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Introduction

General introduction

Mesh generation techniques are now widely employed in various engineering fields
that make use of physical models based on partial differential equations (P.D.E.).
Numerical simulations of such models are intensively used for design, dimension-
ing and validation purposes. One of the most frequently used methods, among
many others, which is used in this respect is the finite element method. In this
method, a continuous problem (the initial P.D.E. model) is replaced by a discrete
problem that can actually be computed thanks to the power of currently available
computers. The solution to this discrete problem is then an approximate solution
to the initial problem whose accuracy is based on the various choices that were
made in the numerical process.

The first step (in terms of actual computation) of such a simulation involves
constructing a mesh of the so-called computational domain (i.e., the domain where
the physical phenomenon under interest occurs) so as to replace the continuous
region by means of a finite union of (geometrically simple and bounded) elements
such as triangles, quads, tetrahedra, pentahedra, prisms, hexahedra, etc., based
on the spatial dimension of the domain. For this reason, mesh construction is an
essential pre-requisite for any numerical simulation of a P.D.E. problem. Moreover,
mesh construction could be seen as a bottleneck for a numerical process in the sense
that a failure in this mesh construction step renders any subsequent numerical
simulation impossible.

*
*x *

While there are numerous textbooks, monographs, handbooks, thesis disser-
tations and journals as well as conferences, symposia and workshops devoted to
both finite element theory and practical issues, it appears that this is not so clearly
the case for meshing technologies. Indeed, finite element aspects are considered
worldwide to be an important topic of study at university whereas meshing tech-
nology aspects are frequently neglected as a full topic of interest. Thus, in the best
cases, this aspect is briefly mentioned as a (purely) technical point that is possibly
non-trivial (but, doubtless, one which can be successfully handled by commercial
software packages !).
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This situation deserves some comments. Actually, mesh construction for nu-
merical simulation purposes involves several different fields and domains. These
include (classical) geometry, so-called computational geometry and numerical sim-
ulation (engineering) topics coupled with advanced knowledge about what is glob-
ally termed computer science. The above classification in terms of disciplines which
can interact in mesh construction for numerical simulation clearly shows why this
topic is not so straightforward. Indeed, people with a geometrical, a computational
geometry or a purely numerical background do not have the same perception of
what a mesh (and, a fortior:, a computational mesh) should be, and subsequently
do not share the same idea of what a mesh construction method should be.

*
* %

To give a rough idea of this problem, we mention, without in any way claim-
ing to be exhaustive, some commonly accepted ideas about meshes based on the
background of those considering the issue.

From a purely geometrical point of view, meshes are mostly of interest for
the properties enjoyed by such or such geometrical item (and probably not the full
mesh itself), for instance, a triangle. In this respect, various issues have been inves-
tigated regarding the properties of such an element including aspect ratios, angle
measures, orthogonality properties, affine properties and various related construc-
tions (centroids, circumcenters, circumcircles, incircles, particular (characteristic)
points, projections, intersections, etc.).

A computational geometry point of view mainly focuses on theoretical proper-
ties about triangulation methods including a precise analysis of the corresponding
complexity. In this respect, Delaunay triangulation and its dual, the Voronoi di-
agram, have received much attention since nice theoretical foundations exist and
lead to nice theoretical results. However, triangulation methods are not necessar-
ily suitable for general meshing purposes and must, to some extent, be adapted or
modified.

Mesh construction from a purely numerical point of view (where, indeed,
meshes are usually referred to as triangulations) tends to reduce the mesh to
a finite union of (simply shaped) elements whose size tends towards 0 :

“ Let Tp, be a triangulation where h tends to 0, then ..., ”

the above 7}, being provided in some way or other (with no further details given on
this point), the construction of 7} is no longer a relevant problem if a theoretical
study Is envisaged (such as a convergence issue for a given numerical scheme).

In contrast to all the previous aspects, people actually involved in mesh con-
struction methods face a different problem. Provided with some data, the problem
is to develop methods capable of constructing a mesh (using a computer) that con-
forms to what the “numerical” and more generally the “engineering” people need.
With regard to this, the above h does not tend towards 0, the domain geometry
that must be handled could be arbitrary and a series of requirements may be de-
manded based on the subsequent use of the mesh once it has been constructed. On
the one hand, theoretical results about triangulation algorithms (mainly obtained
from computational geometry) may be not so realistic when viewed in terms of
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actual computer implementation. On the other hand, engineering requirements
may differ slightly from what the theory states or needs to assume.

*
*x Kk

As a brief conclusion, people involved in “meshing” must make use of knowledge
from various disciplines (mainly geometry and computational geometry) then com-
bine this knowledge with numerical requirements (and computational limitations)
to decide whether or not such or such a priori attractive aspect (for a particular
discipline) is relevant for a meshing process. In other words, good candidates for
mesh construction activities must have a sound knowledge of various disciplines
so as to be able to select from these what they really require for a given goal.

