Chapter 10

Quadratic forms and metrics

Introduction

As the perspicacious reader will have already noticed in the presentation of the
main governed mesh generation methods (Chapters 5 to 7) and as will also be seen
in the chapters devoted to curve and surface meshing (Chapters 14 and 15), as
well as in the sections dealing with h, p and hp-methods (Chapters 21 and 22),
lengths, distances and other metric-like relations play an important role and are
key features in numerous mesh generation and evaluation algorithms.

From a mathematical point of view, the definition of the length of a given vector
(resp. a segment) or, similarly, of the distance between two points is based on an
adequate definition of the dot product. Algebraic results indicate that this product
is related to a quadratic form (associated with a bilinear form). Depending on the
objectives, various definitions of these notions can be exhibited, leading therefore
to various definitions of a metric.

*
*x %

This chapter begins with some elementary reviews of quadratic forms (which
can be found in classical books), then the notion of length and metric are intro-
duced and explained. The definition of the unit length is introduced and discussed
In detail as a simple way to measure the length of a given item (segment, vec-
tor, etc.) with respect to a given metric. Examples of metrics are given to em-

Phasize the different types of control that can be applied based on the previous
notions.

Then, different metric-related operators are suggested. They allow us to apply
the various metric manipulations usually involved in a mesh generation or mesh
modification context. To this end, we briefly discuss the simultaneous reduction,
the interpolation and the intersection of two given quadratic forms. Then, we
focus on the metric smoothing problem when these metrics present discontinuities
Or variations that are too great.
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Finally, we briefly discuss a way of constructing metrics suitable for surface
meshing and numerical simulations based on finite element methods with a control
of the error (of interpolation, for instance).

10.1 Bilinear and quadratic forms

The goal of this first section is to recall some classical definitions and mathematical
results of linear algebra, related to linear, bilinear and quadratic forms. These
results will notably serve to compute the edge lengths of the given meshes.

10.1.1 Linear and bilinear forms

Let E be a vector space on a field K. We recall that a basis of E is a part
a = (a1, as, ...,a,) of E such that each vector u = (uy, ..., u,) of E can be written

in a unique fashion as :
n

U= E a; u; .

i=1

All bases of E have the same number of elements, the so-called dimensions of E.
Now, let consider a vector space E on a commutative field K of characteristics
different from 2.

Definition 10.1 A linear application f, defined on E with value in K, is called
a linear form.

Each linear form has the two following properties :

{1

The set L(E, K) of the all linear applications from E to K is an additive group by
defining, if f and g € £L(E, K), the sum f + g and the opposite —f as :

f(u)+ f(v) Yu,veE
Af(u) Yue E\VAe K

I

(f+9)(u) = f(u) +g(u) YueEE
(=f)(u) = —f(u) VueE.

Definition 10.2 We call bilinear form on E x F any bilinear application f from
E x F to K satisfying the two following conditions, Yu; € E, Vv; € I :

Lo f(Arur 4 Aguz,v) = A fur, v) + Ao f(us,v), VA €K,

2. f(u,prvr + pov2) = pafu,v1) + paf(u,v2),  Vp; € K.

In other words, a bilinear form on £ x F' is an application f from E x F to K |

which is linear on K in each of its parameters u and v when the other is fixed.
The set of bilinear forms on £ x F is a sub-space of K, denoted as Lo(E, F).
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An example of such a bilinear form extensively used in our context is the dot
product, defined as the bilinear form f on (R4 R9%) to R :

d

flu,v) = (u,v) = Zukvk,

k=1

with ug (resp. vg) stands for the k** component of vector u (resp. v).

Definitions. Two vectors u € E and v € F are said to be orthogonal and we
write u L v if and only if f(u,v) = 0. When E = F, a bilinear form f is so-called,
Y(u,v) € E*:

o symmetric if and only if : f(u,v) = f(v,u),

e antisymmetric if and only if : f(u,v) = —f(v,u),

e alternate if and only if : f(u,u) = 0,

o definite symmetric if and only if : f(u,u) = 0 <= u = 0.

Let f be a symmetric bilinear form on E. A family (u;)ies (where I is a set of
indices) of vectors of E is said to be, V(i,j) € I :

e orthogonal, if and only if :
(i #J) = flui,u;) =0,
o orthonormal, if and only if :

J(ui,uj) = dij  (Kronecker’s symbol, §;; = 0,6;; =1).

10.1.2 Matrix form of a bilinear form

Let @ = (ay,...,a,) and b = (b1,...,bp) be two bases of E and F, then, we can
write, for i € [1,n], j € [1,p]

flu,v) = f(zaiuz',z:ijj) = Zf(a,-,bj)uivj . (10.1)
i Jj 1,j

Deﬁnition 10.3 We call (representative) matriz of the bilinear form f of Lo(E, F)
n the basis a and b, the matriz M = [mi;] determined by :

mij = f(ai, b;)
If U and V are two column-matrices of the components of the vectors u € F and

S F in the basis a and b, the Relation (10.1) can be expressed as a product of
Matrices, Y(u,v) € E x F :

flu,v) = f(aU,bV) =t Uf(a,b)V = UMV . (10.2)
M is non-degenerate if and only if M = [m;;] is invertible.

Deﬁnition 10.4 A basis of E is orthoéonal (resp. orthonormal) if and only if M
i diagonal (resp. equal to the unit matriz of order n).
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10.1.3 Quadratic forms

Definition 10.5 A quadratic form ¢ on a space vector E is an application from
E to its field K such that for each o« € K and (u,v) € E? :

Logq(Mu) = A?q(u),

2. the application F' from Ex E to K, (u,v) — F(u,v) = q(u+v)—q(u)—q(v)
is bilinear.

If ¢; and g¢2 are two quadratic formson £ and if &y and oy € K, the application
u — a1q1(u) + azg2(u) is also a quadratic form. Therefore, the set Q(F) of all
quadratic forms on E has a structure of vector space.

Let f be an arbitrary bilinear form on E. The function ¢(u) = f(u,u) is a
quadratic form on E. The sole data of ¢ allows to retrieve the symmetrical part
of f:

gr(u+v) = g5 (u) = qp(v) = f(w,0) + f(v, u).

If K =R, the form F' can be replaced by the symmetric bilinear form f = %F.
Thus, we have the following relation :

F(u,) = 5 (afut ) =~ g(u) = g(0) (103)

with f(u,u) = ¢(u). Therefore, the data of a quadratic form g is equivalent to the
data of a symmetric bilinear form f = % (¢(u + v) — ¢(u) — ¢(v)); the data of the
form f determines the form ¢ by the relation ¢(u) = f(u, u).

The three following relations are commonly used in practice :

L. g(u+v) = q(u) + q(v) + fu,v) + fv,u),
2. q(u—v) = q(u) +q(v) — fu,v) = f(v,u),
3. q(u+v) —q(u—v) =2(f(u,v) + f(v,u)).

The restriction of ¢ to the sub-space Sy(E) of the symmetric bilinear forms on
E induces an isomorphism of S3(E) on Q(F). The inverse image of a quadratic
form ¢ by this isomorphism is then called the polar form of ¢. In other words, the
symmetric bilinear form defined by the Relation (10.3) is the so-called polar form

of q. Hence, we have the two following identities (that can be easily deduced from |

the previous relations) :

{Qf(u,v) = gq(u+v) —q(u) —q(v),
4f(u,v) = qlutv) —q(u—v).

Let ¢ be a quadratic form of polar form f. We have also the two following

inequalities, for each (u,v) € E? :

IMoreover, the application F' is symmetric.
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o Cauchy-Schwartz’s inequality :
if ¢ is positive, then :f?(u, v) < q(u) ¢(v), the equality is obtained if u and v
are colinear and only when the form is positive definite.

o Minkowsk:i’s inequality
if ¢ is positive, then : \/g(u+v) < /q(u) + Vq(v), with equality if v = 0
or Ja € Ry such that 2 = av and only if the form is positive definite.

10.1.4 Distances and norms

Let us consider now the field of real numbers, R. We call distance any application
d: R xR+ Ry such that V(z,y) € R?:

r=y <= d(z,y)=0
dlz,y) = d(y,z)
dlz,y) < d(z,z)+d(z,y).

On the other hand, we call norm on R any application N from R to R4 such that
V(z,y) e R?:
N()=0 < z=0
N(z+y) < N(z)+N(y)
N(Az) = AN(z).
Each vector of norm 1 is so-called unit vector.
For instance, the three following applications are norms on R :

I Ni(x) :glxil,

2 M@) = [ Jail,
i=1

3. Neo (z) = sup |z,

and we write N;(z) = ||z]|.
We will then show which relation exists between a symmetric positive bilinear
form and a norm or a distance.

Norm associated with a quadratic form. Let us consider a positive sym-
Metric bilinear form, non-degenerate, f on R and let q be the associated quadratic
form. We are now trying to establish that the application \/¢(z) is a norm on R.
We have already noticed that (Minkowski’s inequality) :

Vale+y) < Valz) +a(y) .

Moreover, by definition the following relation holds :

g(Az) = 2’ ¢()
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we can then deduce that :
Va(hz) = [N Va(z) .
As the form f is non-degenerate, we have a third relation :
g(z) =0 <=2 =0,
and therefore we can deduce that the application z — \/(_]—(—:J is a norm on R.
Dot product. Any non-degenerate symmetric positive bilinear form f on R can

be written in an orthonormal basis :

n n

flz,y) :inyi’ or also q(m):f(x’x):Z(zi)Z.

i=1 i=1

Among all the possible forms, we pick one particular form f the so-called dot
product on R which is written as :

flz,y) =(z,v).

Thus introduced, the norm z — +/(z,z) is called the Euclidean norm. This
obviously means that the associated quadratic form ¢ is the square of the norm :

g(x) = (z,z) = ||=]*.

Distance between two points. Using the Euclidean norm, we can define the
distance between two points (P, Q) € R? as follows :

d(P,Q)=[IP-Qll. (10.4)

By extension, we also say that ||z|| is the length of vector z.
We have thus the two following classical results in R :

o Cauchy-Schwartz’s inequality : ||z + yl| < ||z|| + [|y|| and
e Pythagorus’s theorem :

2 n
=> llaill®.
i=1

n
>
i=1

10.1.5 Matrix form of a quadratic form

A quadratic form ¢ on E is so-called positive (resp. strictly positive) and denoted
g >0 (resp. ¢ > 0), if g(u) > 0 (resp. ¢(u) > 0) for each u (resp. u # 0) of E.

Hence, whatever the basis a = (a1, ..., a,) of E, the determinant of the matrix |

M = [f(a;, a;)] of ¢ in this basis is positive or null (resp. strictly positive) if ¢ > 0
(resp. ¢ > 0).
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A symmetric matrix M = [fi;] on (the ordered field) K is called positive if for
any column-vector U # 0 :

g(U) =" UMU = fijuing = fis(uwi)® + 2 fijziug

,J 1<j

is positive. In other words, the matrix M is the matrix of a positive quadratic
form ¢ on K.

Notice also that the eigenvalues of a symmetric operator are real numbers.
Any symmetric operator is diagonalizable in an orthogonal basis. This means that
there 1s always an orthogonal basis of eigenvectors for any symmetric operator. We
will see an important application of this property concerning the diagonalization
of two quadratic forms.

Having recalled these classical results of linear algebra, it is now possible to
introduce the notions of length and metric which are commonly involved in mesh
generation and mesh modification algorithms.

10.2 Distances and lengths

We have seen in Section (10.1.3) that the data of a symmetric bilinear form
flu,v) = $(q(u + v) — g(u) — ¢(v)) is equivalent to the data of a quadratic form
g on R. From the notion of metric space, which allows us to define the distance
between two points, we will show how to compute the length of a segment.

10.2.1 Classical length

The notion of length in a metric space is related to the notion of metric and, thus,
to a suitable definition of the dot product in the given vector space.

Notion of metric. Assume that at any point P of R¢ a metric tensor is given,
as a (d x d) symmetric definite positive matrix M(P), (i.e., non-degenerate). For
example, in two dimensions, we consider :

a b
M(P) = ( b e ) , (10.5)
such that a > 0, ¢ > 0 and ac — b2 > 0, for a,b,c € R (notice that these values
fiepend on P, i.e., a=a(P),etc.). If the field of tensors thus defined is known, it
Induces a Riemannian structure over R¢.

Remark 10.1 In the case where M(P) does not depend on P, the matriz so
defined has real coefficients and we again find the classical Euclidean case (where
the metric is independent of the position).
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Dot product. The dot product of two vectors in the classical Euclidean space
for a given metric M(P) can be defined as :

(u, v)m(p) = uM(P)v, (10.6)

and therefore, considering the Euclidean norm introduced in the previous section,
the norm of a vector u is given by the relation :

lull = \/{u, wym(p) = Viu M(P)u. (10.7)

Notion of length (general case). Having recalled the notions of metric and
dot product, we will now introduce the notion of the length of a vector.

In the Euclidean space R? or R3, supplied with the Euclidean norm, we have
seen that :

flu,v) = (u, vy e, gqu)=(uu)= Hu[lz,

which allows us to see that M = I; (as compared with the above definition of the
dot product).

This will allow us to compute the length of any vector u, which is indeed the
distance between the two endpoints of this vector, using the norm :

[|ul| = Viu M(P)u. (10.8)

To summarize, given a quadratic form ¢, computing a length consists in using
the dot product associated to q. Hence, the dot product can be formally written
as : (.,.)q or also as (.,.)a4 where M is the matrix (symmetric positive definite)
associated with the quadratic form gq.

