix. O
Without restriction on the ¢;’s, we have :

A2(t) =

DI

1 ) 1

M) = (Lo _—ttll)(_totg_ ta)  (t ———tt%)glig_ ta)  (t2 __tt%)(_tztl— 1)
R G S
(to—t1)(to —ta)  (t1 —to)(ts — 1) (t2 ~ to)(t2 — t1)

12.2.5 Hermite interpolation scheme

Another class of interpolation methods uses Hermite type interpolants. In addition
to the above n + 1 pair of control points and parameter values, we assume that
the n 41 derivatives Py, P, ..., P, are provided. Then, the function :

V() =D )P+ > i) P; (12.3)
i=0 i=0
where N
¢ilt) = {1 = 2¢(t:)(t —t:)} ¢i(t)*
and

pilt) = (t —t:)gi(t)?

defines a curve which is governed by the n + 1 given points and their tangents.
This curve, called the Hermite interpolate, is such that :

¥(t) =P and (t:)= P

as can be shown, moreover it is C®. Nevertheless, we return to the previous
remarks both in terms of how to define the parameter values and in terms of
complexity and oscillations (if n is large).

12.2.6 The Hermite cubic form

We reduce to the case where n = 1 and we assume that Py and P; along with Po
and Py are supplied. Then, since, after a variable change, to = 0 and ¢; = 1 are
assumed, we have :

dolt) = (1—1) and g}

_ ¢1(t)=t and i
$o(t) = (1+2t)(1—1t)2 and ¢
wo(t) =t(1—1t)2 and ¢y(t
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thus :
V(1) = (142)(1 =2t +%) Po+ (1° = 267 + 20%) P+ (t — 26° + %) Po+ (2 = (%) Py,
which can be expressed in a matrix form as :

(&) = [TOIM][P] (12.4)

where now :

3 3 -2 -1
(M) = 0 0 1 0
1 0 0 0

which is known as the cubic Hermite interpolation or the cubic Coons basis.

Remark 12.7 Actually, the cubic Hermite form concerns polynomials of degree
3 considered with a set of { data values (2 points and 2 derivatives). Thus, this
sumple example will be of interest when composite curves are seen (see below).

Remark 12.8 Higher order Hermite type interpolations can be constructed if
higher order derivatives are supplied as input data.

12.3 Explicit construction of a composite curve

In this section, we give a method suitable for constructing a composite curve using
one of the previous approaches. Indeed, after the remark about the cost and the
possible existence of oscillations when the number of points n is large, we want
to define the curve I' by a series of sub-curves with a low degree such that their
Junctions are under control. Moreover, this construction uses as input data a
discrete approximation of the curve under investigation.

This approximation is indeed a polyline composed of a series of segments
[Pi, Pi41]. The construction is completed segment by segment using the available
information (tangents, corners, etc.). Depending on the amount of information
provided as input data, a polynomial based definition of degree 1, 2 or 3 can be
easily obtained in any member of the polyline. In what follows, we consider one
segment, say [P;, Pi11], and we denote this segment by [A, B].

Giving 4 input data, A, B and the tangents at A and at B, 74 and 75, we can
obtain a function like :

y(t) = ao + art + ast? + ast?, (12.5) |

where a; € R (i = 0,3) and ¢ is a parameter ranging from 0 to 1. For the j

moment, we know nothing more about the meaning of ¢.
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First, we consider the case where no tangent is provided. Using the only two
Jata we have, we look for a function « of the above type with a3 = az =0, 1€, a
function of degree one. The constraints we want to conform to are 4(0) = A along
with ¥(1) = B. Then, we must solve the system :

@0 = A 12
{(11 = B—A, ( 6)

weaning that y(t) = A+ ¢(B — A). Indeed, the Lagrange form of degree 1, as
defined in Section (12.2.1), is retrieved.

Remark 12.9 Since the derivative is 4/ (t) = AB, we encounter two cases. First,
i ||AB]] = 1, t is nothing other than s, the curvilinear abscissa (see Chapter 11),
while, 1f||ffB|| # 1, 1 is an arbitrary parameter. In the previous case, a curvilinear
abscissa can be defined by s = t||AB|.

When either of the tangents is not provided, we look for a function of degree
two, i.e., we fix azg = 0. Then, if 74 is known, we have :

ap = A
ay = T:; (127)
as = (B — A) — 7:24 ’

while if only 75 is known, we obtain :

ag = A
ay = 2(B-A)-7p (12.8)
az = —(B—-A)+7B.

Then, we assume that we know the tangents at A and at B, 74 and 73, then
this information allows us to define a curve of degree 3. The four given information
elements lead to the system :

ag = A
ap+a;+ax+az = B (129)
a) = T:%
ai + 2as + 3as = 7B,
whose solution is :
ag = A
a = T4
a, = 3(B - A) — 274 — 7B (12.10)
az = —Q(B—A)’FT:\'*'T—I.B‘-

Then, +(t) is nothing other than the cubic Hermite form already mentioned in
Section (12.2.5).
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TA T—A . . A_1 7'_;1 A_1 A_.1 .
A Al A A A A A A A
B B| B|B B B B B B
T_é T’z; T_é B+1 B.|_1 . B+1

l3|2l2|1| 3] 3] 3] 2[ 2]

Table 12.1: Degree of the approximation (bottom line) according to the data type
(in column).

Remark 12.10 ¢ is advisable to make sure that ||T|| is something like ||AB]|.
Indeed ||7]| acts through two aspects. First we naturally encounter a directional
aspect and then the module of the tangent controls the locality of this directional
control.

Other categories of situations are encountered when A and/or B are not cor-
ner(s) but when we know a point “before” A, denoted as A_;, and/or a point
“after” B, denoted as By, then we can define a function of degree three or two by
returning to the previous cases. The tangents at AB in A and/or B are evaluated
by using the points A_; and/or By;. For instance, 74 = A — A_; or a similar
expression. The final type that can be observed is when the data combine the
different possibilities.

Remark 12.11 Apart from the first case where t could be s or s could be easily
defined resulting in a normal parameterization of AB, such a parameterization is
not obtained in the other situations.

Table 12.1 shows, as a function of the data categories, the degree that can be
expected for the approximation of AB.

A few remarks. In general, the function y(t) constructed from two points and

the two related tangents may offer different aspects depending on the type of
this information. Some aspects may obviously be undesirable for the type of |

applications envisaged.
Thus, the presence of a loop in one segment, i.e., when there are two different
values t; and t, for which y(¢1) = v(¢2) necessarily corresponds to ill-suited data.

In fact, a nice property to guarantee what we need, is to have a function g of

parameter ¢ such that

e g(t) is a strictly increasing function.

where g(t) = d(A,projap(y(t)) in segment AB. In this expression, d denotes the |

usual distance while projap(P) is the projection of point P onto AB (cf. Fig-
ure 12.1)

The assumed property implies in particular that the curve has no loop (between |
A and B). From a practical point of view, we can also assume that the distance j
between AB and the curve is bounded by a reasonably small threshold value. In |
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Figure 12.1: 7(t) and g(t) for a curve in two dimensions (left-hand side) and for
a curve in three dimensions (right-hand side).

other words, the segment AB is close to the curve, meaning that the segments
provided as input already correspond to a reasonable approximation of the geome-
try of the real curve.

12.4 Control polygon based methods

We now turn to a class of methods not based on an interpolation technique. Here,
we are interested in methods that make use of a control polygon whose vertices
act through some contributions defined via various functions.