Having made these “philosophical” remarks about meshing technologies, we
should point out that this topic is becoming increasingly recognized as a subject
of interest in its own right, not only in engineering but also in some universities
as well. In practice the subject is being addressed in many places all over the
world, and a large number of people are spending a great deal of time on it. A few
specialized conferences and workshops do exist and papers on meshing technologies
can be found in various journals. Up to now, however, it has not been so very
difficult to enumerate all the available books! entirely (or substantially) devoted
to meshing technologies, which indicates that there is still a shortage of textbooks
about this topic. The reader could well find here one reason which motivated this
work, together with the fact that the technology has developed very rapidly over
the last few years. The present work could also be seen as a successor to the
reference [George-1991].

Purpose and scope

The scope of this book is multiple and thus the potential categories of intended
readers are various. As a first remark, we like to think that the theoretical back-
ground that is strictly necessary to understand the book is anything but special-
ized. We are confident that a reasonable knowledge of basic geometry, a touch
of computational geometry and an idea of what a numerical simulation is (for

'Probably the very first significant reference about mesh generationis the book by Thompson,
Warsi and Mastin, [Thompson et al. 1985], authored in 1985, which mainly discussed structured
meshes. A few years after, in 1991, a book by George, [George-1991], was written which aimed
to cover both structured and unstructured mesh construction methods. More recently, a book
authored in 1993 by Knupp and Steinberg, [Knupp,Steinberg-1993], provided an updated view
of structured meshes while, in 1998, a book fully devoted to Delaunay meshing techniques,
[George,Borouchaki-1997], appeared. Among books that contain significant parts about meshing
issues, one can find the book authored by Carey in 1997, [Carey-1997].

Thus, it is now possible to find some references about mesh technology topics. In this respect,
one needs to see the recent publication (at the time of writing this book), of the Handbook of
Grid Generation, edited by Thompson, Soni and Weatherill, [Thompson et al. 1999], which, in
about 37 chapters by at least the same number of contributors, provides an impressive source of
information. To end, notice the scheduled publication of another collective work, “Meshing”, in
the MIM (Mécanique et Ingénierie des Matériaux) series published by Hermés, Paris.
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instance some basic notions about the finite element method) provide a sufficient
basis for the reader to profit from the material discussed. With regard to this, one
of our objectives has been to make most of the discussions self-contained.

One issue underlying some of the discussions developed in the book was what
material the reader might expect to find in such a book. A tentative answer to
this point has led us to incorporate some material that could be judged trivial by
readers who are already familiar with some meshing methods, yet we believe that
its inclusion may well prove useful to less experienced readers.

We have introduced some recent developments in meshing activities, even if
they have not necessarily been well validated (at least at the industrial level), so
as to permit advanced readers to initiate new progress based on this material.

It might be said that constructing a mesh for such or such a purpose (academic
or industrial) does not strictly require knowing what the meshing technologies are.
Numerous engineers confronted daily with meshing problems, as well as graduate
students facing the same problem, have been able to complete what they need
without necessarily having a precise knowledge of what the software package they
are familiar with actually does. Obviously, this point of view can be refuted and
clearly a minimum knowledge of the available meshing technologies is a key to
making this mesh construction task more efficient. Finally, following the above
observations, the book is intended for both academic (educational) and industrial
purposes. In this respect, various categories of persons are targeted including
graduate and post-graduate students, researchers from universities, public and
private laboratories, developers as well as users and, why not, managers.

Synopsis

Although we could have begun by a general purpose introduction and led on to a
presentation of classical methods, followed by a discussion of advanced methods,
speclalized topics, etc., we chose to structure the book in such a way that it may be
read sequentially. Relevant ideas are introduced when they are strictly necessary
to the discussion, which means that the discussion about simple notions is made
easy while when more advanced discussions are made, the more advanced ideas are
given at the same time. Also, some almost identical discussions can be found in
several sections, in an attempt to make each section as self-contained as possible.

*
*x K

The book contains 23 chapters. The first three chapters introduce some gen-
eral purpose definitions (Chapter 1) and basic data structures and algorithms
(Chapter 2), then classical mesh generation methods are briefly listed prior to
more advanced techniques (Chapter 3). The following chapters provide a de-
scription of the various mesh generation methods that are in common use. Each
chapter corresponds to one type of method. We include discussions about al-
gebraic, P.D.E.-based or multi-block methods (Chapter 4), quadtree-octree based
method (Chapter 5), advancing-front technique (Chapter 6), Delaunay type meth-
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ods (Chapter 7), mesh generation methods for implicitly defined domains (Chap-
ter 16) and other mesh generation techniques (Chapter 8) not covered by the pre-
vious cases. The next chapter (Chapter 9) deals with Delaunay-admissible curve
or surface meshes and then discusses medial axis construction along with the var-
ious applications that can be envisaged based on this entity. Prior to a series of
five chapters on lines, curves and surfaces, a short chapter concerns the metric
aspects that are encountered in mesh generation activities (Chapter 10). As pre-
viously mentioned, Chapters 12 to 16 discuss curves and surfaces while Chapter 11
recalls the basic notions regarding differential geometry for curves and surfaces.
One chapter presents various aspects about mesh modification tools (Chapter 17),
then, two chapters focus on optimization issues (Chapter 18 for planar or volumic
meshes and Chapter 19 for surface meshes). Basic notions about the finite element
method are recalled in Chapter 20 before looking at a more advanced mesh gener-
ation problem, namely how to construct an adapted mesh (Chapters 21 and 22).
Parallel aspects are discussed in Chapter 23. To conclude, an extensive index is
given to help the readers to quickly locate the information they require.
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Symbols and Notations