Notion of length (particular case). The length notion can be also retrieved
in differential geometry, as will be seen in the following chapter. Let us consider
the space supplied with a Riemannian structure induced by a metric M,. We
consider the curve v that is the shortest path between two given points A and B.
Such a curve is a so-called geodesic. Assume a parameterization y(t) of the arc v
of class C* (k > 1) is known, such that 4(0) = A and (1) = B. Then, the length
L(7y) of the arc is defined as :

1 1
1) = [ @lde= [ o My v i (109)

We then call distance between two points, the lower bound of the length of

the curves connecting these points. Computing L(7y) requires knowing (), which ‘

turns out to be difficult in practice. That is why we consider the case where

the metrics are independent of the position (which reduces the problem to the |
classical Euclidean case, cf. Remark (10.1)), for which the geodesics are straight

(line) segments.
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So, the restriction of a paremetrized arc ¥(t), ¢ € [a,b] to a vector AB with
the parameterization y(¢) = A + tm, t €[0,1] and v(0) = A,y(1) = B allows us
to write the length L(v) of the segment as :

1) = [ oMy (10.10)

where M, represents the metric specification along . Hence, noticing that v/(t) =

@, we have :
L(¥) :/\/tA‘B‘M7 ABdt .

Writing M = M (i.e., the metric is independent of the position), we obtain the

relation :
L(y) =V tA@MAE .

And, in the particular case where M., = 14, we have finally :
1
L6) = [ I ©ller = /{38, 7B) = 1B
0

which is obviously the expected result.

10.2.2 Unit length

The key is now to define a way to compute the lengths in the case where various
metrics (i.e., different from the above classical Euclidean case) are specified. Thus,
we want to change the definition of ¢ (or that of M) resulting in a different
expression for (.,)q (or (., .)m).

Notice firstly that two situations will be of particular interest. The are related
to the way ¢ (or M) is defined. The first case corresponds to the Euclidean case
where ¢ is defined in a global fashion. On the other hand, cases where ¢ depends

on the spatial position (say ¢ = ¢; or, similarly, M = M(t)) lead to a Riemannian
context.

Unit length. Let us consider a given basis a*, k = 1,d of unit vectors in R¢
and d positive real values A\;. We want to define a metric M where the norm,
denoted by ||.|| s, is such that satisfying the relation ||ul|; = 1 means that vector
% conforms to the pairs (g, u*)’s.

.TO make these notions more precise, we first give some simple examples, then
We Introduce the general notion of unit length.

.In the first example, we want to define segments (vectors) of constant length
h, rrespective of the direction. This problem is isotropic by nature. Indeed, the
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geometric locus of all points P distant from h from a given point O is a circle (a
sphere), centered at O of radius h.
In practice, we want to define metric M such that :

I0Plm=1 <= [OP|=h.

Notice (cleverly) that the diagonal matrix A having all its coefficients A\, equal to
% leads to a matrix :

1
M:Azzﬁ

which is a solution of the previous equation. Indeed, using Relation (10.8), with
u = OP and ||OP|| = h, we obtain :

0Pl = V/OP MO = VO 70 = |07 1o o = 101 _

h

Id)

In fact, according to Relation (10.2), we can observe that the metric defined
in this way corresponds to a circle (a sphere). Let consider the bilinear form

Then, for example in R?, we have the relation :

2 2
uz + Uy
h?

which, in the case where f(u,u) =1 defines a circle of radius h.

flu,u) =

Let us now consider an anisotropic example. More precisely, if ex (k = 1,d)
denotes a vector of the canonical basis of R% we want to define segments (vectors)
of length hy in the direction ey.

Let A be the d x d diagonal matrix in which all diagonal coefficients A are set

1 .
to e Then, we define a transformation 7 such that
k

T(ex) =ex,for k=1,..,d.
We introduce the matrix M = *TAAT and we define

ullm = ViuMu.

Hence, given a point O, the points P such that ||W||M = 1is within an ellipse (an
ellipsoid) centered at O, aligned with the ex’s, whose radii are the hz’s. Similarly
to the isotropic case, we find, for instance in two dimensions :

u?l  ul
fluw)= 5+ 45,

z Yy

which actually is the expected classical result.
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Finally, the last example corresponds to the general anisotropic case. In this
case, segments (vectors) of length hy are desired in the direction ax. Following the
same scheme as in the previous example, the transformation 7 is now such that :

T(ak) :ek,kzl,..,d,

and similarly,
’T‘l(ek) =ar,k=1,.,d.

Then, the relation ||O?H m = 1 defines an ellipse (an ellipsoid) centered at O,
aligned with the aj and such that the radii are the given hy’s.

A simple way of proving this is to associate a point P’ with each point P using
the relation OP = T~-1OP’. Then, ||O_—P)HM =1 leads to writing the relations :

| =V OPMOP = V' OPTA?TOP =\ {0 tT-1 T A*TT-1 0P,

which can be reduced to the relation :

1=1\/tOP'A20P,

which is indeed the relation showing that the point P’ belongs to an ellipse (in
two dimensions) centered at O, aligned with the ey and whose radii are the hg.
Then, using the relation relating points P and P’, it is easy to see that P belongs
(in two dimensions) to the ellipse with the same center and the same radii, but
now aligned with the a*.

Remark 10.2 [t could be noticed that the above general form can be reduced to the
first two cases, provided a suitable choice of A and of T. So, in the first ezample,
T is the identity matriz I; and A = i—"g In the second example, we have again
T = Iy while A is the diagonal matriz whose coefficients are h;l.

A global definition. In this case, the metric (i.e., ¢ or M) is globally defined,
thus meaning that the notion of unit length is the same at any point location.
Computing a length is then easy since the matrix involved in such a calculation is
a constant one. V

A local definition. In this case, the metric varies from point to point and the
notion of unit length is different according to the spatial position. Actually, if we
consider the matrix M, this matrix is a function of the current position and thus
can be expressed as M(t), where ¢ is a parameter value. Unlike the previous case,
the calculation of a length is more tedious. In practice, the matrix involved in the
formula is no longer constant, thus leading us to consider approximate solutions
for the length calculation.
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Figure 10.1: The geometric interpretation of the various metrics. An isotropic
metric leads to a circle (left-hand side), an anisotropic metric leads to an ellipse
(aligned with the canonical basis, middle, or aligned with any arbitrary orthogonal
vectors, right-hand side).

10.2.3 Applications

Let us consider a given specification. This can be expressed in terms of sizes or in
terms of directional features and related sizes. Then, the previous material enables
us to characterize this specification as a unit length defined in a suitable space.

Actually, two categories of metric specifications can be exhibited, each of which
includes two classes of definitions. Independently of this classification, the metrics
are either isotropic or anisotropic by nature.

We have already mentioned that the case where the metric is constant over the
space 1s equivalent to the classical Euclidean situation. When the metric varies
from point to point (z.e., is not constant from one point to another), the context of
the study is then Riemannian (actually, the field of tensors induces a Riemannian
structure over R9). The length calculation then requires a special effort.

10.3 Metric-based operations

In this section, we will discuss various metric-based manipulation methods. Indeed,
in many applications, several metrics can be defined at any point location (of
the computational domain). We will then consider different ways of going back
to the specification of a unique metric. Actually, the metric-based operations
are considered from the point of view of operations dealing with the associated
quadratic forms.

10.3.1 Simultaneous reduction of two metrics

Given two metrics M; and M (or similarly two quadratic forms ¢; and g2),

the problem here is to express these two metrics in a basis where the associated ]
matrices are both diagonal. In general, no such basis e exists that is orthogonal for |
both ¢; and ¢;. Such a basis is one of eigenvectors for the operator fi ! fs (f1 and |
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f2 being the linear applications associated with ¢; and ¢), hence a basis allowing
us to diagonalize this operator.

To this end, we can discuss either from the quadratic forms or from the matrices
related to the given metrics. For the sake of convenience, we will follow the second
approach.

Let us denote by M; and M the two d x d matrices related to the two given
quadratic forms. The simultaneous reduction of two positive quadratic forms is
possible as soon as one of them is defined, which means that the associated matrix
is invertible. Assume then that M; is positive definite?.

To obtain a basis where both M; and M, are diagonal, we introduce the
matrix A defined as :

./\/ = M;l Mz .

The matrix A being M;-symmetric, it can thus be diagonalized. Let e; and e, be
the two eigenvectors of A'. These vectors define a basis of R¢ and we can write :

t t
engel = 6’2/\4261:0,

thus meaning that e; and e, are M;-orthogonal (i = 1,2). To establish this
property, we consider A\; and A, the two eigenvectors associated with the two
previously defined eigenvectors. Then, we have the relations :

Nep = Ae; aswell as Neg = ey iee.,
M7 "Mzer = Aer and M7 Maey = Ages .
By applying M to the left, the previous relations become :
Maoeg = A Mie; and Moeyg= A Mjes. (10.11)
From the first relation we deduce :
‘eaMaer = A feaMy ey,
and from the second one :
fexMyey = Ay ler My ey,

whose transposed is :
t t
eaMaoer = AgfeaMieq,

then, by identification, we obtain :
ArfeaMier = AsteaMyer
Wwhich finally implies that :

tele €1 = tezMg e = 0.

Trivially, we will not consider the case where the two matrices are linked by a relation like

M = aM,.
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Moreover, the Relation (10.11) leads to :
teyMager = M fegMier and ‘eaMaoen = Ay ea M es ,
which can also be written as follows :
g2(e1) = A1qi(e1) and  ga(e2) = Azqi(es),

by using the two corresponding quadratic forms.

Expression of a vector in the eigenbasis. In the basis defined by [e;, e5], any
vector v can be written as v = zje; + x2e3. The two quadratic forms q1(v) and
q2(v) are represented by two diagonal matrices. This result is left as an exercise :

Exercise 10.1 Define o; ; the coefficients such that :

tlev: E QT4 .

ij

Prove that a; j = 0 for i # j and show that «; ; = *e; My e;. Similarly, reconsider
the same exercise with the matriz M.

Expression of the matrices in the eigenbasis. Let M¢ and M$ be the
matrices obtained by replacing M; and M, by the corresponding forms in the
eigenbasis.

Exercise 10.2 Ezpress the transformation defined by the matrizr R = (e1,e2), |
find the expression of M$ = '"RM; R and verify that a diagonal matriz results |
from this operation. Similarly, consider the coefficients of the matriz MS.

Remark 10.3 Notice that M$ is I4, the identity matriz, if we normalize e; and |
ez with respect to M. In this case we have, for the corresponding quadratic forms : |

qi(e1) = qi(e2) =1 as well as qo(e1) = A1 and  ga(ea) = A2 .

10.3.2 Metric interpolation

For the sake of clarity, we only consider here the two dimensional case. Let P
and P, be two points in R? and let M; and M5 be two metrics associated with |
these points. The problem here is to find a metric M(t) defined on the segment |
[P1, P,] = [Py +t (P, — Py)] for each ¢ in [0, 1]. Moreover, the desired metric must
be such that : v

M(0) =M; and M(1) = M,,

and must vary monotonously between these two values. ]
Achieving such a metric is actually equivalent to performing a metric interpo-
lation. To this end, various techniques can be considered. 1
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An intuitive method. To give the idea of this kind of method, we consider the
isotropic situation. Then, the desired solution can be obtained trivially. Indeed,
if the metrics are simply Ay and ul,, then the expected sizes are respectively
h(0) = 1/v/X for M (at point Py) and h(1) = 1//i for M (at point P;). Hence,
assuming that an arithmetic (linear) size distribution is specified, the interpolation
function is defined as follows :

1
(h(0) +2(h(1) — h(0)))?
with M(0) = M; and M(1) = M,.
Notice that other types of distributions can be considered, for instance a geo-
metric distribution (see below).

M(t) = Ly, 0<t<1, (10.12)

In the anisotropic case, several approaches can be considered. By analogy with

the isotropic case where the metric is usually written as M = —5 14, we observe

that the variation related to the h’s is “equivalent” to the variation related to the
M~1?s_ Hence, we obtain the following interpolation scheme :
-2
M(t) = ((1—t)M1_1/2+tM2_1/2> . 0<t<lI. (10.13)
Computing M~1/? requires evaluating the eigenvalues of M, which is tedious.
To avoid this problem, we can consider the interpolation as :

M(t) = (1-tM7" +tMzH)™ o<t <, (10.14)

and notice that this relation emphasizes the smallest sizes (i.e., the weakest values
of h).

The interpolation scheme based on a metric exponent is properly defined. Ac-
tually,

* if M is a metric, then tM® is also a metric, when ¢ > 0 and « are two
arbitrary real values;

¢ if M; and M, are two metrics, M1 4+ M, is also a metric.

Proving these results requires only making sure that, in each case, the resulting
Matrices are symmetric and positive definite.

Notice however, that this kind of intuitive interpolation presents some weak-
nesses. In particular, the variations in terms of A cannot be explicitly controlled.
Thus, in the following, we consider the simultaneous reduction of two metrics. Con-
versely (see below) the intuitive method gives a solution when the interpolation is
Performed on a triangle and not only along a line.

;\ lnet‘hod based on the simultaneous reduction. The interpolation metric
S obtained after a two-step algorithm :

St?P 1 : using the above simultaneous reduction, we write both M 1 and M,
In a diagonal form,
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Step 2 : according to the interpolation between P; and P,, we complete the
desired interpolation between the metrics.

Thus, let e; and e; be the two eigenvectors of N = MflMg, the eigenvalues of
the metric M are the A;’s such that ()\; = ‘e;Mie;)i=1 2 and that of the metric
M, the p1;’s such that (u; = YeiMoe;)i=12. Any vector X = ze; + zoes in R?,
written in the basis [eq, 5], is such that :

"XMiX = Mai + Aaxd and ‘X MoX =z + pozl.

1
Now, we define (hly,: = ﬁ)izl'z and (hg; = ﬁ_z)izlyz. Then, the value hq ;
(resp. hg ;) is the unit length in the metric M, (resp. M) along the axis e;. And
the interpolation metric between M; and M, is defined using the formula :

1
— 0
M(t) =Pt Hi (1) 1 Pt telo0,1],
" W

where P is the matrix formed by the column-vector (e1, e5), and (H,(t), Hs(t)) are
two monotonous continuous functions such that H;(0) = hy; and H;(1) = hy ; for

@ = 1,2. To complete the definition of this interpolation, we have still to express
the terms H;(t).