12.4.1 Control polygon and curve definition

The set of control points enables us to define a control polygon. As a general
statement, it is possible to define a curve in terms of the following equation :

= ﬁ:¢i(t)Pi (12.11)

Once the basis functions ©;(t)’s have been chosen, the curve is uniquely defined by
the points P;’s in the control polygon. At a glance any basis of functions makes
this curve definition possible. However, some properties are usually required so
as to ensure that the curve “looks hke” its control polygon. These assumptions
are indeed assumed to facilitate curve manipulation when used in a CAD system,
Particularly, if the user has only limited knowledge of the underlying geometric
models.
The purpose of the following section is to clarify the above properties.
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12.4.2 General properties

The following presents some of the properties commonly assumed in most of the
models based on a control polygon.

Cauchy identity. This relationship is related to a normalization purpose. Then,
we have :

igo,'(f,) =1 Vt.
=0

This implies that Equation (12.11) is equivalent to :

(12.12)

This expression of the curve clearly shows the barycentric form of the latter. The
current point (t) is the centroid of the set of points P;’s associated with the
weights ¢; (¢).

Remark 12.12 (Curve translation) We look at the construction of a new poly-
gon resulting from the translation of the control polygon P; by a vector v. The

coordinates of the points of this new control polygon are denoted by P;+v. The
new curve y' associated with this new polygon can be written as :

Y =Y @)(Pi+v) = @it)P + (Z sm(t)) v=7(t) +v
1=0 1=0 =0

1

Il

If the Cauchy identity were not assumed, then the form of the curve would be a
function of the position of the control polygon. Conversely, this identity implies
that the curve is only related to the shape of its control polygon.

Remark 12.13 (Linear transformation of a curve) We now turn to a method §

that makes it possible to construct a new curve resulting from a linear transfor-
mation of the curve ¥(t). Then, this new curve, ¥'(t), conforms to the general
erpression :
Qoo o1 Qo2
V()= a0 an an | ().
azp Q21 a2

Thus, we have :

@oo  @o1 Qo2 n P
Y(@t)=| a0 a1 a1z Z wi(t) | P,
@z @31 Q92 i=0 P
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n oo gy Qo2 P,
= Z%‘(t) ajg a1 @12 P; ,
i=0 asp A1 A92 Pi

where the second equality is true only if the Cauchy condition is assumed. Thus,
any linear transformation of a curve (for instance a rotation, a scaling, etc.) is
easy to perform directly in the control polygon.

Positive functions. Inside the definition interval of v, the functions ¢;(t) are
assumed to be larger than or equal to zero :

pi(t) 2 0.

Provided with the Cauchy identity, the current point () is the centroid of the set
of points P;’s associated with positive weights, the p;(t)’s. Hence, all any convex
region bounding the set of points F;’s encloses the curve.

Extremity conditions. If [tmin,tmar] stands for the definition interval of v,
the functions ¢; satisfy the following :
SDO(tmin) =1 and ‘Pn(tma:c) =1.

Corvollary 12.1 The Cauchy condition and the previous relationships with posi-
tive functions ymply that :

Gi(tmin) =0 and  @i(tmez) =0.

S—— N —’

i£0 i#n
Hence, at t = t,;n, the sole point with an action on the curve is the point

Py. Moreover, we have the relationships ¥(tmin) = Po and ¥(tmaz) = Pn. As a

consequence, the curve endpoints are the endpoints of the corresponding control
polygon.

Derivatives at curve endpoints. In addition, the following conditions can be
assumed. At t,,;,, we impose :

d d dp; _
dito(tmin) = —%(tmin) and d—tz(tmm) = 0
i>1
and at parameter ¢pmqy
dom dom- dipi _
5; (tmax) = _—sodt ! (tmaz) and W(tmax) =0
<m—1
Hence, for ¢t = tmin, we obtain the following equation :
dy N dps o dpo
—(tmin) = —(tma . = ——(tmin) (P1 — Po) .
dt (tmzn) dt (tmzn)Pl dt (t )( 1 0)

i=0
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Thus, the tangent at ¢,,;, is directed by the first segment in the control polygon.
Similarly, the tangent at t,,,, has the same direction as the last segment in this
polygon.

Ps

Figure 12.2: Basis properties related to the definition of a control polygon. The
shape of the curve is close to this governing polyline (broken line).

Figure 12.2 depicts the various properties of the curves governed by a control
polygon. At first, y(t) passes through Py and P, while the other points are only
control points. Moreover, the tangents at the curve endpoints follow the first and
the last segments in the polygon. In addition, the curve lies inside any convex
region including its control polygon.

In this figure, the polygon in dashed line is the smallest of the convex polygons
containing the control polygon. CAD systems usually use the enclosing box shown
in the figure by the rectangle to bound the region enclosing the curve. Apart from
the characteristics at the curve endpoints, the only thing we can say a priori about
the shape of the curve is that it “looks like” its control polygon.

12.5 Bézier curves

A popular method based on a control polygon makes use of Bézier curves.

12.5.1 Form of a Bézier curve

Provided with the n+1 control points, we define a Bézier curve using the following |

algebraic relation

y(t) = zn:c;zi(l — )" (12.13) |
i=0 )

with C} = (—n% for 0 <i < nand C, = 0 otherwise?.

In other words, a Bézier curve relies on Bernstein polynomials . Indeed, these 3

polynomials are defined by

Bin(t) =Citi(1 — )"

*Note that coefficient C}, has various notations. For instance, one can find the notation "Ci |}

n
as well as . .
1
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where t ranges from 0 to 1 and ¢ € [0,n] while B; ,(t) = 0 elsewhere. Thus, we
have :

y(t) = Z Bin(t) Pi.

Exercise 12.3 Show that the above properties hold.

Remark 12.14 The parameter value t ranges from 0 to 1. It is possible to use a
different set of parameter values where t varies from a given ty to a given t,, > to.
To return to an interval between 0 to 1, we simply have to introduce a variable
change such as i{= iin:—ﬁtt The way in which the t;’s vary allow for some flexibility
i the curve definition.

This curve definition is C'*°. Nevertheless, for a large n, the above remarks
remain true. In addition, while more flexible than the previous approaches, some
classical curves, such as conics are poorly represented by this Bézier form. To
deal with such a problem, two solutions can be envisioned. On the one hand, a
different global curve definition can be used (see for instance the rational Bézier)
or, on the other hand, a low degree Bézier can be employed leading to using a
composite definition for the curve (see below).

12.5.2 About Bernstein polynomials

First, it can be proved that Bernstein polynomials form a basis of all polynomials
of degree n. In this respect, Bernstein polynomials can be written as :

n

Bin(t) =) (-1~ Cicit.

Jj=1

On the other hand, Bézier curves offer some facility for various computations.
Indeed, since these curves are defined by means of Bernstein polynomials, various
recursions about these polynomials allow us to elegantly manipulate these curves.
First, the Ci’s conform to the following recursion :

Co=Cuhi+ Gt
In other words, the C?’s can be obtained by the Pascal triangle rule as illus-
trated in Table 12.2.

Then, the Bernstein polynomials can be obtained by recursion. Actually, we
have :

Bin(t) =tBi—1n-1(t) + (1 —1t) Bin-1(t) . (12.14)

Proof. Merging the recursion about the Ci’s in B;,(t) = Cit'(1 — t)"~*, we
obtain successively :

Bin(t) = Lt (1 —t)" P 4+ C_tf(1—t)"
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Binlt) = CZhtt =1 (1 — )" 1200 i ¢ (1= g) (1 — g)nmt-i

Bin(t) = tCETA (1 — )1 =0=D 4 (1 — 0y @i _pi (1 — gyt

and the above recursion holds. ‘ O
- t=0]i=1]i=2|4=3]i=4]i=5] ... .
n=>0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n =4 1 4 6 4 1
n=>5 1 5 10 10 1

Table 12.2: The Pascal triangle rule.