Notations and abbreviations are generally explained when they occur in the text.
However, the list provided below describes the most frequent notations, symbols
and abbreviations.

Notations.
d refers to the spatial dimension
N, R set of integers, set of reals
Q refers to a closed geometric domain of R¢
o0 refers to the (discretized) boundary of Q
I'(£2) refers to the boundary of Q
r,x refers to a curve, a surface
v, o refers to the parametrization of a curve, a surface
T, Th, Tr refers to a triangulation or a mesh
VorS refers to a set of vertices
Const refers to a constraint (a set of entities)
Conv(V) refers to the convex hull of V
(A H) refers to a control space
K refers to a mesh element
Sk, Vi refers to the surface area, the volume of element K
Qx shape quality of mesh element K
dap, d(A,B) (Euclidean) distance between A and B
I ﬁ” Euclidean length of segment PQ
laB (normalized) length of edge AB
Symbols.

\4 gradient operator

H Hessian tensor

|a absolute value

] integer part or restriction

|

Al Euclidean length of a vector
1 a closed interval

(u,v)  dot product of two vectors
(. A .} cross product of two vectors
u u transposed (also u')
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Abbreviations.

BRep, F-Rep Boundary Representation, Function Representation

C.AD. Computer Aided Design

CS.G. Constructive Solid Geometry
M.A.T Medial Axis Transform

F.E.M. Finite Element Method

P.D.E. Partial Derivative Equation
NURBS Non Uniform Rational B-Splines
LIFO Last In First Out

FIFO First In First Out

BST Binary Search Tree

AVL Adelson, Velskii and Landis tree

Finally, let us mention, at this time, two websites devoted to meshing technologies :

http://www-users. informatik.rwth-aachen.de/ roberts/meshgeneration.html
http://www.andrew.cmu.edu/user/sowen/mesh.html

Chapter 1

General definitions

Introduction

Before discussing the various methods used for mesh construction, optimization,
modification and more globally for mesh manipulation (described in the following
chapters), it seems important to clarify the terminology and to provide some basic
definitions together with some notions of general interest. Thus, this chapter
sets out some definitions and basic notions related to triangulation and meshing
problems. First, we define the covering-up of a bounded domain, then we present
the notion of a triangulation before introducing a particular triangulation, namely
the well-known Delaunay triangulation.

A domain covering-up simply corresponds to the naive meaning of this word
and the term may be taken at face value. On the other hand, a triangulation is
a specific covering-up that has certain specific properties. Triangulation problems
concern the construction, generally by means of simplicial elements, of a covering-
up of the convex hull of a given set of points. Based on the space dimension, a
triangulation consists of simplicial elements (triangles in two dimensions, tetrahe-
dra in three dimensions) such that certain properties hold.

If, in addition to the set of vertices, the boundary of a domain (more precisely
a discretization of this boundary whose vertices are in the above set) is specified
or, simply if any set of required edges (faces) is provided, we meet a problem of
constrained triangulation. In this case, the triangulation of the convex hull must
contain these required items.

In contrast, the notion of a mesh may now be specified. Given a domain, namely
defined by its boundary (actually a discretization of this boundary), the problem
comes down to constructing a “triangulation” that accurately matches this precise
domain. In a way, we are dealing with a constrained triangulation but, now, we
no longer face a convex hull problem and, moreover, the mesh elements are not
necessarily simplices.

After having established triangulation and mesh definitions, some other aspects
are discussed, including element definition (as an element is the basic component
of both a triangulation and a mesh), finite element definition as well as mesh data
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structure definition which are the fundamental ingredients of any computational
step with the finite element method (F.E.M.) and which are also useful in other
types of problems. In addition, we introduce some definitions related to certain
data structures which are widely used in mesh construction and mesh optimization
processes. To conclude, we give some views on mesh quality and mesh optimality.

Obviously this chapter cannot claim to be exhaustive. While it includes many
definitions and basic notions, others are not provided. However, specific ideas will
be introduced and discussed as required throughout the book.