Figure 10.2: Metric interpolation : continuous variation of the metric between M1
and M. left-hand side, linear interpolation, right-hand side, geometric interpola-
tion.

Depending on the expected result, various choices can be made. In practice,
we can consider the following interpolation functions :

e a linear function :  H;(t) = hy; + 1t (ha; — h1;),

¢
e a geometric function : H;(t) = hy; (Zz,z> ,
1,

e a sinusoidal function : H;(¢) = % (hl’i +hai+ (hii— hoy) cos(ﬂ't)).
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Notice that this interpolation is only controlled along the directions of the axes
e, and es. As an example, we present Figure 10.2 which illustrates the two initial
metrics (represented with small dots) and the interpolated metrics in the case of
a linear function (left-hand side) and of a geometric function (right-hand side).

Remark also that the previous discussion, in two dimensions, extends to three
dimensions.

Remark 10.4 The metric interpolation method by means of simultaneous reduc-
tion is unlikely to be suitable when looking for the solution inside a triangle. Indeed,
it s well suited to “edge”-type interpolation, i.e., the metrics at the edge endpoints
are gwen and the metric at any point of this edge is sought. For a triangle inter-
polation, more intuitive methods give reasonable solutions.

10.3.3 Metric intersection

Now we face a different kind of problem. Given a point P, we assume that several
metrics M; are supplied at this point. The problem here is to find a unique metric
M that somehow reflects, in a sense that we will specify, the nature of the initial
metrics.

For the sake of simplicity, we consider only the two-dimensional case, while
noting however that the relations that will be established also apply in three
dimensions (replacing a circle by a sphere, an ellipse by an ellipsoid).

First, we discuss the case where two metrics are supplied, and we consider the
unit circles (in fact, ellipses) associated with the two original metrics. The desired
solution is then a metric associated with the intersection of these two ellipses. As
in general, the result is not an ellipse, we can consider one of the ellipses that
fits in this intersection area. In this way, we define a so-called intersection metric.
According to the choice of the ellipse contained in this intersection region, different
solutions can be obtained. One solution consists of considering the largest ellipse,
while another attempts to preserve some features (for instance directional) of one
of the two initial ellipses. This leads to two solutions which are discussed below.

Metric intersection using the simultaneous reduction scheme. The si-
multaneous reduction of the two quadratic forms corresponding to two metrics
leads to defining the intersection metric related to the two initial metrics as ex-
plained in the previous section. Let M; and M, be two metrics, the two corre-
sponding unit circles can be expressed in the base associated with the simultaneous
reduction of the matrices M; and My : '

IXMiX =M+ Ap? =1 and ‘XMoX = e+ pey? =1;  (10.15)
the intersection metric (M; N My) is then defined as :

- A ) 0 -

n _ tp-1 max(Ay, g1 1 10.1
MiNnMg)=*P ( 0 max(As, p2) P - (10.16)
V\.Ihere P is the matrix mapping the canonical basis to that associated with the
Simultaneous reduction of the two metrics. Figure 10.3 (left-hand side) depicts
the metric intersection of two given metrics based on the simultaneous reduction.
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Figure 10.3: Intersection of two metrics My N Mo based on the simultaneous

reduction of the metrics (left-hand side) and preserving the directions of the metric
M (right-hand side).

When several metrics (M;)1<i<q are specified at a given point, the resulting
intersection metric can be defined using the following formula :

M- Mg) = ((.(MiNMz) N Mz)N..)NM,). (10.17)

Exercise 10.3 Prove that (M N M,) defines a metric (Hint : check that the
relevant properties hold).

Exercise 10.4 Is the intersection scheme an associative or commutative scheme ?

Metric intersection preserving specific directions. The previously described !

method consists in finding the maximal ellipse included in the intersection region
of the initial ellipses. Hence, this requirement does not preserve, in any way, the
directions of one or the other of the given metrics. As this latter property can be
of great interest®, we are suggesting a different method, that leads to construct a
metric having its directions identical to those of one of the initial metrics. Then,
a maximal ellipse with particular directions will be found. In the case depicted in
Figure 10.3 (right-hand side), the directions specified in metric M; are preferred.
The intersection metric (M; N My) is defined by

(MiNMs)=wM; with w:max(%,%,l) (10.18)
1 Az

if one wants to preserve the shape of the metric M; (u; and ); also denoting the
eigenvalues of the matrices).

10.3.4 Metric smoothing

Given a metric and irrespective of its nature (i.e., related to a geometry or resulting

from the physics of the problem considered), there is no guarantee that a mesh “

3For instance, when triangulating some surfaces.
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strictly based on this metric will conform to the whole set of requirements. Several
undesirable features can be encountered. It seems indeed obvious that in two
dimensions, it is not possible to obtain a mesh composed of equilateral triangles if
the given metric presents great size variations.

Variation and shock of a metric. In the isotropic case, the metric at an
arbitrary point P can be written, as seen before, as :

1

—1
h(P)2 dy

M(P) =
where I; is the unit matrix of dimension d and h(P) is the desired size at P.
Hence, for an edge AB where we want to have h(A) at A, h(B) at B, the length
of the segment is :

1(AB) = 7B [ s o

where h(t) represents a continuous interpolation function defined on [0, 1] such
that h(0) = h(A) and h(1) = h(B). This is equivalent to parameterizing the edge
AB by (1 —t)A + t B and to denoting in a similar fashion h(t) and h(P), the
value of h at the current point P parameterized by ¢.

Remark 10.5 The function h being chosen, the previous expression allows us
to go from discrete data (in A and B only) to continuous data (along the whole
segment AB).

As mentioned, h(A) and h(B) can be more or less “compatible” with the Eu-
clidean length of AB. To be able to evaluate this notion numerically, we introduce
the following definitions.

Definition 10.6 The h-variation, denoted vy, related to an edge AB is defined
as :

h(B) — h(A
i) — 1B = A
1A
The h-shock, denoted xy, related to AB is defined as :

_ h(B) h(A)\ 12
Xh*ma"(m’m)ﬁ

In other words, the h-variation v, along AB, when B tends towards A, repre-
Sents an approximation of the gradient of the function h. The h-shock measures
the distortion of h along AB.

For a mesh, these values are defined at each vertex.

Definition 10.7 Let A be a given mesh verter and let P; be the endpoints of the
edges incident to A, not equal to A. We set :

vp(A) = max v (AP;) and xi(A) = max xn(AP;) .
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This discrete definition enables us to characterize a mesh, according to a given
metric field. The h-variation and h-shock values are then defined as the extrema
of the values related to these quantities at the mesh vertices.

In the anisotropic case, we define the same notions based on the direction of
the given edge. This is equivalent to finding the intersection of the metric in A
(resp. in B) with the edge AB and then using the same scheme with h(A) (resp.
h(B) defined by h(A) = ||AA7|| (resp. h(B) = || BB, ||) where A; (resp. By) is the
intersection point of AB with the circle related to the (anisotropic) metric M(4)
(resp. the circle of M(B)).

Notice however, that in the anisotropic case, the resulting Riemannian struc-
tured is not able to constrain a size variation in each direction.

Metric smoothing using a correction scheme. Given a mesh and a field
of metrics defined, in a discrete fashion, at each mesh vertex, the smoothing pro-
cedure aims at constructing a (new) field satisfying a given regularity specified a
priori, whenever the initial field is not compliant. This is especially the case when
the size variation is too great or discontinuous.

The new metric is used to reconstruct a new mesh of the domain?, that is
more adapted to the given specifications. In particular, the quality of the resulting
mesh is improved, the created elements being more regular (equilateral triangles,
for instance).

Let us consider the isotropic case. The problem consists here in bounding the
h-variation v;, of an edge AB by a given threshold ¢, v, < ¢, by changing the

size specifications h(A) and/or h(B). The new specifications are then determined |

using the following formulas :

h(A) = min(h(A), h(B) + €| AB|))
and  h(B) min(h(B), h(A) +¢||AB|) .

Il

Notice that only one of the size specifications is affected (the largest one).

The procedure is quite similar in the anisotropic case. To this end, one has
simply to extend the operator min, related to the sizes, to an operator related to
metrics. This operator is, as expected, the metric intersection operator previously
described. Notice that in this case, the correction applied to an edge does not
account for the metric interpolation along the edge. Moreover, this operation may
affect the shape of the corresponding ellipses (ellipsoids).

This procedure, based on the notion of h-shock, in the isotropic and anisotropic
cases can be found in [Borouchaki et al. 1998].

Examples of metric smoothing. Figure 10.4 illustrates the effects of the met-) '
ric smoothing and correction procedures on a surface mesh. Figure 10.5 represents |

a prediction of an unstationary transonic flow around a wing profile. The flow pa-
rameters are Re = 107, Mach = 0.775 and the angle of incidence a = 4°.

“The given mesh is seen here as a background mesh and forms, along with the smoothed

metric, a control space (Chapter 1).
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Figure 10.4: Ezample of metric correction related to a surface mesh. Left, geomet-
ric mesh without correction (data courtesy of the Mac Neal-Schwendler Corp.).
Right, geometric mesh after a metric correction by a given value € = 1.5.

In these examples, the influence of the metric correction procedure is clearly
visible. This procedure is even more important in the numerical computations, as
the difficulties usually encountered are related to the possible lack of information
during the interpolation of the solutions (in an adaptation scheme) and to the
capture of the critical regions.

Figure 10.5: Ezample of a metric correction on an adapted mesh in a computational
fluid simulation. Left, the mesh is adapted without correction. Right, the mesh has
been adapted with a metric correction by a given value € = 2.

10.4 Metric construction

In the previous sections, we have largely discussed metrics and related operations,
On the assumption that these latter were supplied. Now, we give some details on
how to define such metrics, especially for surface meshes and regarding a compu-
tational scheme based on the finite element method.
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10.4.1 Parametric surface meshing

Let ¥ be a surface, let o be its parameterization and let 2 be its parametric space.
We want to obtain a surface mesh conforming to some given specifications (in
particular, related to the element sizes as well as to the intrinsic properties of ¥,
t.€., to conform to the geometry), from a mesh of Q. In other words, the goal is
to control the mesh of ¥ by controlling the mesh of . Chapter 15 will deal with
this approach more thoroughly.

Assume now that a metric is given on the surface. Let Ms be the current
assoclated matrix, of dimensions 3 x 3. The problem is to find the relationship
between a length on ¥ and the corresponding length in Q. Thus defined, the
problem can be reduced to that of finding the matrix My, a 2 x 2 matrix, related
to Ms. To this end, we use the metric induction.

Metric induction. Given a point X € €, the matrix M»(X) is the metric
induced by M3(P), P € ¥ on the tangent plane to the surface at P. By denoting
II(P) the transition matrix from the canonical basis of R3 to the local basis at the
current point P, the desired metric My(X) is defined by the matrix :

Mz = [tHM3HJ2 s

where the symbol | |, means that we consider the first two columns and the first
two lines of the matrix ‘IIM3II. Given a matrix M3 we then find by induction a
matrix Mz that enables the lengths on the surface to be controlled via a control
of the edge lengths in .

Choice of the surface metrics. The control of the gap between an edge and
the surface is obtained using the metric M3, which has yet to be explained. Hence,
to govern the mesh of ¥ according to M3, consists in governing the mesh of
with respect to an induced metric Mj. As will be seen in Chapter 15, a judicious
choice of M3 makes it possible to bound the gap between any edge and the surface
by a given threshold value ¢. A matrix of the form :

a0
M3(P)y,,p, = "D(P) 0 1 o | o), (10.19)
B2 py(P)
0 0 A

where D(P) corresponds to the principal directions at P, o« and § are suitable
coefficients and A € R, enables us to have an anisotropic control of the gap between
the geometric, which accounts for the two principal radii of curvature p; and p2
and for the two principal directions.

We can also consider the case p = min(p;, p2) which leads to a so-called metric
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of the minimaradius of curvature for which the matrix M3(P) can be expressed as :

h2<1P> ;’ 0
Ms(Ply=| 0 O , (10.20)
1
0 0 ———————hz(P)

where the variable h(P) = ap(P) is related to the position and « is a suitable
coefficient, related to the geometric approximation (i.e., to the gap between the
edges of the discretization and the surface).

10.4.2 Finite element simulation with error control

The previously defined fields of metrics are related to the intrinsic properties of
the surface, hence to its geometry. We will now focus on metric fields met during
the numerical calculations based on finite element methods, in particular in the
case of mesh adaptation (Chapters 21 and 22).

Construction of a computational metric. The goal is to construct a metric
that allows an homogeneous distribution of the error related to the interpolation
of the solutions. The error estimation® is analyzed by studying the behavior of
|lu — Mpu||, Hpu being the solution of the discrete model and || || being a suitable
norm.

Let us assume that a solution Ilpu has already been computed on a former
mesh. If the interpolation scheme is linear and piecewise continuous (P!-type),
then the interpolation error can be related to the variations of the variables of the
problem and, in particular, to their successive derivatives (gradient, Hessian, etc.).

To show this result, we first focus on a one-dimensional problem with only one
unknown wu.

Interpolation error for a one-dimensional P! problem. Let us consider the
segment (I, (a), [I4(b)], which is the function I, that is the linear approximation
of the function u between a and b (between u(a) and u(b), in fact).