Obviously we have :
Bin(t) = Bpoin(l—1t).

Moreover,

Boyn(t) = (1 - t) Bo,n-l(t) thus Boyn(t) = (1 - i)n s
Bpn(t) =t Bn-yn-1(t) and By o (t) =t".
A recursion about the derivatives can be easily found. It is as follows :
Bin(t) =n(Bi-1n-1(t) = Bin-1(t)) .

Various recursions related to high order derivatives, integrals and many other
relationships can be exhibited. To conclude this discussion about Bernstein poly-
nomials, one should note that all of the above recursions are also useful in the case
of rational Bézier, composite Bézier, etc., curve representations.

12.5.3 De Casteljau form for a Bézier curve
Defining D?(¢) = P; for i = 0, ..., n, the recursion® :
Di(t) = (1-¢) DI~ (t) + t D7} (t)

forr =1,nandi=0,n—r (and D} (t) = 0 otherwise) is the so-called De Casteljau
algorithm. Using this recursion, the curve defined by :

7(t) = Dg (1),

is a practical way to construct a Bézier curve which does not directly involve the
use of Bernstein polynomials.

5The notation D stands for De Casteljau.
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12.5.4 Bézier curve of degree 3

Any Bézier curve can be written in the matrix form already introduced. For
example, for n = 3, the general expression or the De Casteljau algorithm results
in the matrix [M)] given by :

-1 3 =31
3 -6 3 0
[(M] = -3 3 0 0
1 0 0 0
with Y
TO) =012 t* t 1

Pl='[Po P Py P5

Proof. Using Bernstein polynomials, we have successively :
3
Bo)a(t) =(1- t) y

Bis(t) =t Boz(t) + (1 —t)Bi2(t),
Bia(t) =t Boa(t) + (1—t)Bia(t),
Bi2()=t(1—t) + (1 =)t =2¢t(1—¢),

Bia(t)y=t(1—t)° +2¢t(1—t)> =3t(1—1t)*,
Bas(t) =t Bi2(t) + (1 —t)B22(¢),

Baa()) =28 (1—t) + (1—t)t° =382 (1 —t),

Bsa(t) = t°,
e Y(t) = Bo,a(t) Po + B1,3(t) Pr + B2a(t) P2 + Bs3(t) Ps,
v(t)=(1=t)’ Po+3t(1 -t Pi4+ 38 (1—t)Pa+ £ P3,

and we retrieve the above matrix. O
Proof. Using De Casteljau algorithm, we have successively :
Do(t) = (1 =) Do(t) + ¢ D(t),
Di(ty=(1—t)Po + t Py,
Di(t) = (1~ ) D(t) + t D3(t),
Di(ty=(1=t)PitP,,
Di(t) = (1= ) Do(t) + ¢ Di(t),
Di)y=(1 =t Py +2t(1=t) P, + 2 P,
Di(t) = (1 - t) Di(t) + t D(t),
Dity=(1—-t)*PL + 2¢(1 —t) P, + £* P,
then : ‘
Dyt)y=(1-t)°Po+3t(1—t)’ PL+ 32 (1 —t) P, + t° Ps,
and we still retrieve the above matrix. a
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12.5.5 Degree elevation of a Bézier curve

Degree elevation of a Bézier curve is a very useful process for various purposes
(including the problem of finding some degree of continuity when composite curves
(surfaces) are considered).

Given a Bézier curve of degree n corresponding to n + 1 control points B,
degree elevation leads to defining the same curve as a curve of degree n + 1 based
on n+ 2 control points, the Q;’s. The issue is to find these control points.

Let y(t) = Z?:o B; »(t) P; be the given curve, which we want to be written as
y(t) = Z?:Jrol B; n41(t) Q;. The solution is as follows :

Qo=PFP, and Qny1 =P, with

ﬁiPi_1+(n+1—i)P,~ .
Ql"“ n+1 s 2—1,...,71,.

Proof. Since B;,(t) = (1 ~t) Bi n(t) + tBin(t) holds where the B; ,(t)’s are
defined by B; ,(t) = mf:’—_!mt’(l —t)"~% we have :

n+1—1 i+ 1
Bin(t) = B Binti(t) + Y 1Bz‘+1,n+1(t) ,
then,
" " /n+1—i i+1
=S B;,(t) P = ———Bint1() P+ ——Bis1 1 () P )
0= 3 B0 R = 3 (T B0 P+ o B )

and, after rearranging the terms, we obtain :

n
1 n+1—14
Y(t) = Bont1 Po + ;Bi,n+1 (n—H‘Pi—l + —n+—1Pz) + Butint1 Pa,

thus leading to the definition of the Q;’s. o

12.6 From composite curves to B-Splines

The main idea is to use locally one of the above curve definitions where a low J
degree is assumed. In this way, a curve is defined by a series of sub-curves. The |

issue is then to insure the desired smoothness between the different parts of the
entire curve. This technique actually leads to constructing a composite curve.

12.6.1 Composite Bézier curves

Composite Bézier curves correspond to Bézier curves. We define a knot sequence of

t;’s and a series of segments where Bézier polynomials of degree m are employed. ]

Here, segment j, for j > 1, is denoted by seg;. It is simply the interval :

seg; = [tj, tiq1] -
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With this background a composite Bézier curve is :

n

v(t) = iiB{’m(t)P,-,j, (12.15)

1=0

where (to return to the case where ¢ ranges from 0 to 1 for each segment), the

B! . (t)’s are written by means of Bernstein polynomials as follows :
B} ,.(t) = Bim | —— if t € seg;
’ Li+1 =1
Bf)m (t) =0 otherwise
and

Pij = Pr(-1)+i

meaning that a segment runs from
Poj = Prn(-1) to  Pm;=Pnj

and, finally n,, depends both on n and m. In fact, ones needs to have n =
(m+1) X npy,.

The curve only passes through the P, (;_1)’s, the other points really being
control points.

The definition of the ¢;’s can be made in several manners thus leading to some
extent of flexibility. First, fg is naturally associated with Py, then ¢; must be
assoclated with P, and so on. In fact ¢; is related to P, (;_1). On the other hand,
the values of the ¢;’s can be arbitrarily defined.

First, as already indicated, the entire curve is defined by a series of segments,
in other words by means of local Bézier definitions and locally, the regularity in
C'™. Second, the global regularity is insured by an adequate definition of the
Jjunction from segment to segment. In this respect a G or even a C! continuity
can be obtained, say for m = 3, by acting on the control points previous and next
to a segment endpoint. Actually, the three above points must be colinear (thus
leading to a G! smoothness) and, in addition, must be in a certain ratio (to reach
a (! property). Similarly a G? or a C? continuity, for m = 4, can be completed
by acting on the two previous and the two next control points of a given segment
endpoint. These requests allow for the desired regularity when the entire curve is
considered but, on the other hand, imply some constraints that can impede the
curve definition. A greater flexibility is then obtained by introducing the curve
representation discussed in the next section.

Remark 12.15 The above composite curve definition involves locally a single
curve function. Thus, global continuity is obtained at some price. To overcome
this problem local functions acting as basis functions may themselves be composite
(sce below).
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12.6.2 B-splines curves.

B-spline curves correspond to De Boor spline curves. Before going further in B-
splines, we introduce the notion of a spline.

Given a sequence of m+2 knots tg < t; < ... < #5541, a general basis polynomial
spline f of degree m is a function that satisfies the following properties :

e f1s a polynomial of degree m on all intervals [t;,?;41], this restriction being
denoted by f;,

o fissuch that fi(tiv1) = fiv1(tis1),

o fis C™! at the junction points (i.e., at the ¢;’s) when these knots are not
multiple. At a node of multiplicity r, the continuity is C™~".