1.1 Covering-up and triangulation

Let S be a (finite) set of points in R? (d = 2 or d = 3), the convex hull of S,
denoted as Conv(S), defines a domain © in RY. Let K be a simplex' (triangle
or tetrahedron according to d, always considered as a connected and closed set).
Then a covering-up 7, of Q by means of such elements (simplices) corresponds to
the following :

Definition 1.1 7, is a simplicial covering-up of  if the following conditions hold

e (HO)  The set of element vertices in T, s eractly S.

4
e (H1) Q= U K, where K s a simplez.
KET,

o (H2)  The interior of every element K in T, 1s non empty.
o (H3)  The intersection of the interior of two elements is an empty set.

Here is a “natural” definition. With respect to condition (H1), one can see
that € is the open set corresponding to the domain that means, in particular, that

Q= U K. Condition (H2) is not strictly necessary to define a covering-up, but
KeT,
it is nevertheless practical with respect to the context and, thus, will be assumed.

Condition (H3) means that element overlapping is proscribed.

1Let us briefly recall the definition of a d-simplex : we consider d 4+ 1 points a; = (a-i])fi=1 €
RY 1 < j <d+1, not all in the same hyper-plane, i.¢., such that the matrix of order d + 1 :

ali 21.d+1
A= oo .
adil ad,d+1
1 1 1

is invertible.A d-simplex K whose vertices are the a; is the convex hull of these points a;. Every
point z in R¢, with Cartesian coordinates z; is fully specified by the data of d 4 1 scalar values
A; = A;(z) that are solutions of the linear system :

d+1 _ o adl
3 aiA; =i with 30 X =1,
=1 1=1

whose matrix is A. The \j(z) are the barycentric coordinates of point r with respect to the
points a;.
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Similarly, we will consider conforming coverings-up, referred to as triangula-
tions.

Definition 1.2 7, is a conforming triangulation or simply a triangulation of Q
if T is a covering-up following Definition (1.1) and if, in addition, the following
condition holds :

o (H4) the intersection of two elements in T is either reduced to

— the empty set or to

- a verter, an edge or a face (for d =3).

More generally, in d dimensions, such an intersection must be a k-face?, for
k=-1,....d—1, d being the spatial dimension.

Figure 1.1: Conformal triangles (left-hand side) and non conformal triangles
(right-hand side). Note the verter located on one edge in this case.

Remark 1.1 For the moment, we are not concerned with the existence of such a
triangulation for a given set of points. Nevertheless, a theorem of existence will be
provided below and, based on some restrictive assumptions, the case of a Delaunay
triangulation will be seen.

Euler characteristics. The Euler formula, and its extensions, the Dehn-Som-
merville relationships, relate the number of k-faces (k = 0,...,d — 1) in a trian-
gulation of . Such formula can be used to check the topological validity of a
given mesh or also for other purposes (such as the determination of the genus of
a surface).

2A (—1)-face is the empty set, a O-face is a vertex, a 1-face is an edge, a k-face is in fact a
k-simplex with k < d, d being the spatial dimension.



30 MESH GENERATION

Definition 1.3 The Euler characteristics of a triangulation T, is the alterned
summation :

d
x =3 (=1fn, (1.1)
k=0
where ng, k = 0, ..,d denotes the number of the k-faces in the triangulation.

When the triangulation is homeomorphic to the topological ball, its character-
istic is 1. If the triangulation is homeomorphic to the topological sphere, its Euler
characteristic is 1 + (—1)9.

In two dimensions, the following relation holds :
ns—na+ne=2-c,

where ns, na and ne are respectively the number of vertices, edges and triangles
in the triangulation, ¢ corresponds to the number of connected components of
the boundary of Q2. More precisely, if the triangulation includes no holes, then
ns —na+ne = 1.

In three dimensions, the above formula becomes :

ns—na+nf—-—ne=2-2g,

where g stands for the genus of the surface (i.e., the number of holes). Thus, a
triangulation of a closed surface is such that ns — na 4+ nf = 2.

Delaunay triangulation. Among the different possible types of triangulations,
the Delaunay triangulation is of great interest. Let us recall that S is a set (or a
cloud) of points and that Q is Conv(S), the convex hull of S .

Definition 1.4 7, is the Delaunay triangulation of Q if the open (balls) discs
circumscribed associated with its elements contain no vertexr of S.

This criterion, the so-called empty sphere criterion or Delaunay criterion,
means that the open balls associated with the elements do not contain any ver-
tex (while the closed balls contain the vertices of the element under consideration
only). That is a characterization of the Delaunay triangulation. The Delaunay
criterion leads to several other characteristics of any Delaunay triangulation. Fig-
ure 1.2 shows an example of an element K which does not meet the Delaunay
criterion.

A basic theoretical issue follows :

Theorem 1.1 The Delaunay triangulation of a set of points exists and, moreover,
it 1s unique.