In order to evaluate the interpolation error between u and I, u, we will perform
a local analysis. In other words, we assume that the computed solution is quite
close to the real solution. This evaluation is based on various Taylor’s formulas.
One such formula, when applied to a regular enough function f(z) from I = [a, b]
to R, can be written as :

fla) = f(z) = h f'(x) + h;f”(a:) + O(r%), (10.21)

Sas well as the convergence of the numerical approximation.
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with # = a 4+ h. This formula and, in general, formulas of the same type are
actually not well suited for our purpose since A is not necessarily small. Thus, we
prefer a formula like :

h2
fla) = f(@) = (a—2) ') +
where ¢, in [0, 1], is a function of both z and a. For our purposes, we fix the
function f to be the function that, for « € I associates (u — u)(z) = u(z) —
Iy u(z), assuming thus that ITpu(a) = u(a) and Myu(b) = u(b). From the previous
discussion, regarding u and Il u, we have :

"z +tla—2)), (10.22)

a—z)?
2

where now ¢; is a function of @ and z. As u(a) — Iyu(a) = 0 and as we look for
an extremum, z, where u'(z) — I u/(z) = 0, then we have :

u(a)~Ilpu(a) = u(z)-Iyu(z)+(a—z) (u'(x)—Hhu’(ar))+( u"(z+t; (a—z)),

0= (u—-TMpu)(z) + £ﬂu"(ae +ti(a—1z)).

2
Then, we write the same, based on b. For the above z, we have :
b — 2
0= (u—Iyu)(z) + ( 213) u(z +ta(b— 2)).

Adding these two relations gives :

0=2(u—1Ihu)(z)+ (i:—éx—)zu”(x +ti(a—2z))+ (b—_—x—)Qu”(a; +t2(b—2)).

Let M be a majorant of '’ in I, then :

a—z)? —z
=M@ < -2 Loy
Then : ) )
[(u — Mpu)(z)| < %ma:ﬁxez((a;w) (b—2x) )M .
And finally,Vz € I, :
(b—a)’
|u(z) — Myu(z)| < 3 M. (10.23)

The goal is then to see what is the value of |u(z) — ITpu(z)|, which means

finding the value of (b;gaﬁM and then to compare this value with a given value €
representing the maximum allowed gap between the function w and the linear
approximation IT, u.

From a geometric point of view, if  is a point of [a, b], the point (z, Hu(z))
describes the segment [u(a), u(b)] while the point (2, u(z)) describes the (unknown)
“curve” u. As u is assumed to be sufficiently regular along [a,b], we will then
replace the curve by a parabola. Thus, a method allowing us to reach the expected
result consists in :
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u_— ;:> u(b) b
/C, - <\\\ 3 a /‘\\\
U(a) \\ //./ \\
- pu // \\.
.- .
a b

Figure 10.6: Piecewise linear interpolation in one dimension. Left, are shown the
segment I = [a,b], u(a) and u(b), the function Iyu, the segment [u(a), u(b)] and
the presumed function u. Right, are shown the segment ab and its neighbors.

e constructing a parabola going through the point II,u(a) = u(a) and through
the point IT,u(b) = u(b) and

¢ evaluating v’ on I, based on the parabola.

This enables us to find the desired value. If the latter is of the desired order, the
meshing step is correct according to point a. If for the given ¢, we find a larger
or smaller value, we can then compute the h that would give the right value and
then deduce the metric to be enforced :

Iy
M = 'h—z',
with 8
3
hr = .
M

In practice, when segment I = [a,b] is analyzed, it is also of interest to look
at the neighboring segments so as to guess M. Indeed, in practice, the problem is
to find this maximum. The use of a parabola to simulate the function u can then
lead to a solution from which the expected size h can be deduced.

Extension to a two-dimensional solution. We also consider a P! interpola-
tion in two dimensions. The desired function u is approached by a solution ITsu
computed at the triangles vertices of the mesh. Then, we look at the gap (or any
other norm) between u et IT,u in each triangle. There are a priori two ways of
controlling this error :

¢ either via a control by the edges and we come back to the previous discussion
with, however, a second derivative (the Hessian) reduced to these edges,

e or via a control by the gap (or more precisely the Lo, norm) between the
triangle corresponding to the three known values and the (presumed) surface
going through these three points. We then face a similar problem to that of
the surface meshing.
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The first solution is obviously quite rough. By analogy with a surface meshing
problem, it consists of controlling the gap between a mesh triangle and the surface
based on the sole evaluation of the relative gaps between the triangle edges and
the surface. However, this solution gives an initial idea of the control.

The other approach is clearly smarter. It corresponds to what has been sug-
gested in one dimension and, in its principle, can be seen as the direct extension
of this approach.

Figure 10.7: Piecewise linear interpolation in two dimensions. Left, are shown
the triangle K = [A, B,C], u(A),u(B) and u(C), the function Myu, the triangle
[u(A), u(B),u(C)] and the function presumed u. Right, the triangle ABC and its
neighbors are shown.

Let us consider a function f from K to R, where K is an interval of R?, actually
the triangle of vertices A, B and C. For such a function, denoted f(X), we look
at how Relation (10.22) writes. We vary X over the triangle K. Under the same
assumptions as previously, the local analysis based on a development around X,
as seen from A, leads to :

F(A) = S00) + (FA, VI00) + (VA By (X + 6 XD TR),  (1024) |

with )TZ the displacement around A in the triangle K. In this expression, V
represents the gradient and #; is the Hessian of f.

As in one dimension, we now consider as f the function u — IT,u and we are
trying to write the previous relation with respect to u and Il u. Thus, we have :

(u=TI) (A) = (u=TTyu) (X)+(XA V(u—Hhu)(X))—I—_%(ﬁ, X+ XA) XA), |

(10.25)
as "y = Hy. Now, let us turn to the term in V. To this end, let us assume that
X where the extremum occurs falls® inside K. Then,

V(u—Tu)(X) =0,

SIf not, X necessarily belongs to an edge of K, and the one-dimensional result holds.
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and, the above relation reduces to :
1
oz(u_nhu)(X)+§<m, Hy(X +1, XA) XA). (10.26)
Now, we write similar expressions for the same X as now expressed from B and C.
1
0= (u=Thu)(X) + 5(XB, Hu(X +1.XB) XB),
1
0= (u—Thu)(X) + 5(78, Hy(X +tsXC) XY

Adding these three relations leads to :

0 = 3(u—Myu)(X) + %(ﬁ, Hy(X +t,XA) XA) + -;-()Tﬁ, Hy(X +1,XB) XB)
+3(XC, 1, (X +,XC) XO).

Let now M be such that :

_ (7, Ho(Y)22)] )
M= mazyex (—‘%ER ik |

Then :
(=) ()] < 3 (IARIP + BRI + [T M

Each point X of K can be written using a linear combination of A, B and C :
X=XMA+ MWB+ \C,
with Ay + Ay + A; = 1. It is easy to see that :
AX = MWAB + \AC,
BX = A.BC + \,BA,
X = /\aéz + /\b@)
and thus :
IAXIPHIBR|PHITRIP < (ZHADIABIP + (24X IACI? + (A24+22)|| BT
+2Xa [(CA, TB)Y| + 2XaAc (BA, BC)| + 2 XA |(AB, AT .
Let L be the length of the largest edge in K, then :
IR P4 IBRIPHITRI < 2 ((A2 + A2+ A2) + Aads + Aade + Mohe ) L2

It is easy to see that the extremum is obtained for :

1
Xo=Do=Ac =73,
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and therefore, we have :
2
[(u— Mpu)(X)] < §L2M. (10.27)

The majorant that we give below is certainly not optimal and, in specific, it is
isotropic. To improve this majoration, we go back to Formula (10.26).

To this end, we assume that X, the point where the maximum holds, is closer
to A than to the two other vertices of K. Then, we write :

0= (u—Tlhu)(X) + %(ﬁ, Ho(X') AR, (10.28)

where X’ lies on AX. Let us introduce A’ the point intersection of AX with BC
the side opposite vertex A. Then, due to the assumption about X, we have \ < %

where X is such that : N
AX = AAA".

The above relation becomes :

= ) ()] = 5 (AX, Hu (X)) AR) |,

2
(= ) (X)] = - (AT, B, (x') A |
thus,
(u =) (X)] < 5 AR, (0 T | (1029)

holds. As a consequence, we have obtained an anisotropic estimate. Note that the
same reasoning can be made for B and C' and a combination of the corresponding
results is used to find the metric information needed for error control and mesh
adaptation.

From a geometric point of view, if X is a point of K, the point (X, IT,u(X))
covers the triangle [u(A),u(B),u(C)] while the point (X,u(X)) covers the (un-
known) “surface” u. As u is supposed sufficiently regular over K, we will replace
this surface by a paraboloid. Hence, a method providing the desired result consists
in :

e constructing a paraboloid going through the points IT,u(A) = u(A), IIu(B) =]

u(B) and u(C) = u(C) and

e this surface being known, evaluating # on K and finding the desired majo-
rants.

Therefore we vary X to see the majoration values needed to define a suitable "
H* in K using the various H we have computed”. We deduce the values of A1

"Note that this step is not obvious.
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and of Ay that correspond to the principal directions of this matrix. The required
metric consists in making sure that, given ¢, each point X is such that :

(AX || AX) =¢.
We then find a metric of the form :

- Al 0 ) -1
mer (5 )

which, in the coordinate system defined by R, corresponds to the ellipse :

A A

€ €
If X covers or is internal to this ellipse, the interpolation error is smaller than or
equal to € in any direction.

Extension to a three-dimensional solution. The same reasoning applies and
the conclusions, in terms of the control, remain unchanged. The constant of error
is then %. However, the calculations are considerably more technical and the
geometric interpretation relies on a surface of R* associated with the four vertices
of a tetrahedron.

Remark 10.6 Notice, to conclude this discussion, that the control of the interpo-
lation error suggested here is purely geometric. It does not involve the physic of
the problem via its operator. Other operators analyze this point of view. Moreover,
other norms may be chosen for the error.

Hessian computation. Finally, we briefly mention one of the potential numer-
ical problems. One of the difficulties is actually to compute the Hessians involved
in the estimate. Such a calculation can be carried out by inventing a surface as-
sumed to represent the desired solution or by more directly numerical methods
(Green’s formula, for example).

More precisely, this approach using generalized finite differences is based on
Green’s formula :

/u&-de = —/(‘kude—l- /uvuidI‘,
Q Q r,

with the usual notations ([Ciarlet-1991]). Setting u = d;u, we obtain :

/aiuaide = —/8,-2,-uvd§2+ /Biuvl/idI‘,
Q Q r

that will allow us to find the diagonal coefficients of the Hessian of u and, similarly,
setting u = §;u, we find :

/3ju3ide = —/B?juvdﬂ—k /@uvmdl",
Q Q r
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which leads to the non-diagonal coefficients of the Hessian.

For an internal point, the boundary term is null and the integral is calculated
on the set of elements sharing the vertex where the Hessian is sought. Given
some assumptions (Hessian constant per element), we find, for example for the

coeflicient ;; :
/
3 >k Qg af Sk

Oiiu = — eg>"—
Zk Vi

where :

e oy is the derivative in ¢ of the interpolation of the function u (a plane here,
in P!, the plane going through the points u(A), u(B) and u(C) where A, B
and C are the vertices of the considered triangle),

o o, is the derivative in 7 of the surface defined over the triangle considered of
null height except at the vertex concerned where the height is equal to 1,

e Si is the triangle area of index k,

o Vi is the volume of the tetrahedron having the triangle of index k for base
and corresponding to the hat function vy for which the value is 1 at the
considered vertex and 0 at the other vertices.

Similarly, we evaluate the terms in ;;. If the point at which the Hessian is sought
is a boundary point, we compute the boundary contribution in the same fashion
or, simply, we use an average of the Hesslans at the neighboring internal vertices
of the current point.

Problem with multiple unknowns. Metric intersection. When the phys-
ical problem has many unknowns that are all used to control the adaptation, each
of them is used to construct a metric. We therefore face a context in which several
fields of metrics are given. The previous section enables us to retrieve the case of
a sole metric map, using the metric intersection scheme.

On the other hand, for surface meshes, the geometric metric (of the radii of
curvature, for instance) can be intersected with one (or several) computational
metrics. Thus, the geometric approximation of the surface can be preserved.

Mesh adaptation. Mesh adaptation (using a h-method, Chapter 21) can be |
based on the same principles as discussed previously, i.e., by controlling the in-
terpolation error. Once a solution has been computed, it is analyzed using an
error estimate. The previous method gives a way of carrying out this analysis by
noticing that the local analysis performed here is meaningless unless a more global
analysis justifies its full validity.

Chapter 11

Differential geometry

Introduction

Mesh generation of curves and surfaces! is an operation known to be tedious to
carry out, in a robust fashion, in the context of numerical simulations based on a
finite element method as well as in other types of applications. The accuracy of the
results in finite element numerical simulations is partly related to the quality of the
geometric approximation (i.e., the mesh). Therefore, the mesh of the boundary
of a two- or three-dimensional arbitrary domain must have certain properties that
are directly related to the geometry it represents.

The construction of a mesh of a curve (resp. surface) requires, in particular,
knowledge of the local intrinsic characteristics of the curve (resp surface) such as
the curvature, the normal(s), the tangent (the tangent plane), etc. at any point
of this geometric support. These geometric characteristics have a significance
that will be made precise in this chapter. This analysis is based in practice on
a limited expansion of the function, i or ¢, which gives a local approximation of
the corresponding curve or surface. The local behavior and the main features of
the function can be deduced from this approximation. Thus, in a mesh generation
context, the analysis of curves and surfaces can be deduced from 5 or ¢ as well as
from their successive derivatives.

_Differential geometry was introduced in the early 18th century and then estab-

lished in the 19th century as a way of defining a general theoretical framework for
the local study of curves and surfaces. The fundamental contribution of Gauss?
consisted in using a parametric representation of the surfaces and in showing the
Intrinsic nature of the total curvature. The breakthrough came with Riemann3
who gave a global mathematical definition of curves and surfaces, introducing
hotably the notion of n-dimensional manifold.

1 .
or, more generally, any mesh of the boundary of a domain.
Disquisitiones circa superficies curvas (1827).