Remark 12.16 Note that the above composite Bézier curve definition is included 1
n this category of definitions while, in this case, the corresponding f;’s reduce B
to a single (non composite) function and the third condition is not automatically
msured. .

Given a knot sequence of m + 2 t;’s like ¢;,¢;41,...,ti+m+1, the basis spline
N;  related to these knots is constructed® using a recursion, in terms of index k.
For k = 0, it leads to :

N,',o(t) = 1 if t,.1<t<t; and
Niolt) 0 else |

i

and, for k = 1,2, ..., m, we have :
tivk — 1

t—1;_
N,"/.;(t) = !

= ————Nip(t) +
lio14k — izt

Niy1p-1(t),
livk — &
meaning that the composite function N; x(t) is non null only if ¢ € [¢;,-1,t;4x]. 7

The basis polynomials have a local and minimal support. Moreover, they are
linearly independent. Indeed, they form a basis.

In the above recursion, if, for instance, t;_14x—t;_1 = 0, meaning that multiple
knots are used, then the term in N; x_1(t) does not contribute since N; x_1(t) = 0. {

Remark 12.17 Provided with an adequate choice of the t;’s, the above relation
reduces to Relation (12.14) meaning that, in this particular case, the Nj(t)’s ]
are nothing other than Bernstein polynomials. Indeed, we have to set t; = 0 for
1= 0, l, ,]m and tk+1 =..= t2k+l =1.

With this background (leaving aside the previous remark), given n + 1 control
points (n > m), a composite curve of n — m + 1 polynomial curves of degree m is }

defined as )
41

= Y

Jj=i+l-m

Njym(t) Pj . (1216)

8In the following, we discuss only one of the various possible ways to define a B-spline.
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Remark 12.18 Since the wnitial condition of the definition by recursion is satis-
fied for Nj m(t) =0 when j € [i + 1 — m, i+ 1], we also have :

m

¥(t) = Njm(t) Py

7=0

(12.17)

where one can retrieve the general equation of a model based on a control polygon.

Exercise 12.4 Study the properties of Section 12.4.1 in the case of the basis func-
tions Njm(t).

This curve, the so-called B-spline, uses n + 1 basis splines and thus needs a
sequence of n 4+ m + 2 knots, namely tg,t1,...,th4m+1. The first curved segment
that fully uses the first m+1 control points, is the combination Ny p, Po+ Ny 1y Pi+
..+ Nm.m P, which is defined in [t,,_1,t,,]. Similarly, segment number k is the
combination Ny, Pr + Ney1m Peg1 + oo + Negmom Potm, which is defined in
(lk+m-1,tk4m]. Then the last segment is defined in [¢,_1,,] corresponding to the
combination Np_mm Poom + Nocmatm Poom1 + 4+ Noom P

Following on from what has just been said, the curve doesn’t pass through the
control points if the knots are all distinct. Using multiple knots enables us to pass
through some control points. Boundary conditions can be also achieved by using
multiple or phantom (fictitious) control points.

In the following three examples, we assume that the ¢;’s are all distinct.

12.6.3 Degree 1 B-spline

In this case m = 1 is assumed, then using the general recursion with k = m = 1,
we have :
t—1t;_

tivg —t
= ——Nio(t) + ———Ni1,0(t).
by —ti—

N;1(t
(1) p—

(12.18)
This B-spline consists of two components. In other words, it lives in two intervals.
This composite function enables us to define the curve y(t) as :

i1

v(t) = ZNJ-,I(t)Pj. (12.19)
=i

The first interval that is well defined corresponds to j = 0 and then to i = 0. Hence,
m [to,1,], both No,1(t) and Ny 1(t) have a contribution. Since only Nj o(t) # 0,
we simply have (for i = 0) :

t1 —1
No1(t) = ,
0alt) = 2=
while (for i = 1) :
t—1
Nia(t) = 0
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Then, following Relation (12.19), in [to,?;], we have :

t —t t—to
v(t) = P

= P,
th—to 0t —tp *

Using a uniform distribution of ¢;’s (for instance, ¢; = ¢), a simple variable change
allows us to find a definition in [0,1]. Indeed, we return to the classical linear
interpolation function y(¢) = (1 —¢) Py + ¢ P;.

Similarly, to define the curve in [t;,15], we need to know both N;;(t) and
N3 1(t) which act through their components related to Ny o(t). Thus we consider
the general recursion and we fix ¢ = 1 to obtain the contribution of Nj 1(t) :

g — 1
Nia(t) = P

and we fix ¢ = 2 to find the contribution of N3 ;(¢) :

t—1
to—t’

N2,1(t) =

hence, in [t,15], we have :

lg —1 t—1
2 P, 1

Py
ty— 1 ty — 1

y(t) =

This definition (with the above assumptions) leads to having v(¢) = (1~t) Py +t Ps.

Remark 12.19 In practice, for a uniform node distribution, the B-spline can be
defined everywhere using only the factors (1 —t) and t. To this end, a variable

change is done to reduce the interval of interest to [0, 1].

Remark 12.20 The B-spline is symmetric (observe the case where t is replaced

by 1—1).

As expected, this curve is C™~! = C°. Indeed, in the first interval we have |

v(1) = Pp as well as in the second interval where v(0) = P;. Note also that the

definition is reversible. The curve defined using Py, P, P, and the curve defined }

by Py, P, Py are identical. More generally, the sequences Py, Py, P, ..., P, and
P.,Py_1,Ph_o,..., Py lead to the same curve.

12.6.4 Degree 2 B-spline

Using the recursion about the N; ; in the case where k = m = 2, we have :

t—1;_ tivo — 1
N;a(t) = ——Z2 Niq(t) + 2N,
tivr —tio1 tiyo =t
This B-spline, comprising three components, lives in three sub-intervals. The curve j
defined by : i
i+1
)= D Nia() By, (12.21)

Jj=i—-1

ir1a(t). (12.20)
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is well defined since the interval that corresponds to i = 1. Hence, in [t;,t2].
In this interval, three B-splines have a contribution, namely Ny 2(¢), N; »(t) and
N2 a(t). Merging Relationship (12.18) into Relationship (12.20), we find :

t—ti (t—ii—1 tig1 — 1 )
N; o(t = N;o(t) + ——N; t
20 tigr —tioy \ti —tiy o(t) tiv1 —t +10(0)
tiy2 —1 t—1t; tipo —t
+ Nij1o(t) + ————N; 2,0(t
tivo — 1t \tig1 —1; +1,0(1) tiys —tig1 +20(t)

and, in terms of Nj o(t), for j = 4,1+ 1,i+ 2,

t—ti1 t—ti

N;o(t) = N;olt
s2(t) tigr —tioiti—tig ()
t—t;_ tiz1—1 tiio—1t t—1;
-1 i+1 42 i >Ni+1,0(t)
tigy —tio1tip1 — 1t liga —titigr — 1

figs =1 tigs—t
s ! Nigao(t).
tivo —Titipo —tipa

'The desired contributions are obtained, in interval [¢1,¢2], by looking at the
coefficients of N o(t) which are successively related to i = 2, i = 1 and i = 0.
Then, we have :

t—1t, t—1
Nos(t) = L
! tg —t; 1y — 1ty
N (t)_t—to ty —t ta—t t—t
12 _tz—totg—-tl t3—t1ty—1t;
to—t to—1t
Noalt) =
2 — gt — U

Relation (12.21), in [t1,12], is

ty—t to—t t—tg to—t tz—t t—t t—t t—t
,7,(7‘): 2 2 PO < 0 t2 3 l) 1 1

to —tpty — 1y to —tgty — 4 tg3 — 11ty — 1 t3—11ty— 1
This relation, when uniformly spaced t;’s are used (i.e., t; = i or t; = %), leads
to :