The proof is evident by involving the duality with the Voronoi diagram associ-
ated with the set of points (cf. Chapter 7). The existence is then immediate and
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Figure 1.2: The empty sphere criterion is violated, the disc of K encloses the
point P. Svmalarly, the circumdisc of the triangle with vertex P includes the verter
of triangle K opposite the common edge (the criterion is symmetric for any pair
of adjacent elements).

the uniqueness is clear since the points are in general position® if one wishes to
have a simplicial triangulation. Otherwise, the following remark holds.

Remark 1.2 In the case of more than three co-circular (four co-spherical) points,
a circle (sphere) exists to which these points belong. In such a case, the Delaunay
triangulation exists but contains elements other than simplices. Indeed, polygons
(polyhedra} may exist.

Hence, the uniqueness holds if non simplicial elements are allowed while if
the latter are subdivided by means of simplices, several solutions can be found.
Nevertheless, while it may be excessive, we will continue to speak of the Delaunay
triangulation by observing that all any partitions of a non simplicial element are
equivalent after swapping a k-face (as we shall see below).

A brief digression. The notion of a Voronoi diagram (though it had yet to
be called as such !) first appeared in the work of the French philosopher R.
Descartes (1596-1650) who introduced this notion in 1644 in his Principia Philoso-
phiae, which aimed to give a mathematical description of the arrangement of mat-
ter in the solar system. In 1850, G. Dirichlet (1805-1859) studied this idea in two
and three dimensions and this diagram came to be called the Dirichlet tessella-
tion [Dirichlet-1850]. However, its definitive name came after M.G. Voronoi (1868-
1908), who generalized these results in d dimensions [Voronoi-1908].

Nature provides numerous examples of arrangements and quasi-regular paving
which bear a strange resemblance to Voronoi diagrams.

3 A set of points is said to be in general position if there is no configuration of more than three
points that are co-circular (more than four co-spherical points).
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Figures 1.3 and 1.4 illustrate some of these typical arrangements.

Figure 1.3: The wings of a dragonfly (doc. A. LeBéon) show an alveolar structure
apparently close to a Voronoi diagram (left-hand side). One of the more repre-
sentative examples of regular paving (consisting of hezagonal cells) is that of a bee
nest (right-hand side).

Figure 1.4: Two examples of natural arrangements. Left-hand side : the basaltic
rock site of the Giant’s Causeway, Co Antrim, Northern Ireland (photo credit :
John Hinde Ltd.). Right-hand side, desert region of Atacama in the north of Chile,
the drying earth forms patterns close to Voronoi cells.

Constrained triangulation. Provided a set of points and, in addition, a set
of edges and faces (in three dimensions) , an important problem is to ensure the
existence of these edges (in two dimensions) or these edges and faces (in three
dimensions) in a triangulation. In the following, Const denotes a set of such
entities.

Definition 1.5 7, is a constrained triangulation of Q0 for Const if the members
of Const are entities of T,.
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In particular, a constrained triangulation? can satisfy the Delaunay criterion
locally, except in some neighborhood of the constraints.

Remark 1.3 As above, provided a set of points and a constraint, we are not
concerned here with the existence of a solution triangulation.

1.2 Mesh

Now we turn to a different problem. Let Q be a closed bounded domain in R? or
R3. The question is how to construct a conforming triangulation of this domain.
Such a triangulation will be referred to as a mesh of Q2 and will be denoted by 7,
or Ty for reasons that will be made clear in the following. Thus,

Definition 1.6 T, is a mesh of Q if

o
o (H1) Q= |J K.
KeTh

o (H2) The interior of every element K in Tn is non empty.

e (H3) The intersection of the interior of two elements is empty.

Condition (H?2) is clearly not verified for a beam element for instance. Condi-
tion (H3) avoids element overlapping. In contrast to the definition of a triangula-
tion, Condition (H0) is no longer assumed, which means that the vertices are not,
in general, given a priori (see hereafter) and, in (H1), the K’s are not necessarily
simplices.

Most computational schemes using a mesh as a spatial support assume that
this mesh is conforming (although, this property is not strictly necessary for some
solution methods).

Definition 1.7 7 is a conformal mesh of 0 of
o Definition (1.6) holds and
o (H4) the intersection of two elements in Ty is either,
— the empty set, a verter, an edge or a face (when d = 3).

Clearly, the set of definitions related to a triangulation is met again. The
fundamental difference between a triangulation and a mesh is that a triangulation
is a covering-up of the convex hull of a set of points (the latter being given) which,
in general, is composed of simplicial elements while a mesh is a covering-up of a

4Whereas a constrained Delaunay triangulation (for example in two dimensions) is a trian-
gulation which satisfies the empty sphere criterion, where a ball can contain a point in the case
where the latter is not seen, due to a constrained edge, by all the vertices of the considered
element. In other words, a constrained entity exists which separates the above points and the
others.
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given domain defined, in most of the applications, via a given discretization of its
boundary, this covering-up being composed of elements that could be other than
simplices. On the other hand, at least two new problems occur. These are related
to :

e the respect or enforcement, in some sense, of the boundary of the domain so
that the triangulation is a constrained triangulation,

o the necessity of constructing the set of points which will form the vertices of
the mesh. Usually the boundary points of the given boundary discretization
are given as sole input and field points must be explicitly created.