Sur les hypothéses qui servent de fondement & la géométrie (1854).
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*
* K

The purpose of this chapter is to review the elementary notions of differential
geometry necessary to understand the chapters related to the modeling as well as
the mesh generation of curves and surfaces (Chapters 12 to 15). If some of these no-
tions may appear obvious to the initiated reader?, we believe it advisable to recall
these results so as to introduce the terminology and the notations that will be used
subsequently. This chapter should not be considered as a substitute for the vari-
ous courses and references in this domain, in which the reader may find the proofs
of the main results given here ([doCarmo-1976], [Lelong-Ferrand,Arnaudies-1977),
[Berger-1978], [Farin-1997], among others).

We limit ourselves here to the study of curves and surfaces embedded in the
Euclidean space in two or three dimensions. The definitions require the use of the
implicit function theorem. Therefore, we introduce the notion of a parameterized
arc, and we conduct a local study. We also define surfaces and we introduce
the two fundamental forms and the total curvature which plays an important
role in the local study (it indicates the position of the surface with respect to
its tangent plane) as well as the global curvature (Euler-Poincaré characteristic)
of the surfaces. Finally, the last section is devoted to the practical aspects of
the calculations related to curves and surfaces, in particular, the approximate
resolution of non-linear problems.

11.1 Metric properties of curves and arcs

This section briefly recalls the different features used for the study of curves. In
particular, we outline the notions of curvilinear abscissis, of arc length and we
introduce the tangent and normal vectors as well as the Frénet frame. These
definitions will allow us to compute quantities like the local curvature, the radius
of curvature, the osculating circle as well as the local torsion and the relevant
radius of torsion. Table 11.1, given at the end of the section devoted to curves,
contains the values of the main geometric features encountered.

In the remainder of the chapter, we denote by £ a Euclidean affine space of
dimension d and by E¢ the corresponding vector space (in practice, we consider
that £ = R). We will study the properties of curves and geometric arcs of £
related to the data of this Euclidean structure.

Let us recall that the structure £ of Euclidean space of R? is defined by the
choice of the usual dot product (Chapter 10), for which the canonical basis :

[er =(1,0,0),e2=(0,1,0),e3 = (0,0,1)]
is orthonormal. The norm of a vector X of components (z,y, z) in the space R3

is simply :
X = Va2 +y?> + 22.

4Who might prefer to skip this chapter and go directly on to the next one.
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11.1.1  Arc length

We recall that a curve I' of a normed vector space E corresponds to a continuous
application v : I — E', defined on an interval I, which associates to the parameter
t € I the value y(t). A curve is of class C* if the application v is of class C*. If
in addition, the interval I is compact, the curve T' is said to be compact.

We will define the notion of length in an arbitrary normed vector space E.
To this end, we introduce an approximation of the curve (the arc) v by a set of
inscribed polygonal lines.

M, M,

(t2) -
M o S

v(t1)

Mo
¥(to)

Figure 11.1: Approrimation of a curve I' described by a function v using an in-
scribed polygonal line.

General notion of a rectifiable arc. With any subdivision sub = (tg,11, ..., tp)
of [a,b] (with a = to and b = t,, t;41 > ¢;) into p segments, we associate the
polygonal line (Mg, My, ..., M) having M; = y(t;) as vertices. This subdivision is
said to be inscribed into T.

Definition 11.1 The length of this line is the number :

p—1 p-1
—
Loun,r = ) I MiMigill = > [1y(tees) = vt
1=0 =0

An arc I of a normed vector space is said to be rectifiable if the upper bound
L(T') of the lengths Ly, of the polygonal lines inscribed in T is finite. In this
case, L(I') is a positive real number called the length of T. Obviously we have :

L(T) 2 [l7(b) = v(a)ll-
Remark 11.1 The length of a rectifiable arc depends on the norm chosen.

Remark 11.2 The fact that a curve is continuous does not necessarily imply that
Us length is bounded. A counter-ezample is that of fractal curves.

Theorem 11.1 In a complete normed vector space E, any compact arc T' (of
eéndpoints A = y(a) and B = y(b)) of class C* (k > 1) is rectifiable. If in
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addition, v : [a,b] — E is a parameterization of T', the length of T' is :
b
L(r) = /||7’(t)||dt. (11.1)

Proof. The proof, left as an exercise, consists in showing that T is rectifiable,
then posing :

b tit1
p—1
Boo= [ IO = Lanr = - [ 1 Olldt = lrteess) =206l |
. =0 b
it is sufficient to prove that, for each ¢ > 0, there exists a subdivision sub such
that Agyup < e. ]

In the affine Euclidean space £¢, with the usual norm, we then find, using
Relation (11.1) :

b
L(T) = / \/7'12(15) + ...+ 7,/ (t)dt that is, for d = 3 ,/\/da:2 +dy? +dz2.
B!

a

For example in R? the length L of the circle of center O and of radius p
represented by = = pcost,y= psint,t € [0,27], is equal to (obviously) :

2n 2
L= /p\/sin2t+cos2tdt =p /dt = 2mp.
0 0

11.1.2 Curvilinear abscissa, normal parameters and charac-
teristics

Definition 11.2 Let T' be an arc of class C'. We call normal parameterization
of T' any parameterization v : I — £¢ such that, Vt € I, we have : ||y'(t)|| = 1.

If the arc I is simple and oriented in the sense of the ascending ¢, the number :
¢
s = [ 1@
to

is called curvilinear abscissa of the point M = ~(t), measured from the point Mo,

that is v(o), the origin. In other words, the length of the portion of curve joining |
two points of this curve can be expressed as a sum of arc lengths. Hence, we are |

able to write :

WOl =s@), thus ds=[ly ()] dt.

If the parameterization is normal, we have ||y (t)|| = 1 and thus, ds = dt. In ]

other words, for such parameterizations, s and t are identical.
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Tangent vector. Let I' be a regular oriented arc of class D? defined by a normal
parameterization 3 : I — €% s — 3(s).

Definition 11.3 The function 7: 1 — &4, s — ¥'(s) defines the unit tangent
vector to I' at any s.

This tangent vector indicates the direction of the tangent to the curve.

Remark 11.3 If M = 7(s) is not a simple point of I', the vector 7(s) admits a
value to the left and a value to the right that are different.

If we consider a regular parameterization, such that, ||v/(t)|| # 0, for each ¢,
the unit tangent vector 7(t) to I at ¢ is defined by :

oy = DO _ B dt (1)
T ds T dt ds (17 ()]

and, if the parameterization is normal, we simply have 7 = 7/(s).

Principal normal. Curvature. The hyperplane denoted as I, going through
M and orthogonal to 7(s) is called normal to T in M. This plane (Figure 11.4)
contains the various normals to the curve. By extension, any line going through
M and orthogonal to 7(s) is a normal to I' in M.

As in the case of a normal parameterization, ||¥(s)|| = 1, a derivation shows
that : (¥'(s),7"(s)) = 0 and thus, these two vectors are orthogonal to each other.
Differently written, we have the relationship :

(7_"(.5), %S‘l> =0.

Therefore, there exists a (scalar) function, C : s —s C(s), such that :

d7(s)
ds

=C(s),

d7(s)

where (s) is the vector supported by , which is a unit one. This vector is

. . 8 . .
called unit, oriented normal vector to T'. The function C(s) is the curvature of T
m s.

The curvature function of T in s can be also expressed by the relation :

Cs) = 17" ()l -

Remark 11.4 In the case of planar curves, as with the oriented plane, we can
define an algebraic curvature. To this end, we define, from 7(s), the vector i (s)

d7(s)
ds

by rotation of value 7/2 and we have
signed.

= C7(s), which implies that C is
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We note that the curvature is null® if and only if the point M = +(s) is an
inflection point. If the arc T' has no inflection point, the vector 7(s) is defined at
any s.

Moreover, the radius of curvature of I' in M is the number p(s) = —071;5 The
point O defined by MO = p(s) 7(s) is the center of curvature of T in M.

If I' is a simple regular arc having the point O as the center of curvature in
M, the circle of center O passing through M and contained in plane IT defined by
the basis [7, 7] is the osculating circle of the curve in M (Figure 11.2, right-hand
side). The latter plane is the osculating plane to T in M.

Figure 11.2: Left-hand side, unit normal vector to the arc I' in M. Right-hand
side, the intersection of planes 11 and Il,, is a line supporting the normal U and |
containing the point O, the center of curvature to T in M.

Arbitrary parameterization. Let v be a parameterization of at least class D?
defining an oriented arc I', which is regular and without any inflection point. We
go back to a normal parameterization ¥ using the change of parameter ¢ — s(t), |
such that ds/dt = ||/ (t)|]. As v(¢) = ¥(s(t)), we have :

& L6 4 5(9) (%) N

/ I AN "4y — &/
SO =TT =765
from which we have the formula (depending on 7 and on 7) :

2 s\ 2
¥'(t) = %-{2—7"(3) + C(s) (;l—t> v(s), (11.2)

that can also be expressed as follows :

V(1) = Wrw + O O5(s)

SExcept for the trivial case of lines in the plane !
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Of all the normals, some have privileged directions. The intersection between
IT and II, is a line oriented along the vector #(t) (Figure 11.2, right-hand side).
This normal is of particular interest in the study of the curves, it contains in
fact, as already mentioned, the center of curvature of the curve (see for instance,
[Lelong-Ferrand,Arnaudies-1977]).

Practical calculation of the curvature. In practice, it is not always possible
to express the curvature of the formula C(s) = ||3"(s)]|| (i.e., the expression of the
normal parameterization can be too complex to be practical). The calculation will
thus be based on the relation :

d7(s)
ds

C="0) =

We then consider an arbitrary parameterization of I'. If M denotes the point
Y(s) = v(t), with s = s(t). We start from the relation :

di(s) _d7(t) dt 1 dF(1)
ds — dt ds ||yt dt
but,
a) OO - S @) 0
i - [EAQIE ’
s, [l (0] = /70, 7Y, we have -
Lo = 7" (1)
o = (),
hence :

GO L (60, 0)
e CRCIQC BRI URL e G

which finally leads to the well-known formula :

dr(t) _ +'(®) A" (1)
ds @

Where A represents the cross product (to obtain this result, we use the relation
(@Abyac= (c,a)b— (c,b)a). Thus we have,

(11.3)

@ Ayl
U= Thar

?Otice that in the case of a normal parameterization, this general expression gives
he known result, that is :

(11.4)

C(s) = 1" ()l (11.5)
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Particular case. Let us assume that we are using Cartesian coordinates to calculate

this. Let (z(t),y(t)) be the coordinates of v(t) in an orthonormal frame. We can write :
ds
= xl2 t 12 t
> = O+ 0

and

YO A =2 (O (8) - ¥ (D" (2)
thus we deduce the algebraic curvature of I" at the point M = y(t) :
2(0)y" () = ¥ (D" (1)

C= 3
$l2(t) + yl2(t)

11.1.3 Frénet’s frame and formula

The two orthogonal vectors 7(s) and 7(s) define the osculating plane. From these
vectors, we define the unit binormal vector b(s) as

b(s) = 7(s) A 3(s)

and the triple [7(s), 7(s), b(s)] forms a basis that defines Frénet’s frame at the
point M of abscissa s : .
Firenet = [M,7,0,b].
Notice that if the orientation of I' changes, 7 and ¥ are then both changed to
their opposite.

A1
S

b

S
Av1

~

Figure 11.3: Projections of a curve on the three planes of Frénet’s frame. Left-hand
side : regular point, middle : inflection point, right-hand side : cusp point.

-y

7

By derivating the relation (7(s), 7(s)) = 0, we obtain :

(F0.79) + (7. 2) = 0.

so, when introducing the curvature, the relation :

<r( ),d’;(s)> =-C.

The two formulas :

i e To_cor (11.6)

ds ds
are the Frénet formulas for the arc T.
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11.1.4 Local behavior of a planar curve

Let I' be a simple regular arc of a sufficient class, defined by an arbitrary param-
eterization v or a normal parameterization 7. We wish to study the behavior of
the curve I' in the vicinity of a point My = y(to) = ¥(s0). We go back to the case
t = 5 = 0 using a translation. According to the form of the parameterization, we
will study the local behavior of the curve in the local basis of the vectors [y/,~"]
in t = 0 or in the Frénet frame [7,7] in s = 0. So, we consider a small increase (a
neighborhood) At or As in ¢ or in s sufficiently small.

Applying a Taylor series at the first order to v, we have :
(A1) = 1(0) + At (0) + O(AE)
and for %, we have similarly :
¥(As) = 3(0) + Asy'(0) + O(As?)

with here, 4'(0) = 7(0). This local study corresponds to an approximation of the
curve using a line supported by the tangent at the point My. To show the gap
between this approximation and the curve, we use a Taylor series at order 2 :

2

HAD) = (0) + Bt/ (0) + S//(0) + O(AF)

and for ¥, we have similarly :

2
7(89) = 7(0) + A5 (0) + S-5(0) + 0(As?),

with here, 4'(0) = 7(0) and ¥"(0) = 7(0)/p(0) = C(0)#(0) where p(0) is the
radius of curvature (C(0) the curvature) at point My. In these expressions, the
second order term measures the desired gap. This local study corresponds to an
gpproximation of the curve by a parabola which, in the former case, is defined
In a non orthonormal frame, and in the latter case, is defined in the orthonormal
Frénet frame. The gap between this parabola and the curve can be obtained by
pursumg the expansion at a higher order. A Taylor series at order 3 applied to vy

gives, on the one hand :
At? A3

v(At) = ¥(0) + Aty (0) + —+"(0) + —

5 5 ///( )+0(At4)

and, on the other hand :

(As) =7(0) + Asy'(0) + %—7”(0) + ATSB

As the local study is more intuitive in Frénet’s frame and thus in the case of a
hormal parameterization, we will examine this case more carefully. Let us recall
that 3/(0) = 7(0) and that ¥"(0) = 5(0)/p(0) = C(0) #(0) and let us express 7" (0)
in Frénet’s frame :

7"(0) + O(As").

d’_j_(s_) ‘
() = p(s) - _ 7(s) + p'(s) ¥(s)
ds p2(s) ’
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Then, the previous limited expansion can be also expressed as follows :

As? As3

+ QP(O) 17(0) - 6/72(0) (7_"(0) + Pl(O)ﬁ(O)) + 0(AS4),

3(As) = 3(0) + As7(0)

3
The term 6—%(7"’(0) + p'(0)7(0)) measures the gap to the parabola.
p
The coordinates z(As), y(As) of the point M of abscissa As are such that :
As®
LL‘(AS) = As ; W(O)S-{- 0(A84)
As As® p'(0) 4
As) = - + O(As

A8 = 0 e T

Then,

o if,in s = 0, the curvature is null C'(0) = 0 (i.e., if the radius of curvature p(0)
is infinite), we have the case of an inflection point (cf. Figure 11.3, middle).
The arc crosses its tangent at point My. Notice that a line segment has no
inflection point.

o if C(0) # 0, the arc I is on the same side of its tangent as that of its center
of curvature in My. We can specify the position of I' by considering a circle
I's of radius |a|, tangent to I' in My defined by the normal parameterization :

X(s) = asin (2) . Y(s) :a(l—cos <§—>> .

a

In particular, for
1

—— = p(0),

o) p(0)

the circle T'y is the osculating circle to I'. Using a limited expansion of the
sine and cosine, we find :

a =

As® p'(0)
6 %(0)

So, if p'(0) # 0, the sign of y(As) — Y (As) changes with that of As and the
arc crosses its osculating circle in My.

z(As)— X(As) = O(As*) and  y(As)-Y(As) = — +0(As?).