(1) = (2‘2”2 Po+((2—t)%+(3—t)t;1)P1 + “‘21)2

Py,
and, in [0, 1], it is simply :

1—1)2 142t —2t2 t2
( 2) Py + 3 P1+EP27

v(t) =

and we return to the two previous remarks. The curve is C™~! = C!. Indeed,
Y1) = -&jzfz and 4'(1} = —P; + P» in the first interval where this curve is defined
([t1,t5)). These values are identical to 7(0) and to 4'(0) respectively in the next
interval ([ta,13]).
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Noj N1y Ny Nz
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Nio Nip Nao Nayo Nap

Figure 12.3: Relationships between the N,y from the root No 3 used to compute
No’3‘

12.6.5 Degree 3 B-spline
In this case, the curve T is defined by :

it+1

= Y Na(t) P (12.22)

j=i-2

Thus, the first interval where y(t) is well defined is [t2,t3]. To simplify the expres-
sion of y(t), we first consider the relationships between the N; x’s which are used
in the present definition, i.e., the Njx’s of interest when expanding the relation
t—1t;_ tigya—t
— L N () +

N; 3(t) =
a(t) ligo — iy tits —t;

Ni+1,g(t) .

The diagram relating these coefficients when evaluating the contribution of }
No 3(t) is depicted in Figure 12.3. Since only N3 0(t) is non null, we just have to |
visit the branches (Figure 12.3) from the root to terminal node N3 o(t). We obtain |

successively :
ts —1
Nos(t) = Ni2(t),
i3 —to
tz—1 t3—1t
Ny 3(t) = —— Na1(t),
0,3(t) AU
13—t tz3—1t . ts—1 tg—1
Nos(t) = S 30(t) e, B 37"
t3 —tgts — 1o tz3 — 1otz — 1o
For uniformly spaced #;’s, this relation reduces to
3—1)3
Nojs(t) = ( 6 ) )
and, in the interval [0, 1], we obtain
1 3
N0,3(t) = é’ (]. - t) .
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/ h \

17\/'12 /VQ,'Z
Nij Naj N Nz
Nao  Napo Nso Napo Nso Nspo

Figure 12.4: Relationships between the N; i from the root Ni 3 used to compute
this value.

To obtain the contribution of Ny 3(t), we define the diagram with root N; 3(t)
{Figure 12.4) and we examine the different branches leading to terminal node

i\';;‘o(?‘).
Thus, considering this tree, we obtain (after certain effort) :

t—1tg tg—t t3—t u—t(t—h ts3 —t u—tt—w)

Ny a(t) =
1a() 3—tots—t1t3—1s tg—t; \lz—tyt3—1ts t4—1tat3—1

For a uniform spacing in ¢;, we obtain :

tB3-1?% 4-t/(t-1DB-1) @A-(t-2)
N ( 2 * 2 )‘

resulting, if ¢ € [0, 1], in :

17\71,3(” =

1
Nia(t) =5 (4- 6t° + 3t%) .
Similarly, we can obtain :
1
Noa(t) = 6(1+3t+3r 3t%)  and Agga):gw?

These expressions assume that ¢ lives in [0, 1] for any sub-interval. To complete this
range of variation, a change variable must be used. For instance, let us consider
the interval [to, 1, ...,t4] where the curve is defined by the above relationships.
Then, for interval [to,t1], we shift by ¢o and we scale by the factor (¢; — to)~? to
obtain the parameter ¢ used in Ny 3(t). For interval [t;,t5], we shift by ¢; and we
scale by the ratio (¢, — 1)~} to return to N 3(t), and so on. Then ~(t) is defined
accordingly. Note that y(t) is C2.

Exercise 12.5 Check, for the three above B-splines, the C™~! continuity.

12.6.6 Specific controls

As previously suggested, some specific controls can be used. Basically, this relies
On a proper definition of the nodes.
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Multiple control points. Multiple vertices can be used to achieve the end
termination of the curve definition (z.e., v passes through Py and P,). They can
also serve to control the shape of the curve at some neighborhood of a control
point.

As an example, the uniform B-spline of degree 3 defined by the control points
P; for i = 0, n does not pass through Py nor P,,. To complete this feature, one can
define as vertices the sequence

P07P07POvP17P2a'“an-lyPnyPnyPn;
where Py and P, both have a triple multiplicity.

Exercise 12.6 Check that this definition of the control points insures that the
curve passes through Py and P,,. Discuss the tangent at these endpoints.

Phantom vertices. Phantom control points can be also defined in such a way |

as to obtain the previous property. In this way, fictitious vertices are defined before
Py and after P,. It is also possible to control a tangent in this way.

Multiple knots. Multiple knots (obviously, in a non uniform curve definition, !

see below for an example of such a definition) can also serve to control the corre-
sponding curve. These multiple knots act in such a way as to modify the expression
of the functions involved in the curve definition.

Each time a node ¢; is repeated, the continuity level decreases by one at pa-
rameter ;.

12.6.7 A Bézier curve by means of a B-Spline

In numerous applications, it is of interest to take a Bézier curve and to consider it
as a B-Spline curve. As the B-Spline model is more general than the Bézier model,

this operation is rather easy. Indeed, the control polygon associated with a Bézier |

curve is exactly the same if this curve is seen as a B-Spline. The only point to be

ensured is that the nodes in the B-Spline are properly defined. To this end, one }

could use the following node sequence :
{0,0,...,0,1,1,...,1} .
S—— N——
ntimes n times

Remark 12.21 The Bézier curve is a polynomial of degree n in [0,1]. Then,
this continuity is infinite after n — 1 derivations, one obtains a zero value at any
parameter t. If one selects the above sequence of nodes, consisting of two multiple
nodes repeated n times, the continuity att =0 and att = 1 is —1. In fact, the

B-spline curve defined in this way stops at these parameter values and there is no

continuity aroundt =0 and t = 1.

Exercise 12.7 Show that in this case the B-Spline is a composite curve composed

of one portion that is precisely the corresponding Bézier curve. Check that the;
recursion about a B-Spline curve is, in this case, equivalent to the recursion about

a Bézier curve (based on the De Casteljau algorithm).
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12.6.8 Relationships between the parameters of a B-Splines

Throughout this section, some useful basis relationships are recalled which can
be used when considering B-Splines curves. The following expressions provide a
form for these relationships that make a B-Spline definition coherent. In these
expressions,

e nk stands for the number of nodes in the node sequence,

e C(t) is the continuity range of the curve at parameter t. A negative value
indicates that the continuity is not known at ¢,

e M(t) denotes the multiplicity of a parameter ¢ in the node sequence. If the
value of { is not in the node sequence, then M(t) = 0. If the B-spline is
uniform M(%;) = 1, for all ¢; in the node sequence,

e np stands for the number of points defining the control polygon and

e m is the degree of the B-Spline.

Thus, we have ;

order = m+ 1
nk=m+1+np
C(t) = order — M(t) — 1

np>m+1

12.7 Rational curves
To begin, we state what an homogeneous projection is.

Definition 12.1 The homogeneous projection is an application T, from R9+1! to
Ed defined by :

if h = 0 the point is reported at infinity
in the direction {x1 , z2, ... 2q}
otherwise {x1, x2, ... 4}

1w, 29w, ... 24w, w}

The main interest of such a projection is to allow the definition of a division
by means of a projection. Hence, a rational curve in R? is the image through
Such a projection of a polynomial curve in R4*+!. The coordinate w is called the

omogeneous coordinate of the point under consideration.
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12.7.1 Definition based on a control polygon
A rational curve ' is defined by an equation like :

N@)

Q(1)

where N and @) are some polynomials that can be described in terms of curves
based on a control polygon. Thus, we have :

YY) =

N(t) = i%(f)P, and
A = et |

which can also be written as :

(o }-2ro{l}

This equation enables us to write I as :

) =T (gw(i){ h }) |

As a consequence, a rational curve is the homogeneous projection of a curve in
R4+1 that is based on a control polygon in R%.