Remark 1.4 For a given domain (a boundary discretization) the existence of a
mesh conforming to this discretization holds in two dimensions but is still, at least
from a theoretical point of view, an open and delicate question in three dimensions.
In this respect, there is a series of simple counter-ezamples (see below).

Remark 1.5 In the finite element method, the meshes® are generally denoted by
Th, where the index h of the notation refers to the diameters of the elements in
the mesh, these quantities being used in error majoration theorems

As previously mentioned, a mesh can be composed of elements of different ge-
ometric natures. A mesh consists of a finite number of segments in one dimension,
segments, triangles and quadrilaterals (quad in short) in two dimensions and the
above elements, tetrahedra (tet), pentahedra and hexahedra (hex) in three dimen-
sions. The elements constituting the mesh must generally satisfy some specific
properties according to the application involved (see the next section).

Meshes can be classified into three main classes according to their connectivity.

Definition 1.8 The connectivity of a mesh is the definition of the connection
between its vertices.

Then, following this definition

Definition 1.9 A mesh is called structured if its connectivity is of the finite. dif-
ference type.

Such a mesh can be termed as a grid®. In two dimensions, a grid element
is a quadrilateral” while, in three dimensions, a grid consists of hexahedra. The
connectivity between nodes is of the type (i, j, k), i.e., assuming the indices of a
given node, the node with indices (3, 7, k) has the node with indices ((:—1),5,k) as
its “left” neighbor and that with indices ((: + 1), j, k) as its “right” neighbor; this
kind of mesh is convenient for geometries for which such properties are suitable,
i.e., for generalized quadrilateral or hexahedral configurations.

51t should be noted that people with a finite element background use the term triangulation
and use the term mesh synonymously.

6Note that some authors use the term “grid” to refer to any kind of mesh whatever its type
of connectivity may be.

7 Also simply referred to as a quad.
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Remark 1.6 Peculiar meshes other than quad or hex meshes could have a struc-
tured connectivity. For instance, one can consider a classical grid of quads where
each of them are subdivided into two triangles using the same subdivision pattern.

Definition 1.10 A mesh is called unstructured if its connectivity is of any other
type.

Such a mesh is usually composed of triangles (tetrahedra) but can also be a
set of quadrilaterals (hexahedra) or, more generally, a combination of elements of
a different geometric nature. Note that quad or hex unstructured meshes are such
that the internal vertices may be shared by more than 4 (8) elements (unlike the
case of structured meshes).

For completeness; we introduce two more definitions.

Definition 1.11 A mesh s said to be mixed if it includes some elements of a
different geometric nature.

Definition 1.12 A mesh is said to be hybrid if it includes some elements with a
different spatial dimension.

A mixed mesh, in two dimensions, is composed of triangles and quads. A
hybrid mesh, again in two dimensions, is clearly a mixed mesh but, for instance,
includes some triangles together with some segments.

To complete this classification, a mesh may be manifold or not. This point
concerns the surface meshes.

Definition 1.13 A surface mesh ts called manifold if its internal edges are shared
by exzactly two elements (one element in the case of a boundary edge for an open
surface).

Otherwise, the surface mesh is said to be non-manifold. This is the case of
surface meshes which include stiffeners or which have two or more connected com-
ponents.

1.3 Mesh element

The elements are the basic components of a mesh. An element is defined by its
geometric nature (triangle, quadrilateral, etc.) and a list of vertices. This list,
enriched with some conventions (see hereafter), allows the complete definition of
an element, including the definition of its edges and faces (in three dimensions).

Definition 1.14 The connectivity of a mesh element is the definition of the con-
nections between the vertices at the element level.

This connectivity, the local equivalent of the mesh connectivity (see a previous
definition), makes the description of the topology of the element possible.

l_)eﬁnition 1.15 The topology of a mesh element is the definition of this element
in terms of its faces and edges, these last two being defined in terms of the element’s
vertices.



36 MESH (GENERATION

Triangle connectivity and topology The (local) numbering of vertices and
edges is pre-defined in such a way that some properties are implicitly induced®.
This definition is only a convenient convention resulting in implicit properties.
In particular, the oriented numbering of the vertices enables us to compute the
surface area of a triangle with a positive, or directional, sense. It also allows us to
evaluate directional normals for each edge.

In the case of a triangle (in R?) with connectivity [1,2,3], the first vertex (1)
having been chosen, the numbering of the others is deduced counterclockwise.
Then the topology can now be well defined by means of the edge definition :

- edge [1] runs from vertex (1) to vertex (2)
edge [2] - (2) - (3),
- edge [3]: (3) = (1),

)

or
- edge [1] is opposite vertex (1), it runs from vertex (2) to vertex (3)
- edge (2] (3) - (1),
- edge [3]: (1) = (2).