Geometric interpretation of the osculating circle. Let us consider the cir-
cle T'; defined by the former parameterization, where a is an arbitrary scalar value.
This circle passes through the point M = (z(s), y(s)) if and only if a = A(s), where

_ z2(s) + y2(s) _ z2(s) 1
A(s) = 20(s) 2y(s) +guls)-

So, we can deduce :

. L z2(t) 1
iAW) =lim 3@ ~ oo ~ 0
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Then, for each M € T', close to My, there exists a unique circle ['5y tangent to T'
in Mo passing through M. The osculating circle to I' in My is the limit of T'p,
when M tends toward My along T.

11.1.5 Arcs in R> Frénet’s frame and Serret-Frénet’s for-
mulas

Let us assume that the arc _1? has no inflection point (i.e., C(s) # 0,Vs € I).
Frénet’s frame [M, 7(s), 7(s), b(s)] is, as already seen, the direct orthonormal frame
of R? defined by the vectors 7(s), 7(s)and the vector b(s) = 7(s) AF(s) that is the
binormal vector to I'. The tangent plane passing through M, of main vectors v(s)

—

and b(s) is called the normal plane to ' in M and the plane passing through M,

-

of main vectors 7(s) and b(s) is called the rectifying plane to T' in M (Figure 11.4,
left-hand side).

normal plane
o7
&
%Q
&
§ M
& v
7'.‘
osculating plane
/ z

Figure 11.4: Elements of differential geometry related to the parameter s at a point
M of T.

Serret-Frénet’s formulas. Torsion. By assumption, the functions 7, 7 and b
are such that : -

17 = 176 = [1B(s)]| = 1,
(7(s),7(s)) =0, (B(s),7(s)) =0,  (B(s),(s)) =0.

In order to establish Serret-Frénet’s formulas, we will express the derivatives of

EﬁeSe three vectors of Frénet’s basis in this same basis. For 7(s), we already know
at : '

d7(s) _,

s = C(s) #(s) . (11.7)
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For ©/, we write (and we look for ag,a; and as) :
di(s)

ds
We obviously have a; = 0. To find a¢ we look at the dot product by 7(s) :

a = <%(:l,7‘-‘(s)> = —<dz(88),z7(s)> = -C,

to find as, we consider the product by 5(8) :

ay = <d12(88) ,17(5)> :

which is the opposite the torsion, T'(s). So, we have :

i% = —C(s)7(s) — T(s)B(s). (11.8)

= ao7(s) 4 a157(s) + azb(s) .

For b(s), we write again :

M = 1107-:(5) + a117(3) + 025(3) .

ds
Here, ag = 0, a; = T and a; = 0 and thus :
g—%@ = T(s)P(s). (11.9)

By combining the Relations (11.7), (11.8) and (11.9), we obtain Frénet’s (or
Serret-Frénet’s) formulas :
i . dp Lo db
H;_CV, E——CT—TI), £—TV. (1110)

the number p(s) = 1/C(s) is called the radius of curvature of T' at the point
M = 7(s). If also, T'(s) # 0, the number Rp(s) = 1/T(s) is called the radius of
torsion of T’ at the point M. With these two notations, Serret-Frénet’s formulas
can be written as :

d7

v 7 b b 7

v
ds p’ ds p Ry’ ds Rrp’
These relations indicate the fact that the matrix M of the vectors d7/ds, dv/ds,
db/ds in the basis [7(s), #(s), b(s)] is :

(11.11)

' —— 0
0 —C(s) 0 L e )
M= [ C(()s) -:,9(5) Tgs) ] = 26 _01 D) (11.
0 Rr(s)

This matricial relation is useful when looking at the behavior of the curve in space
when the parameter changes.
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11.1.6 Computing curvature and torsion

If I is defined by a normal parameterization, Frénet’s formulas allow us to evaluate
the curvature and torsion of I' by means of the derivatives ', 5" and ¥"”/. We have
already seen, in fact, the case of the curvature. For a normal parameterization, it

is Relation (11.5) :
Cls) =" ()1

For an arbitrary parameterization, it is Relation (11.4) :

(t) = () Ay ()]
v @I
The torsion is then obtained using the previous formulas. The easiest way of
computing the torsion is to start from Relation (11.8) :

dv(s)

T =~ C(s)7(s) = T(s) b(s)

and to apply the dot product with I;(s) Hence, we find (omitting the sign) :
dv(s) - di(s) _ .
T(s) = < s ,b(s)> = <—ds—,r(s) /\I/(s)> = det

We have 7(s) = 7/(s), ¥(s) = Wlﬁ%ﬂ = 5%;5'7”(3) and it is then sufficient to
express Mdsﬂ to find the desired result.

4 (L),

dv(s) . . -
I , T(s), 7(s)] .

however

and
dC (s
di ) = C;S) 7/”(8))7“(3)> 0)

then, %ﬁl can be reduced to -C%—s)'y”’(s) and the torsion is (omitting the sign) :
1 1
T - ) —/ 7 _ iy _ _
() = Gagedet () 76 3"(5) = grmpdet () 7'(6) ()] - (1113)
We find again the relation (without the sign) :
det [¥'(s),¥"(s), 7" (s)| = =C*(s) T (s) .

Remark 11.5 These formulas are not always obvious to compute. If the function
ds/dt = ||y'(t)|| admits a simple ezpression, it may be interesting to compute the
components of the vectors 7,7 and b at the point M, which is equivalent to applying
Frénet’s formulas without specifying the normal parameter.
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So, we can express the torsion as a function of t. We have :

= 1

| O=
s = L GO L YOAYE A
C(s) ds — C(s) [¥®IP (0 A (O]

ds YOI

It remains to express 7'(t). We have :

i (L DAY
“)‘<C(s> WOP )

and the calculation gives :

71y = LW AT

so, we find :

(1) = det | L YOAO - G (A
ROl OAO1 Ol 7O A70

which gives the expression of the torsion :

o~
~—

det [y (1),7"(1), " (1)
0= =0~y or (11.14)

Use of the tangent indicatrix. The indicatrix of the tangents v; is defined

by the parameterization :

7'(¢)
@Ol

The unit tangent vector to 1 is 7 = ¥ and the curvature C of 7 is :

vl — B tr—

Cls) = IMOIG -

Summary table. Table 11.1 summarizes the various vector functions and defi-

nitions introduced in this section, along with their notations.
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r;1;tion notat. depending on ¢ depending on s
curvilinear abscissa s s(t) = . 17 (w)|| du
tangent vector 7 ”z:g;”
curvature c=1 Ilf}mt )7|13 Ol 17" ()1l
normal vector v L dF(t) ?//(3)
C 17" ()l
torsion T det:;’/((t)), ”(ltl)(,t;rl’]’;( )| dety'(s )02;(3),7’“(8”

Table 11.1: Notations and characteristic values related to a curve.

11.1.7 Local metric study of arcs in R?

Let us denote by (z(As),y(As), z(As)) the coordinates of 7(As) in Frénet’s frame
of I' (assumed to be regular in the vicinity of M) at the point My. The study
of the curve’s behavior in the vicinity of 0, so for small As, leads to looking at a
Taylor series at an adequate order in the vicinity of 0. By noticing that order 3
Is required to have an analysis that is not restricted to the plane defined by the
tangent and the normal, we write the expansion at this order :
As®

—7"(0) + ==7"(0) + O(As"),

xith ¥(0) = My, ¥'(0) = 7(0), ¥”(0) = C(0)#(0). Posing M the point ¥(As), we

ave :

3(A5) = 7(0) + Asy (0) + 22

hence
z(As) = m + (’)(As“)
y(As) = (O)AS + C( )AS +O(As?) (11.15)

2(As) = —(-M-LC T8 | O(As?)
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These relations give the behavior of the projections 71, 72 and 43 of 4 on the
osculating, rectifying and normal planes to I' in My. To do so, it is sufficient to
choose the corresponding plane and the two associated components. For example,
to study the behavior of v, we check whether T'(0) < 0 or whether T'(0) > 0 (cf.
Figure 11.5).

T(0) <0 T(0) >0

Figure 11.5: Behavior of the curve y2 (projection of I' on the rectifying plane)
according to the sign of the torsion T'(0).

Osculating spheres. Let I' be a simple arc, which is regular, without any in-
flection point and of class C* with k > 3. Let My be a point of T'. Then :

Definition 11.4 There exists an infinity of osculating spheres to I' in My, these
are all the spheres passing through the osculating circle® to T' in M,.

Remark 11.6 The radii of the osculating spheres are greater than or equal to the
radius of curvature.

11.1.8 Parameterization of arcs

In this short section, we are interested in various parameterizations of simple arcs
and curves, especially the arcs defined by a Cartesian parameterization and the
implicit curves of R2

Arcs defined by a Cartesian parameterization. We consider an affine space
of finite dimension d.

Definition 11.5 A Cartesian parameterization is such that, in an adequate frame,
the parameter is equal to one of the coordinates.

8This is equivalent to saying that such a sphere contains the circle of curvature of v at this
point.
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For example, in the affine plane R?, the parabola defined by :
¢ — (z,kz?), (k= Cte, z €R)

is a simple arc.
In a broader sense, in R¢, we consider a parameterization f of the form :

ry=t, xa=fot), .., zg=fat) (t€T),

the functions f; (2 < i < d) being of class C* on I. An arc of class C* with k > 1
admitting such a parameterization is simple and regular.

Let us consider the parameterization f of the form (¢, f(t)) in the affine plane
®2. By applying Formula (11.1), we obtain a simplified expression of the length

ds of an arc :
ds = ||f'(O)||dt =1+ f2(t) .

Similarly, the tangent vector 7 is obtained by the formula :

- 1 ( 1 )
F= = ,
1+ f2(t) \ f(t)
and the (signed) curvature is given by :

ol
(RSO

Implicit curves in R% Let f : @ — R be a function of class C* (k Z 1)

defined on an open set © of the affine plane R? and let T'; be the set of points

M € Q such that f(M) = 0.

Definition 11.6 The pair (f,T's) is the so-called implicit curve f = 0.

Using the implicit function theorem, we can show that the line tangent at Mo to
[y (arc of class C* whose local support is the curve I'y) is defined by an equation
such as :

(z = z0) fz(zo,y0) + (v — yo)f;’,(ﬁo, Yo) =0,

where f(z,y) denotes the value of f at the point M(z,y), i.e., we wri.te in the
same way both f(M) and f(z,y). Refer to Chapter 16 for more details about
implicit curves and functions as well as computing tHe intrinsic properties of such
curves.

We will now move on to the study of the metric properties of surfaces.

11.2 Metric properties of a surface

This section recalls some basic notions useful for the study of surfaces. The aim is
once again to give a brief overview of the classical results of differential geometry
that can suit our purposes.
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In this section, we denote by &€ an oriented Euclidean affine space of dimension
3 and by E' the associated Euclidean vector space. We recall (by analogy with the
curves of [) that a parametric surface 7 of class C* of £ is an application of class
C* of a domain of R? into &.

Let ¥ be a regular surface defined by the parameterization o :
o:Q — R3 (u,v) — o(u,v),

where  denotes a domain of R? and ¢ is a function of class C* (k >2). By
analogy with the study of the local behavior of a curve using a limited expansion,
we first indicate what such a development is (at order 2) in the case of a surface.

Let M = o(u,v) be the point of parameters (u,v). We consider the limited
expansion at order 2 of ¢ at the parameters (u, v) for a small increase (Au, Av) :

1 1
o(u+Au, v+ Av) = o(u,v) + o, Au+ o/ Av+ ia;’uAuz + ol Aulv + EU,Z,IUAU2
—————

order 1

order 2
(11.16)
, do , do "
where o7, (u,v) represents a(u,v), o, (u,v) denotes 6—v(u,v), o, (u,v) denotes
9? 2 2

Uv (u,v) and o7/, (u,v) denotes aT(Qy(u,v). Accord-
ing to the depth of the limited expansion (at order 1 or 2), we obtain two ap-
proximations of the surface allowing to obtain the intrinsic features of the latter.
These approximations involve the successive derivatives of o and, as will be seen,

the fundamental forms of the surface .

w(u, v), oul, (u,v) denotes

11.2.1 First fundamental quadratic form

At point M = M (u,v), the tangent vector plane Ty is directed by the vectors :
oM oM

_ oM
du ul,v), Ov

which are respectively noted by 7 and 7. Any vector V of Tar can be written as :

=0, (u,v),

‘7 = AFl + M 7_:2 .
So, we have :
IVIP = IR+ pal® = N7 + 2A w7, ) + 2|52
Posing,
E=|Al?, F=(f,%) and G=|7?,
this expression can be written :

V> = EA? + 2F A\u + G2 .