12.7.2 Rational Bézier curve

Following the above remark regarding conics, a rational Bézier definition can be
defined. This representation involves the previous input (n + 1 control points
that form a control polygon and the corresponding parameter values) along with
a sequence of weights w;. It is written as

i Wy B,‘yn (t) P,'
y(t) = S0 (12.23)

E Wi B,‘yn (l)
1=0

Remark 12.22 The question is how to define the t; ’s as well as the w;’s. For the

ti’s, we return to the previous remarks. Regarding the weights, they are mostly §
used to give some preferences to some control points. A weight can be seen as @ v

shape parameter. Actually, increasing the value of w; leads to pulling the curve
towards the corresponding P;.

Remark 12.23 If the weights are equal (for example, equal to one), we find again |
n

the classical definition of a non-rational Bézier curve (as 3 B; ,(t) = 1).

i=
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Exercise 12.8 Prove that the B;, (t)’s sum to 1 (Hint : return to the recursion
about the B; ,(t)’s).

As for Bézier curves, recursion formulas can be found for rational Bézier curves.
Nevertheless, these recursions are a little complex (at least, in terms of notations).
l'or instance, a rational Bézier curve may be evaluated by applying the De Castel-
jau form to both numerator and denominator of the above general expression.

While suitable for handling conics, rational Bézier curves have the same draw-
backs as standard Bézier curves. In particular, a large value of n leads to the same
remarks as above. For this reason, other functions have been developed, based
on local definitions that enjoy the nice properties of the above global definitions
while avoiding their disadvantages. A first approach involves using a standard (or
rational) Bézier definition locally leading to a so-called composite method.

12.7.3  Rational B-spline curve (NURBS)

Similarly, a rational B-spline can be constructed using locally rational spline
curves. This definition involves a sequence of weights w; and is written as

Wi Ni,m(t) P

™= gm:

y(t) =+ (12.24)
OWij,m(t)

J

Note that NURBS stands for non uniform rational B-splines where the non
uniformity concerns the ¢;’s. Such a distribution, unlike a uniform distribution,
allows for a greater flexibility and may also be used for other kinds of curve rep~
resentation.

In the following, we give an example of a quadratic NURBS. To this end, we
return to a quadratic B-spline before defining the NURBS.

Non uniform quadratic B-spline with multiple nodes. We return to the
case of a quadratic B-spline whose explicit form has been established previously
In the case of distinct knots (see Section (12.6.2)). We now review the general
formula for the N; ;’s involved in this B-spline.

t—ti1 t—t;y

N;o(t) = Niolt
1,2( ) ti+1 —ti_1 t; — ti1 1,0( )

t—t;_ tiv1 — 1t tiga—t t—1;
+ ( o + : ) Nit1,0(t)
tiyr —ticitiy — t; tigo —titip) —t;

liyo =1 tipg —1t

N; 20(2) .
tivo—titiza—tipg T ®)

In the case of multiple nodes, this general relation reduces, for example, if

ti=t;_;, we have N; o(t) = 0 and

t—ti1 i —t ligo—t t—1; )
i 2(t) = N:
sz( ) (ti-H —ti 1t — ts + Fovo —FeoF. . 4. H']’O(t)
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liyag =t ligo —1

N; zo(t .
tivo —tiliza —tip1 0 )

and so on. For instance if ¢;35 = t;41 = t;, we have simply :

t—ti_1 t—1t;,_1
Nio(t) = ! T N oft)
tigr —tio1t; — 1

We define a sequence of knots t; for i = 0, ..., 9 as follows :
t;=1{0,0,0,1,1,2,2,3,3,3].

As a consequence we have successively Nj o(t) = Noo(t) = Nyo(t) = Neol(t) =
Ngo(t) = Ngo(t) = 0. It is easy to obtain the N; »’s. In our example, we have, for
i=0, No2(t)=0. For i = 1, we find :

tivo—1 40—t 9
N1 Q(t): i+2 i+2 Ngo(t) = (l—t)"N;g O(t)
' tive —titiza — iy '

For i = 2 and the following value of ¢, we have :

t—1;_ tia1 — 1t tizo—1 t—14;
Ny o(t) = ( 1 ik + 2 - ) Nio(t) = 2¢(1—t) N3o(t)
tigi — i1 tipy — 1 tigo —titip1 — 1

t—ti.y t—1ti_
livr — i1ty — iy
N3o(t) =t* Nao(t) + (2—6)? Nso(t).

t—1;_ tig1 — 1 tiro—1t t—1;
N4,2(t) — ( i—1 t+1 + i+2 i )Ns,o(t)
tig1 —ticitigpr — t; tiga —titip1 — 1

tivog —t t;go—1t
Nao(t) + —*2 +2 Nso(t).

N3 o(t) =
2 tiva —titigo — iy

N4y2(t) = 2 (t —_ 1)(2 - t)lv‘r;yo(l‘)
t—t;_ t—1t;_ tigo—t tjga—1t
i—1 i 1N5,0(t) + i+2 i+2 NT,O(t)-
tigg — i1t — i tigo =t tigo — i1
Ns ')(t) = (t— 1)2Nsyo(f,) -+ (3—t)2N7’0(t).

4

t—1;_ fig1 —t tiya —t t—1;
ZVG’Q(t) = < ! +1 + + ) N7,0(t)

Nsot) =

4

tipr —tio1 tipr — 1 tigo —titiy1 —
Neo(t) =2(t—2)(3—1t) N7o(t)
t—t;_ t—1;_
N7‘2(t) = ! ! N7,0('t)

tip1 —tic1 i — iy
Nz(t) = (t — 2)* N7o(t).
Written in terms of the interval [0, 1], we obtain :
Nia(t) = (1—t)* N3o(t).
Naa(t) = 2¢(1 —t) N3 o(t)
N3 o(t) = t* N3o(t) + (1 —1)* Nsoft).

CURVE MODELING 423

N412(t) = Qt(l - t)N5y()(t)

N7a(t) =t N7o(t).

The first part of the curve definition involves the sequence [0,0,0,1], the sec-
ond uses [0,0,1,1}, then we have successively [0,1,1,2], [1, 1,2,2], [1,2,2,3]
[2.2,3,3] and finally [2,3,3,3].

3

An example of quadratic NURBS. Using the above B-spline, we give an
example of a quadratic NURBS. In addition to the above sequence of knots, we
consider a sequence of weights w; for ¢ = 1, ..., 7 defined as :

1 1

11 1 1
) 721 727 ]

"2
Then, given the P;s, we consider the first segment where the NURBS is defined,
say the portion corresponding to [0,0, 0, 1]. Following Relation (12.24), we obtain

w,'Z[l

y(t) = Ll B (12.25)
=1 j;wJ‘Nj,z(t)

which is :
1-1)?Pi+t(1—t)Py+t2 P
,Y(t) — ( ) 1 . ( 2) 2 3 )
—t—1
As P;’s, we take the following control polygon, P, = %(0,0), P, = (1,0) and
Py = t(%, %) Then, «(t) passes through P, and Ps, and ¥(t) is nothing other

than a segment of the circle centered at point (0, 53@) whose radius is r = 3?

Exercise 12.9 Check that ¥(t) is the above portion of the previous circle.