The question is to define the topology, one or the other, and to conform to
this definition. Such an implicit definition will be a source of simplicity hereafter
{avoiding explicit definitions at the element level during the computational step
as mentioned earlier).

bl

Usual element connectivities and topologies Elements other than triangles
are now defined in terms of the two above definitions.

Figure 1.5: Segment, triangle and quadrilateral (local vertexr numbering, given the
first vertex index).

o The segment : [1,2], (1) = (2).

8Given a vertex numbering (index) based on an implicit definition results in implicit definitions
for both the edges and the faces, thus avoiding an explicit definition of these entities at the element
level, which would be tedious and memory consuming.
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o The quadrilateral : 1,2,3,4] with a numbering as for the triangle,

edge [1]: (1) = (2) edge [2]:
edge [3] : (3) = (4) edge [4] :

Figure 1.6: Tetrahedron, pentahedron and hezahedron.

e The tetrahedron®: [1,2,3,4] with (1~2, 13, 1—21) assumed to be positive with,
for the edges :
edge [1]: (1) = (2) edge [2]: (2) — (3) edge [3] : (3)
edge [4] : (1) = (4) edge [5]: (2) = (4) edge [6]: (3)
and, for the faces :

face [1]: (1) (3) (2) face [2]: (1) (4) (3)
face [3] : (1) (2) (4) face [4]: (2) (3) (4)

e The pentahedron: [1,2,3,4,5,6] with (12,13, 14) assumed to be positive,
with, for the edges :

edge [1] : (2) edge[2]: (2) = (3) edge [3]: (3)

(1) = —
edge [4] : (1) — (4 ) edge [5] : (2) — (5) edge [6] : (3) — (6)
edge [7] : (4) — (5) edge [8] : (5) — (6) edge [9]: (6) —

and, for the faces :

face [1]: (1) (3) (2)  face 2] : (1) (4) (6) (3)
face (3] : (1) (2) (5) (4) face [4] : (4) (5) (6)
face [5] : (2) (3) (5) (6)

¢ The hexahedron: [1,2,3,4,5,6,7,8], (f?, 14, 1—5) assumed to be positive, with

edge [1]: (1) = (2) edge [2]: (2) = (3)  edge [3]: (3) = (4)
edge [4] : (4) = (1)  edge [5]: (1) = (5)  edge [6] : (2) — (6)
edge [7]: (3) = (7)  edge [8]: (4) = (8)  edge [9] : (5) — (6)
edge [10] : (6) — (7) edge [11]: (7) = (8) edge [12]: (8) — (5)

9Similarly to the triangle, an alternative definition also suits well where face [i] is opposite
vertex (i). Actually, the latter convention leads to greater simplicity.
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and, for the faces :

face [1] : (1) (4) (3) (2) face [2] : (1) (5) (8) (4)

face [3] - (1) (2) (6) (5) face [4] : ( ) (6) (7) (8)

face [5] : (2) (3) (7) (6) face [6] : (3) (4) (8) (V)
Other types such as pyramid may be defined. Actually, this type of element
allows some flexibility for mixed meshes. This is the case when structured meshes
(i.e., hex meshes) must be combined with unstructured meshes composed by tets.

1.4 Finite element mesh

So far, we have considered meshes as geometric entities. Now we turn to the
notion of finite element meshes since we are mainly interested in finite element
computation as an application of great importance whose spatial support is a mesh
enriched by some ingredients. As will be discussed in Chapter 20, finite elements
will be constructed based on the mesh element. To this end, it will be necessary
to properly define the nodes, degrees of freedom, interpolation schemes, etc. so as
to compute what is required (stiffness matrix, right-hand side, etc.) in order to
obtain the solution to the problem under investigation.

Let us briefly recall for those not so familiar with a finite element style compu-
tation, that the classical scheme of such calculus includes the following steps (for
a simple case) :

e a mesh construction step whose purpose is to complete the list of the (geo-
metric) elements of this mesh,

¢ an interpolation step which, from the mesh elements, constructs the finite
elements,

¢ a matrix and right-hand side construction step to complete the system cor-
responding to the discretization of the initial equations,

e a solution step which computes the solution of the above system.

This being clear, we can proceed by giving some definitions related to the finite
element meshes.

Node definition. The finite elements will be associated with the mesh elements
at the computational step. For the moment, a finite element is a geometric element
supplied with a list of nodes.

Definition 1.16 A node is a point supporting one or several unknowns or degrees

of freedom (d.o.f.).

The nodes are defined according to the interpolation used in the computation.
For a given geometric element, several finite elements may be exhibited as a func-
tion of the interpolation step. The “simplest” finite element is the Lagrange P!
finite element whose nodes are the element vertices. A Lagrange P? finite element
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includes as nodes the element’s vertices and a point on each of its edges (in the
usual case, these nodes are the edge midpoints). Other finite elements may involve
several nodes for each edge, nodes located on faces or inside the element while the
element vertices may be nodes or not (see Chapter 20 where various examples of
finite elements are given).