Thus, we have introduced the first fundamental form of the surface, its precise

definition being :

7Also called a parametric sheet.
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Definition 11.7 Let Ty be the tangent vector plane to a surface ¥ at a point M.
The restriction to Ty of the quadratic form V v~ ||V||2, (V € E), is called the
first fundamental quadratic form of ¥ at M.

This form is usually denoted by ®M .

Expression of ®;. The usual expression of this form ®¥ in the basis [7;, 73] is

then : B
OM(V)= EN + 2F \u+ Gi?, (11.17)

which can also be written as a “differential” form :

®M(dM) = Edu® + 2Fdudv + Gdv?, (11.18)
M oM
where dM = —a——du + —dv.
Ou Ov

Posing
A ([ E F
A:<H> and Ml(M)_(F G)’

we can write this fundamental form using a matrix expression :
M(V) = PAM (M)A

Remark 11.7 The first fundamental form defines the metric of the tangent plane
to ¥ which will be used to govern the calculation of lengths (as will be seen later).

We then introduce the function H = VEG — F? allowing® us to write :

H=| AT

Case of a Cartesian parameterization. We now assume that ¥ is defined
by the following Cartesian equation z = f(z,y), where f is a function of class C*
on a planar domain. If M(z,y) denotes the point of coordinates (z,y, f(z,y)), we
will have the following expressions of E, F and G :

2

E:H‘a—M =1+ f2(z,y),
Oz
oM oM ) )
F= <_a;‘7’5:;}_> ~fx(17)y)fy(17;y),
G = 6_M 2:1+f'2(:c ).
=15y - v (2,

8This function H is notably used to compute the area of Z.
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Area of a surface. The quantities E, F and G are used to define a surface
element Aa of a surface, corresponding to a small variation Au and Av around
the point M (u,v). Thus, we have :

Aa = l'a—]\/‘r—Au/\ ?—%Av ,
Ou

Ov

then :

Aa = /((FAuABAY), (FAuUA THAV)) .

Hence, using the previously described relations, we reach the expression :

Aa=+\VEG—-F?AulAv=HAuAv.

The area of a small element of surface in the vicinity of the point M is then
(Figure 11.6) :

a:/ HAuAv.

tAv

[ ,
| WAA\Q

u

Figure 11.6: Element of surface defined using (u,v) and (u + Au,v + Av) where
Au (resp. Av) represents a small increase in u (resp. v).

We now analyze how to compute the length of an arc traced on a surface. We
will see that such a calculation involves the previous fundamental form.

Length of an arc traced on X. Let us assume that I' is the image by the
parameterization ¢ of the planar arc I' defined by the parameterization : t —
(u(t),v(t)). So, I is defined by the parameterization o : t — o(u(t),v(t)) and
thus we have :
oM oM
I 1Y
o' =u'(t) 5u +v'(¢) 30
allowing us to write :

I/ (@)|1> = Eu(t) + 2Fu/(t)v'(t) + G'(t).
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Indeed, if [a, b] is an interval, the length of T is :

b
L(T) = / VEW? + 2Fu'v' + Gv'2dt,

and finally (posing du = v/(t) and dv = v/(t)) :
ds® = Edu® 4+ 2Fdudv + Gdv?,

or also

ds = \/Edu? + 2Fdudv + Gdv?.

Remark 11.8 We can also express the length of an arc traced on ¥ with respect
tot:

b
s(t) = / VEdu? + 2Fdudv + Gdv? .

11.2.2 Normal. Local frame. Darboux’s frame

We will then focus on the notion of normal and oriented normal. Let ¥ be a simple
surface of class C*¥ (k > 1) of £ defined by the parameterization o : (u,v) —
M (u,v) = o(u,v).

Normal. We pose :

N(u,v):ﬁ/\?z,

with 7 and 75 the vectors of the basis of the tangent plane previously introduced.
With the notations introduced before, we can write :

|N(u,v)|| = H(u,v) with H =+/EG—F?.

The vector N (u,v) thus defined is called the normal vector to ¥ at M associated
with the given parameterization o. The affine line passing through M and directed
by the vector N (thus orthogonal to the tangent plane) is called the normal to ¥
at M. !

Oriented normal. The unit vector

_,( ’U) N(u,v) T AT
n\u = == -
’ H(u,v) || AR

does not depend on the orientation of ¥ with respect to the given parameterization.
This vector is the unit normal vector at M to X.
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Local frame. At the point M = o(u,v), the tangent plane Ty can be defined
by means of the parametric equation : M + A7 + #T2. The normal 7 A 7 to the
plane Ty coincides with the normal to ¥ at M. So, the unit normal

TIAT

= = A =1
170 A 7|

and the vectors 71 and 7 form a local system of coordinates :
-7:loc = [M1F1)F2aﬁ]1
the so-called local frame at M (Figure 11.7, left-hand side).

Remark 11.9 Notice also that the azes 7, and 7 usually form only an affine
system. This frame is the analogue of the Frénet frame for the curves.

Figure 11.7: Left-hand side : the local frame at point M = o(u,v) of . Right-
hand side : the Darbouz frame (moving frame) associated with point M = o(u,v)
of ¥ and with the tangent 7.

Darboux’s frame. The Darbouz frame [M,7,§, 7 associated with the pair
(M, 7) is defined by 7, a unit tangent vector at M to X, by 7, the unit normal
vector and by the vector § =i A 7 (Figure 11.7, right-hand side).

We now consider a regular and oriented arc I traced on . The moving frame

fmoving = [7(3)’ 7_:(3))5(3)’ ﬁ(s)]

is the Darboux frame of T (associated with a normal parameterization s — y(s)).
Moreover, the vector §(s) is called the geodesic normal vector to T' at the point
M = ~(s).

Given a curve T' traced on ¥, the tangent 7 to I' at M is one of the vectors of
Ty and a moving frame can be associated with this particular tangent vector.

The study of the various curves passing through a point M allows us to capture
the behavior of the surface in the vicinity of M. For instance, the intersection of
Y with any of the planes containing the unit normal 7 defines one of the curves
we are interested in. Such a plane IT,, is a normal section to the surface at M.
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11.2.3 Normal curvature, curvature and geodesic torsion

The normal curvature of I' is defined by the function :

| (a4 [ d
Kn @S+ Kn(s) = ms)=—\T )

The geodesic curvature of T' is defined by the function :

L d7 _ dg
Ky 5> Kg(s) = 90 )="\"3 )

Finally, the geodesic torsion of T' is defined by the function :

L dn L dg
Tg:s—>Ty(s) = 995 =~ n’d_s .

Using all these definitions, the Darbouz formulas are the following :

a7 . . dg - . dn - -
e = KgJ + KnTl, T = —kgT —Tyn, T = —kpoT+Tyg.

11.2.4 Second fundamental form

At the point M = M (u,v), any vector 7 of the tangent plane Ths can be written
as ¥ = A7, + pT7h. Let @i be the unit normal vector to Typ; at M defined above.
Using the same notations as in the previous section, we have :

_/LdR\ /. di
Kp =N, E = T, ds

where _,( )
- N(u,v
ii(u,v) = Huo)
Developing the first formula, we obtain a relationship of the following form :
du\? du dv v\’
= — —_—— — 11.19
fin L(ds> +2Mdsds+N<ds) ’ ( )
where :

_9°M _ M e 62M>

Formula (11.19) indicates that the normal curvature of I' at M depends only on
the direction of the unit tangent vector :

OM du  OM dy
Ou ds Ov ds’
Thus we introduce the second fundamental form of the surface :

Definition 11.8 Let Ty be the tangent vector plane to the surface ¥ at M, the
second fundamental quadratic form of ¥ at M is the quadratic form :

M (V) = LA + 2MAp+ Ny?,
the values L, M, N being given by the formulas of Relation (11.19).

7=
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Expression of ®;. The expression of ®) can also be written as a differential
form :
®M(dM) = Ldu® + 2Mdudv + Ndv?

with dM = ‘%idu + %tidv. Posing

M= ).

we can write ®}/ as a matrix form (as we did for oM .
(V) =4 AMy(M)A.

Remark 11.10 The second fundamental form measures the deviation between the
tangent plane and the surface at M.

Case of a Cartesian parameterization. Let us assume that the surface ¥ is
parameterized by the Cartesian equation z = o(z, y), where o is of class C? at least.
Let M(z,y) be the point of coordinates (z, y, o(z, y)), the second fundamental form
is :

&y (dM) = %(rdac2 + 2sdzdy + tdy?) ,
with oM oM
dM = —d —_
oz " + G, 4y,
and

H=v1+p*+q?,

1

posing : p=o0y, ¢ =0, r=0l, 5= Oy and t = 0'1’/’2.

11.2.5 Computing curvatures and geodesic torsion

The normal curvature &, at point M of ¥ is related to a tangent vector of the |

form V = ATy + pTs by the relation :

o} (V)

kn(V) = <I>{W(V) .

Whenever V varies, this function admits two extrema, the principal curvatures
to which are associated the two principal radii of curvature and the two principal
directions.

Remark 11.11 We consider the curve traced on the surface and defined by the
segment joining (u,v) to (u+ A\, v+ p). We have seen previously that this curve
could be approached by a parabola with a limited expansion truncated at order 2.
Using Pythagorus’s theorem, we can then write :

(r7)— o2+ (a34(7)) = RO,
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and, neglecting the terms at order 2 before those at order 1, we have :

L [ eM(V)
R(7) = <_¢¥(v)) |

All this information can be used to control the quality of the geometric poly-
hedral approximation of the surface (cf. Chapter 15).

Curvatures. Let x; be the minimal curvature and let k9 be the maximal cur-
vature. We define the Gauss curvature®, the mean curvature and the absolute
curvature respectively as :

KGauss = K1K2,

K1+ Ko
KMean — 9 ,

Kabs = |k1] + |K2] .

Geodesic torsion. Let ' be an arc defined by a normal parameterization and
traced on X. The geodesic torsion of T is given by the formula :

1 5_M/\_8__]\1 7‘-‘/\d_ﬁ
du Ov '’ ds /"’

=5
which can also be written as :

_ oM <,,<9_M>

T = 1 A "
TR (4,0 i oidy
ds’ Ou ds’ Ov
11.2.6 Meusnier’s circle and theorem

We assume that the normal curvature &, is not null and we denote by @, =
M + R,7i the center of normal curvature. If T' is a simple and regular arc traced
on ¥ and tangent to ¥ at M, the center of curvature Q of I' at M is defined by :

1
Q=M+RF, with R= = =22
C Kn

= R, cosa.

where o denotes the angle between the normal 7 to I' and the normal 7 to ¥ at
M. The point Q is the projection of Q,, onto the principal normal to v at M.

The relation k,(7) = Ccosa has an interesting application. If T is the inter-
section of ¥ by a normal section, we find that the circle of diameter &, (), the
Meusnier circle, is the geometric locus of points M, endpoints of the segments
PM, such that ||PM|| = C, the curvature of a curve I' whose normal 7 makes an
angle o with the unit normal 7i to ¥. In other words, &, (7) and o make it possible
to obtain the curvature of various curves under this angle.

?Also called the total curvature.
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11.2.7 Local behavior of a surface

In the local study of curves (Section 11.1.4), we have seen that the curvature gives
an indication of the deviation of the curve with respect to the tangent in the
vicinity of a point M. Similarly, we will analyze the behavior of a surface with
respect to its tangent planes.

Let X be a simple and regular surface of class at least C'2, defined by a param-
eterization 0. We wish study the behavior of the surface ¥ in the neighborhood
of a point M = o(u,v).

We consider a small increase AM = (Au, Av) in u and v in the neighborhood
of M, assumed to be sufficiently small. Applying a Taylor series at order 1 to o,
we have :

o(u+ Au,v+ Av) = o(u,v) + Au oM + Av oM + O(||AM|?) .
Ou v
This local study corresponds to an approximation of the surface by a plane (the
tangent plane), noted Ty, directed by the vectors 7 and 7 at point M.

To estimate the gap between the surface and the approximation, we pursue the

development at order 2 (for a surface smooth enough) :

o(u+ Au, v+ Av) = o(u,v) + Aufy + AvF

1 0 O M O*M , 0°M 3

In this expression, the term of order 2 enables us to measure the desired gap. The

local analysis corresponds to an approximation of the surface by a paraboloid (a |

quadric) P. Notice that in this development, we can exhibit the terms L, M and
N previously introduced by observing the projection on 7, we have :

0*M , O°M
+A’U —av—Q,n

2
(Au? oM +2AuAv

= Au? A N,
507 Sude ) u L +2AulAvM + Av

that makes use of the second fundamental form @, of the surface (i.e., the quadratic

form associated to ¢’ at M). The nature of the form ®, corresponds to a local ’

geometric property of ¥ at the point M.
In the Taylor series at order 2, the second order term allows us to determine
whether the tangent plane Tys intersects the surface in the neighborhood of M.

Dupin’s indicatrix. Using the polar coordinates, r = /P and 6, a point P of |

the tangent plane Ths at M can be written as :

T =./pcosf and Yy =+/psinf,

where 6 denotes the angle between one of the principal directions (the other being |

orthogonal) and the line M P. We can then use the Euler relation [doCarmo-1976] :

Kn = K1 cos2 0 + Ko sin? 0,
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relating the minimal and maximal curvatures to the normal curvature and, then,
we can write :
\ , 2t P
K1Z + Koy’ = — + = ==+1. (11.20)
P1 P2
which corresponds to the equation of a conic section, called the Dupin indicatriz.
Notice, by the way, that a change in the orientation of the normal does not change
the sign of p, thus the symbol £ in the relation.
Let us now consider a plane T;, parallel to the tangent plane Ty at M and
located at a distance ¢ of Tas. Considering the Taylor series at order 2 of ¢, the

trace of the quadric in this plane is such that :

2 2
9 M+2AuAv~a£+sza M

2 gM
{Au Ou? Ou Ov Ov?’

n) = ¢,

The idea is here to consider that the Dupin indicatrix represents the intersection
of the surface (locally approached by the paraboloid) and the plane 7. (within a
scale factor ¢, such that ¢ = ﬁ)

We study the behavior of the curve defined by Equation (11.20) in the plane
T:, according to the curvatures x; and k2, by noticing that the conic is a curve
not depending on the parameterization of X. This curve is (Figure 11.8) :

o an ellipse, when k1 ks > 0,
¢ two parallel lines (at a distance of 2p; or 2p3), when k1 = 0 or k9 = 0,

o a pair of hyperbolas, when &1 k9 < 0.