. Indeed, we have defined a 120° sector of the full circle. To obtain the entire
fierle, we use the following control points P3, Py, Ps and Py, Ps, P; = P; as shown
I Figure 12.5.

12.8 Curve definitions and numerical issues

Dﬂ*ﬂlding on the way the curve I' is defined, the quantities we are interested
In (length, tangent, normal, curvature, etc.) are more or less easy to compute.

Oreover, only approximate values are obtained which are more or less accurate.
This aspect is familiar to anyone who has made use of a curve (a surface) in a
Computer program and is clearly shown in the following with the help of some
Slmple examples.
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Figure 12.5: The control polygon used to define a circle by a quadratic NURBS.

In practice, I' can be defined in terms of a parameter ¢, thus using a function
y(t) or I can be known as a function of the curvilinear abscissa s by a relation like
¥(s). One could observe that, for a given I', these two functions, while denoted
similarly, have different expressions.

12.8.1 An exact parameterization of a curve

We consider a very simple example. Let I' be the quarter of a circle defined in
terms of a parameter ¢ ranging from 0 to 7. Obviously the function” :

v(t) = Y(rcos(t) rsin(t)),

is an exact parameterization of the circle of radius r whose center is the origin.
Then using the previous material (Chapter 11), we will compute the length of T' }
and, for instance, its radius of curvature. We have : '

¥ (t) = Y(—rsin(t) rcos(t)),

3 ]
then [|y'(t)|| = r and, following Formula (11.1) : s = [ rdf = r%. To compute the |
0 ,
curvature, we need to evaluate v/ ().

v'(t) = Y(~rcos(t) — rsint(t)),
then /() Av"(t) = *(0 0 r2) whose norm is r and the curvature is C(t) = 1, f
meaning that the radius of curvature is nothing other than r, as expected. In
conclusion, the a priori expected values, for both s and C, are obtained without °

any difficulty.

12.8.2 A given parameterization of a curve

We consider the same curve T' as above. We define now an approximate rep-
resentation of this curve using one of the methods discussed in this chapter (a
composite curve). To this end, we assume that A = *(r 0), B = *(0 r) along]

"The notation f(a b) stands for the vector whose components are a and b. :
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with® 74 = (0 rv2) and 75 = (—rV2 0) are supplied and correspond to a
parameter ¢ € [0, 1], i.e., A (resp. B) and 74 (resp. 7p) correspond to ¢ = 0 (resp.
t = 1). Then, following Relationship (12.5), we can define a curve representation
~(t) by :

'y(t):A+TAt+(3(B—A)—2TA—TB)t2+(—2(B—A)+TA+TB) 3,
then :
‘y/(t):TA + 2 (3(B—A)—2TA—TB)t+3 (——Q(B—A)—I-TA-FTB) t2,

which are such that v(0) = A, ¥(1) = B, ¥/(0) = 74 and 4'(1) = 75. To obtain s

between 0 and 1, the length of I, we have to compute s(t) fol [17/(6)]] d6 which

1S ! 1
/0 V@0 o

This expression involves the square root of a polynomial of degree four, which is
therefore tedious to compute exactly. Thus, a quadrature may be used. Using a
low degree formula, like the trapezoidal rule, leads to the following approximation

| V@ = 5 (VAR FO) + 0 7) = 3,

which is very imprecise (in particular, this length is equal to the length of segment
AB) as might have been expected. By introducing the mid-value (say t = 1) in
the quadrature, we obtain :

8=211‘< (v'(0),7(0)) +2 <7’(%),7’(%)>+ <7’(1),7’(1)>)’

t.e., about 1.517 r which is again quite a bad evaluation. Introducing the quarters,
we have now, for the length, a value close to 1.533 7 which again is not suitable.
Using more nodes in the quadrature or using a more precise formula probably
results in a better evaluation of the curve length but, on the other hand, leads to
a large computational effort.

Indeed, the definition of the above control points and tangents leads to a curve
which is not close enough to the real curve® and thus, the above rough approxi-
Mation results in quite bad evaluations for the quantities we are interested in (the
length in this case).

12.8.3 One curve parameterization with more precise defi-
nitions

We consider the same curve T and the same method of parameterization. But we
ow define this curve using its midpoint. We fix r = 1. In fact, we define half of the

27‘ is short for 7.
Anyway, we are trying to approach a circle by a polynomial of degree three !
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- - 2 nodes | 3 nodes | 5 nodes

2 control points | [0, Z] 1.414 1.517 1.533
3 control points | [0, % 1.5307 1.5598 1.5663
4 control points | [0, & 1.5529 | 1.5661 1.5692
5 control points | [0, & 1.5607 | 1.5682 | 1.57004
9 control points | [0,45] | 1.5683 | 1.5701 | 1.57063

Table 12.3: Evaluation of the length of I' as a function of its parameterization.
The targeted value is § ~ 1.5707.

- 1 curve | 2 curves | 3 curves | 4 curves | 8 curves
t=0 .63 .86 .93 .96 .9904
t=.25 1.04 1.01 1.008 1.004 1.0012
t=.5 1.31 1.07 1.03 1.019 1.0048

Table 12.4: Evaluation of the radius of curvature of I as a function of its param-
eterization. This radius must be constant and the targeted value is 1.

curve (z.e., from 0 to % in terms of angle). Then, we obtain for the length of the
initial curve the values 1.5307, 1.5598 and 1.56633 based on the number of nodes
in the quadrature. Splitting the initial curve into three composite curves (the
first from 0 to %) we now have 1.5529, 1.5661 and 1.5692. Using four composite
portions (the first from 0 to §), we have 1.5607, 1.5682 and 1.57004. The final
example concerns eight composite curves (the first from 0 to 33).

All these values are given in Table 12.3 in terms of the number of composite
curves used (i.e., how many control points and tangents have been used) and, for
a given composite curve, in terms of the number of nodes used in the quadrature. |

Similarly, using Relationship (11.4), we can evaluate the curvature of I' as |
obtained when such or such number of composite curves are used to discretize the
curve. To this end, we need to compute 4" (t). For our example, this is simply

7'(t) =2 (3(B—-A)—214a—78) +6 (-2(B—A)+71a+7B) 1.

Table 12.4 presents the radius of curvature as a function of ¢ for.the different above
parameterizations. ]
To sum up, both the lengths and the curvatures are obtained with a greater or |
lesser degree of accuracy. Approximate tangents and fiormals can also be obtained }
in the same way.

12.8.4 Using a polyline

The same exercise in the case where a polyline is given as the discrete definition of
a curve I is now discussed. Let P;, P;y; be a segment of the polyline, ¢ = 0,n— 1, ]
~(t) is defined as a curve passing through the P;’s. The length of y(t) is nothing}
other than the sum of the length of the n + 1 segments constituting the polyline-
As a function of n, we return to Table 12.3 (first row) to have an approximat
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value of the length of I'. The other characteristics of I' can be obtained using the
Pi, Piyy’s.

If T' is a curve in R?, a simple construction enables us to find approximate
curvature, tangent and normal at some ¢.

Note that ¢ can be chosen so that t = 0 for P; and ¢t = 1 for P;11, meaning
that ¢ is local to the segment under consideration. Another possible ¢ definition
globally considers the different segments and is based on their lengths, then we
can obtain (after scaling) ¢ = 0 for Py and t = 1 for P,.

Figure 12.6: Curvature, tangent and normal that can be obtained from a simple
polyline (in two dimensions).

We consider three consecutive vertices, P;_1, P; and P;yq. We construct the
perpendicular bisector of P;_1, P; and that of P;, P;41. Provided the two segments

are not aligned, they intersect in a point denoted as O;, we define r; = [|O: P
and 7; = ﬂ%%ﬁ’ then we introduce 7 as the unit vector perpendicular to ;.

Indeed, using this simple construction results in approximate values for the center
of curvature of I' at point P;, say O;, the radius of curvature at this point (r;),
the unit normal and tangent at P; (7; and 7). Note that these quantities are not
well defined at P and P, for an open polyline.

Thus, ¥(t) can be described in terms of these discrete quantities. In other
words, local knowledge of the presumed curve can be accessed. For instance, one
can use the osculating circle at point P; and say that :

)~ P+ (t—t;) 7 + %(t — )27

I some vicinity of P;, i.e., for t close to t; the parameter value associated with P;.
To obtain a continuous definition of the curve, it is necessary to choose a math-
ematical representation. For instance, we can return to the above parameteriza-
tion. In this case, a given characteristic can be evaluated not only at the segment
endpoints but anywhere else as well (for any arbitrary value of parameter t).

For a curve in R3, we can also evaluate these characteristics. Indeed, the above
8€ometric construction in two dimensions can be written in a more general form
that extends to three dimensions.
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First, we consider again two consecutive segments'®, P;_;, P; and P;, Piy1. We
define the approximate normal at P; as

PPii PiPiyi

v “Pz'Pi—i” ||Pz'Pi+§” (12.26)
PiPi_q PP
IPiPicill 1P Pl

Then we can obtain an approximation of r; the radius of curvature at P;.
Actually, we can define :

1 (PP, P;F))

(12.27)

where j =¢—1 or i+ 1. Note that a formula like :

PiPis1, PiPiys
< 1-.l+1a z+l> ’ (1228)
(Ui, PiPi41)

o~ 1 ((PiPi-1, PiP;1)
T~ 7 - ?
4 (i, PiPi_1)

also provides an approximation of p;.

Proof. Let M be the midpoint of P;P;_;, we construct O the point where 7; and
the perpendicular bisector of P; P;_ intersect (thus a line passing through M). Let
« be the angle formed between P;M and 7;, we have (RM,D}) = ||P; MH cos a

and cosa = H—P%Jﬂ from which Relationship (12.27) yields. o 4

Remark 12.24 Relationships (12.26) and (12.27) extend to curves in three di-
mensions. They can also be extended in the case of a curve traced on a surface. In |
this case, a mean normal can be computed along with the minimum of the various
radu of curvature that can be defined by considering the various P; neighboring P;.

12.9 Towards a “pragmatic” curve definition ?

Due to the number and the variety of possible curve definitions and bearing in
mind some numerical troubles that can happen, we now attempt to define a context ‘
which is well-suited to the meshing application at end. Basically, we are interested |
in curves from this viewpoint. Indeed, we want to mesh a curve (as will be seen
in Chapter 14), that is in general the boundary of a domain (in the plane or in |
space). The aim is then to take this curve discretization as input data for the |}
construction of a mesh of the domain of which this curve is a boundary. J

It is then clear that a meshing process developed for this purpose must be j
as general and as stand-alone as possible while being reasonably simple. Thus, |
it seems unrealistic to guess that a meshing algorithm will know in detail a".

100ne can consider the plan where P;_; and P;41 pass through.
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the curve representations that may be encountered (if so, we will face a “huge
monster”, tedious to design, hard to update, and so on.). For this reason, we want
to simplify the context to that which is strictly necessary for the implementation
of a curve meshing algorithm (the same is true for a surface meshing algorithm).

12.9.1 Curve definitions and meshing topics

As previously seen, we encounter two types of representations for a curve. One ap-
proach makes use of a parametric definition while the other makes use of a discrete
definition (z.e., a mesh). In the first case, the curves result from a CAD system
and actually exist only if it is possible to query this system in order to collect
the useful geometric characteristics (by default to have the precise representation
of the underlying model). In the second case, the discrete data is directly usable
(given some assumptions) so as to collect the desired characteristics (or, at least,
to find their approximate values).

Whether one or the other of these approaches is adopted, one can see that
a meshing problem requires (for simplicity, let us just look at a curve meshing
problem) :

e access to the CAD modeler used when defining the curve, in the first case,
and

¢ an internal choice of a “CAD” enabling us to find the useful information
from a discrete set of values, say a polyline, in the second case.

12.9.2 Key-ideas

The approach we would like to follow is to mesh a curve without explicitly using
its CAD definition in order to be independent (obtaining thus some extent of
generality and computational efficiency).

Thus, we adopt a rather different point of view from a classical approach. Our
goal is to be independent of such or such curve definitions (and thus of the CAD
system the user is familiar with) when a meshing task is demanded. To this end,
the key-idea is as follows :

¢ the curve is defined by a sequence of control points and possibly by some
other information,

¢ the curve passes through these points (in this sense, an interpolation type is
retained),

¢ afterwards, a mathematical support is defined, using the points (and the
extra information, if any) by means of a unique composite curve definition
of low degree,

¢ then this mathematical definition becomes the curve definition and is used
to define what is necessary for our purpose.
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Following these principles, the user’s responsibility (and thus that of the CAD
system) is limited to providing a sequence of points which makes the construction
of a sufficiently precise definition of the geometry possible.

From this point of view, a reasonable synthetic scheme for curve definition
could be composed of two different steps :

Step 1 : (user’s responsibility) use the CAD system available to construct a
polyline while giving the corners!? if any.

Step 2 : (pre-meshing process responsibility) use the previous polyline to
construct a fixed geometric definition or use this polyline directly.

In this way, the process of meshing a curve (see Chapter 14) is based solely
on the above geometric definition (and the original CAD definition is no longer
considered).

12.9.3 Construction of a well-suited discrete definition

In practice, this issue is the key to obtaining a curve definition that is sufficiently
accurate. The problem reduces to finding an appropriate polyline to represent the
geometry.

- M —
\d Pi1 d T‘? P
/

Pi Pi
Figure 12.7: Controlling the gap between a polyline and a curve.

A rather obvious method can be used to control the accuracy of a “polylin-
ization” of a curve. Using his favorite CAD system, the user defines one member
of the desired polyline. Let P;, P;41 be this segment. Let ¢; and ¢;41 be the two
parameter values corresponding to P; and P;y;. It is easy to obtain point M
corresponding to ¢t = % Then one computes d the distance between M and
P;, Piy1. Let & be a threshold value, if d < §||P;, Pi+1]| then the current segment

is judged correct. Otherwise, point M is used to define the two segments P;, M

and M, Py, which are in turn analyzed in the same way to decide whether or not

additional subdivisions are required.

Note that, in general, the maximum gap is not necessarily obtained at the
midpoint as defined above (see Figure 12.7). Thus, to prevent a bad-capture (?f ,
the curve, sample points can be tested to decide whether the current segment 15 |

sufficiently fine.

11Tf the corners are not explicitly supplied, it is nevertheless possible to guess them. To this

end, an analysis of the angles between two consecutive segments is made. Note that a threshold §

value must be used which may lead to certain ambiguities in some cases.
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A brief conclusion

As we have just seen, there are various curve definitions each of which offers
both advantages and weaknesses. It is therefore no easy matter to decide which
definition is the most appropriate in general and, anyway, such a discussion is
beyond the scope of this book. However, if one idea is to be retained after this
discussion, we think it is clear that the adopted meshing techniques for curves
(surfaces, in a similar way) must be, whenever possible, developed without regard
to the model used during the design of the curve!? (the surface).

On the other hand, the few examples of actual computation regarding curves
defined by one or other of the models seen above have brought to light some
perverse numerical effects which will required further consideration.

12 . - . .
In specific, we would like to start from a minimal interface under the responsibility of the
CAD system.