AN

Figure 11.8: Dupin’s indicatriz :  elliptical point, Ky ks > 0 (left-hand side),
parabolic point, k1 =0 or ks = 0 (middle) and hyperbolic point, k1 ky < O (right-
hand side).

From a geometric point of view, when the distance € between 7. and Tar tends
towards 0, the curve is reduced down to a-contact point only. When decreasing the
diStance, the curve is scaled up continuously, we observe that this curve approaches
an ellipsis (in the case of an elliptical point) whose center is the contact point.
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11.3 Computational issues about surfaces

In this last section, we will focus on problems which commonly arise when dealing
with surfaces.

11.3.1

Let ¥ be a simple regular and oriented surface of class C* (k > 2) defined by
a parameterization (u,v) — M (u,v). Consider a curve I' traced in a normal
section I, at a point M to the surface.

The curvature of ' at a point M characterizes the geometry of the curve in
the neighborhood of this point. The normal curvature characterizes the surface in
the neighborhood of the same point. The expression of the curvature of I shows
the tangent vector 7 and the unit normal 7 as follows :

d*4(t)

ds?

Curvature computation

b

=CP(t) or C=

whereas the normal curvature of the surface at M is characterized by :

k= kn(F) = <d;_f)n> _ <%§fln> .

vy=YXnIl,

St

VA,

Figure 11.9: A normal section II,, and the curve T’ representing the intersection of
the surface with this plane.

In fact, &, (7) measures the curvatures of the surface with respect to its unit ]
normal 77 at M in the direction 7. Thus, we have :

kn(T) = Ccosar,

where « is the angle between o and 7.
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Remark 11.12 If i = U (when these two vectors are colinear), the curve T is
called a geodesic. In other words, at point M, the unit normal @i to % is the
geodesic normal of v.

As we assumed a parameterization o of ¥, the relations
7(t) = o(u(t),v(t)) or y(s) =a(u(s),v(s)),

are established, the characteristics of ¥ (i.e., its normal curvatures) can be ob-
tained with respect to o and to its derivatives.

As (7, 7) =0,

K= mﬁ 1s also =~ "d—ﬁ
= A K= T’ds )

Denoting 7 = B2, we have Hii = 7 A 7 and using again (7, 7) = 0,

SAHAN /AN di
s )\ ) TS

is finally reduced to :

hence
_ di\ 1 /_d(RAAT)
h= <T’ds>—_—H<T’T '

Now, depending on u and v, as

d('Fl/\FQ) dT1 o - ng
s o \@ A EAGS
with
d_ﬁ__ajd_u_,_@@ and d?z_a?zdu 87_"26112
ds =~ Ou ds Ov ds ds ~ Ouds ' Ovds

we thus have :

Wrz) (2

87—"1 dv - - 8F2 du 67"'2 dv
ds duds T B 5)”2)+<T1A(a—u§;+‘am*s)>'

Finally, the expression of the curvature Kn) is given by the following formula :

\L _du _ dv o7 du = 071 dv » . O du = 0% dv
H<(T1ds+TQ£>’(<’EE£+E)—U£)A‘Q)+(T’A<EE+55§>)>’

then, for instance L, the coefficient depending on (du/ds)? is :

1 /. loks . L 0% 1 . . 1
L= g <7'1, (-671 AT+ 7 A 3—;2)> = -—ﬁ(rl,(cr;'u AT)) = i (B AT, 00,
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which is simply :

H Yy uu
previously defined. Similarly, we can demonstrate that :

TN Ty ‘ -
< ol ie., (f,ou,),

M = (f,o.,) and N = (7, 0),).

Exercise 11.1 Establish the previous results for M and N (Hint : find the terms
in du/dsdv/ds and (dv/ds)?, respectively).

Using these values, the normal curvature is given by :

du\? du dv dv\?

Ldu? + 2 Mdudv + Ndv?
K =
ds?

e,

—

Ldu® + 2 Mdudv+ Ndv? @Y (F)
kn(T) =k = =

"~ Edu? +2Fdudv+ Gdv? ~ ®M(7F)

according to a given direction 7 such that ¥ = du7, + dv7,. Thus, we find the
relation between the two fundamental forms (evaluated in 7) introduced previously.

(11.21)

11.3.2 Normal curvature analysis

Let A and p be two parameters and consider ¥ = A7 + uf,. Using the previously :
established result, we can write :

LA 42 MM+ Ny?
T EN 4 2F i+ Gu?

the aim is to determine how this function varies. To this end, we study its variation ’
with respect to the two parameters. We start by searching the extrema of this |
function, which are given by the relations :

Okn(A, p) Okn (A, 1)
N P

These two relations lead to a unique equation :

(FL— EM)\ 4+ (GL— EN)Ap + (GM — FN)u> = 0.

kn(T) = kn (A, p)

=0.

(11.22) |

Notice that this relation can also be written in the following form :

,U2 ")\/1 22
det| E. F G |=0. (11.23) §
L M N |

If the three coefficients of the relations are null, then the two fundamental forms are §
proportional, irrespective of the values of 7 (i.e., for all (A, 1)) and the curvature:
is constant along the normal sections. In this case, the constant curvature is then :}

L_M _N
E-F G

kn(T) = Kkn =
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In the other cases, this equation admits two distinct solutions (i.e., two pairs
(A1, 1) and (A2, p2)). With each of these pairs is associated a vector, respectively :

‘71 =M7 + p17  and ‘72 = A7) + poty .

1, and ‘7'2 are orthogonal, i.e., (‘71, ‘72) = 0. They define the two principal direc-
tions. The vectors

—

N - V.
| = — Wy = ——
[IVi]] (V2]
form with 77 an orthonormal basis called the local principal basis at point M and
denoted as :

BM'—‘[M,V_[‘/qu,ﬁ]

With each principal direction is associated a principal curvature, which is the
solution of :
kE—-L KkF-M | _

det| "o " oy | =0 (11.24)

To summarize, the surface ¥ at point M is characterized by its local principal
basis Bys, its two principal curvatures k; = Kn(A1,p1) and Ky = Kn(Az, p2) and
thus by its two principal radii of curvature p; = 1/k1 and py = 1/ko whose
variations allow us to determine locally the geometry of the surface.

Remark 11.13 By comparing this result with the expression of the geodesic tor-
ston defined previously, we again find the fact that the two principal directions are
the directions for which the geodesic torsion is null.

Remark 11.14 All the functions introduced in this section will serve to define the

theoretical requisites needed to control the meshing process of surfaces (cf. Chap-
ter 15).

11.3.3 Relationship between curvatures and fundamental
forms

We suggest here a different way of establishing the results given above. To this
end, let. us consider the two metrics associated with the two fundamental forms.
Accordlng to the previous sections, we already know that :

M= (7 5.

I8 attached to the first fundamental form and that -

Moo = (5 Y

Corresponds to the second fundamental form.
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Let us consider the matrix A" = M] M. This matrix is diagonalizable (as it
is a Mi-symmetric matrix). Let Wi and W5 be the two unit eigenvectors of N.
Then, for each vector V of Ty, expressed according to Wi and Ws, we have :

& (V)=a?+ 4% and ®y(V) = k1a? + k2 f?
leading to : .
<I>2(V) _ nlaz + Klzﬂz
@, (V) a? + g2
The extrema of fcn(V) are obtained for « = 0 or 8 = 0. Hence, k; and k; are
naturally extrema (in the previous expression).

The corresponding directions (i.e., the V’s) are W, (for 8 = 0) and Wy (for
a = 0).

fcn(V) =

Remark 11.15 In fact, finding the principal directions is only a geometric inter-
pretation of the problem of the simultaneous reduction of two fundamental quadratic
forms (cf. Chapter 10).

11.3.4 Local behavior of a surface

The analysis of the local principal basis when M varies on ¥ allows us to capture
the local behavior of the surface. Indeed, the extremal values of «, the curvature
related to a point, characterize the type of the surface at point M. We can also
write :

k2 — (k1 4+ K2)k + K1K2 =0,

or
n2_2'§Mean'€+"cGauss =0. (1125)

Thus we have :

INE-2MF + LG __LN—M2
KMean = 5 EG — F? and  KGauss = EG—_F.'Q_

When (cf. Figure 11.10) :
® KGauss > 0, the point M is said to be elliptic,

® KGauss < 0, the point M is said to be hyperbolic,
® KGauss = 0, the point M is said to be parabolic.

Obviously, when Kgauss and Kprean both tend towards 0, the surface is planar
at M.

Remark 11.16 For a point M of a simple and regular surface to be elliptic, it i5

necessary and sufficient that the second fundamental form is defined (positive or
negative). For the point M to be hyperbolic, it is necessary and sufficient that the
second fundamental form ®Y is non degenerated and non defined. Finally, for the

point M to be parabolic, it is necessary and sufficient that the second form <I>12W 15

degenerated.
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TAAR

Figure 11.10: Position of a surface with respect to a tangent plane. Elliptic point
(left-hand side), parabolic point (middle) and hyperbolic point (right-hand side).

11.4 Non-linear problems

The definitions of curves and surfaces usually leave out some problems. For in-
stance, the intersection procedures between two curves, two pieces of surfaces
(patches such those defined in Chapter 13) theoretically lead to solving a non-
linear equation. In the general case, these problems can also be solved explicitly
and therefore require the development of numerical approximation methods. Some
of these methods are presented in this section.

11.4.1 Non-linear issues

Let I'; and I's be two parametric curves associated with the functions 71 (t) and
72(t). The intersection of these curves is defined by the set of pairs of values :

(t1,t2) such that v, (t1) = y2(t2)

leading to a non-linear equation. Similarly let us consider ¥; and X5 two bi-
parametric patches, associated with the functions oy (u;,v1) and o3(ug,vs). The
Intersection between X; and X5 is defined by the set of pairs of vectors :

(u1,v1,ug,v2) such that oy (uy,v1) = oa(usz, va)

leading also to a non-linear equation. F inally, let us consider the intersection
be]tween a patch and a curve, we then have the following (non-linear) equation to
solve :

(u1,vy,t) such that oy(ui,vi) =71(t1).

Moreover, the projection and the search for the closest point on such a curve from

a given point according to a specific direction leads to a non-linear equation of the
following type :

dIM AW _

dt o

In such cases, the problems can be solved with the algorithms described in the
fOll.OWing sections. However, we should also mention here the algebraic methods.
This type of method is usually based on an implicit definition of F (ﬁ being a
VeCt(?r with d components representing the problem to be solved), F = 0. More

t such that ||M+(¢)|| is minimum, or also
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details about such methods can be found in the literature [Sederberg-1987]. We
will not spend more time here on these issues as they are seldom used in this
context.

11.4.2 Newton-Raphson type algorithms

Let us consider ﬁ(zl,xg, ) = 0 as the problem to be solved, for which F is a
vector with m components. We are searching for the best vector (z.e., the optimal
vector, in a certain sense) ¥ = (1, &2, ...2z5) such that the equation is guaranteed.
The basic idea of a Newton-Raphson-type method is to identify the zeros of the
vector function F, using the following algorithm :

Algorithm 11.1 Newton-Raphson algorithm

Initialize & randomly,
WHILE ||F(Z)]| > «
in first approximation, consider the asymptotic development

of F :
Fi(Z 4 dT) = F;(Z) + g—f—j—dm + %dmz + ...+ %dmn
where j € [1,m]
solve the linear system Fj(Z + dZ) =0 with df as unknown
set 7 to the value &+ d¥
compute F(Z)
END WHILE.
RETURN %

Remark 11.17 This algorithm yields a unique value for . This solution greatly |
depends on the value used to initialize . If more than one solution exists, only
one 1s returned by the algorithm. Hence, the solution found may not be the global
minimum of the function.

Figure 11.11 illustrates the behavior of the algorithm for a function of one |
parameter. Solution z3 is the unique solution returned by the algorithm, whereas |
three solutions can be shown.

Remark 11.18 In some cases, the system to be solved is under-determined, i.e.,
m < n. In such cases, new equations need to be added, depending on the context, |
to find the best direction for the vector F.

11.4.3 Divide and conquer algorithm

Newton-Raphson-type algorithms do not allow a complete analysis in the interval
in which the solution is assumed to be. The divide and conquer strategy attempts
to identify the different sub-domains where a solution might exist. The main idea is
to bound the values of F in an interval. If the interval contains 0, the latter is then
subdivided into m (usually m = 2) sub-domains. This process is then repeated
on each sub-domain. Each branch of the binary tree structure associated with
this method is analyzed and recursively subdivided until a given minimal size i8
reached. ‘
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F(o)
F(.’Lz)

Figure 11.11: Resolution of an equation using a Newton-Raphson method.

Remark 11.19 Such an algorithm does not strictly speaking solve the initial prob-
lem. In fact, it identifies the various sub-domains where a solution may be found.
From a practical point of view, a Newton-Raphson algorithm is then employed to
find the solution in each interval.

Remark 11.20 (Method based on a grid) This type of method starts by defin-
ing a grid a priori over the computational domain. Then, a linear interpolation of
Fus constructed. The non-linear problem is solved using the linear interpolation
of F. Seen from this point of view, this method is another way of subdividing
the domain in such a way so as to localize the various possible solutions. From a
practical point of view, the grid used is a regular grid in the space of .