Once the node location has been established, it is a case of defining a local
numbering for the nodes of the finite element. This task is trivial when the only
element vertices are the nodes as the node numbering follows the vertex number-
ing. If the nodes are defined elsewhere, the local numbering must be well defined
(implicitly as for the vertex or explicitly in some cases where an implicit definition
is not possible, for instance when the number of nodes varies from one edge to the
other as it does for some finite elements). If we consider a Lagrangian P? triangle,
it is natural to define the three first nodes as the three vertices and then to define
as fourth node the node located along the first edge of the triangle (and so on for
the other nodes). See also Chapter 20 and Chapter 17 for node (re)numbering
issues.

Physical attributes. At the solution step, the finite elements are the support
of various computations or specific treatments. The mesh, through its elements
must contain information making it possible the selection of a set of elements, a
set of faces, set of edges or a set of nodes, thus making possible any processing
concerning these entities, in particular to take into account the loads, flows, pres-
sures, boundary conditions, graphic requirements at the time the solutions must
be displayed, etc., related to the problem considered. This will allow to carry out
the adequate assignment (i.e., associate the relevant value with such or such an
item) or the proper computation (such as the computation of the useful integrals
over such or such entities).

It is then convenient to associate a physical attribute with all the mesh entities
(elements, faces, edges, nodes). The way in which this task can be done is not
unique and, at the computer level, can be implemented in various ways.

Geometric attributes. For similar reasons, a geometric attribute (provided in
some way) proves to be useful for some operations such as the proper definition of
the nodes in the case of a finite element other than a P! element. Thus, it 1s also
convenient to associate a geometric attribute with all the element entities (faces,
edges, nodes).

1.5 Mesh data structures

In general, a data structure is a way of organizing the information (values) needed
In a given process. In this respect, a mesh data structure is a way to store all
the values that will be useful for a further processing. Following this idea, two
categories of structures can be distinguished. One is used when constructing the
mesh. In other words, such a structure, referred to as the internal mesh data
structure is the organization of the values describing the mesh which are required
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inside the mesh generation method chosen for this task. On the other hand, the
structure referred to as the output mesh data structure is the mesh organization
used at the computational step, i.e., outside the mesher. Thus the values stored in
1t as well as the way in which they are organized can be slightly different from those
in the previous context. The possible differences between the two mesh structures
depend both on the type of the mesh generation method and the solution method
that are used. However, for the output structure, it could be desirable to have a
“universal” structure or, at least, a more generic structure (see below).

1.5.1 Internal mesh data structure

The key-idea is to define as simple a structure as possible which is well suited
to the problem. Various reasons can justify this policy. Among them, a given
mesh generation method, due to the algorithm which is used and the nature of
the meshes it is capable of processing, may require a given data organization that
is different from another method. Hence, a “universal” structure is not, a priori,
a solution (as it would be unnecessarily complex in certain cases). Thus, for a
given method, one has to find what is needed specifically and what is not strictly
required. In this respect, efficiency as well as memory occupation reasons can be
invoqued to justify such or such a choice.

The internal mesh structure is only used within the algorithm and, when the
mesh is created, this structure is transformed so as to complete the output data
structure which is the natural (and unique) interface with the computational step.

Some values and data items are specific to one structure or the other. Some
others must be included in both. The point is to make this requirement precise
and to define the structure accordingly. In the next chapter, we will try to give
some indication about what such an internal structure could be.

1.5.2 Output mesh data structure

Defining a suitable, general purpose and reasonably simple output data structure
for mesh storage is not a trivial task. A number of issues must be addressed in
order to make various tasks possible. These include :

o the proper definition of the nodes (when defining the finite elements at the
so-called interpolation step),

o the definition of loads, the computation of the relevant matrices and right-
hand sides,

e the solution of the resulting system(s),
o the visualization of the results,

e and many others allowing for other types of processing depending on the
nature of the problem.
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In this respect, it is clear that a classic computational scheme involving a mesh
generation step, an interpolation step, the computation of the system to be solved
and the solution step is less demanding than an adaptive scheme requiring a loop
of such operations where, for instance, the mesh (and the geometry itself, in some
cases) is modified at each iteration step of the loop.

Thus, a mesh data structure must be defined in such a way as provide easy
access to :

e the vertex coordinates,

o the element vertices,

o the physical attributes of the mesh entities,
o the geometrical attributes of these entities,

in order to make the previous computational requirements possible.

These basic principles being stated, it 1s beyond the scope of this book to
discuss further what a data structure could be. Nevertheless, it must be observed
that, at this time, existing norms do not give a satisfactory answer to the question
of knowing what a mesh data structure should be. However, one can find in
[George,Borouchaki-1997], Chapter 10, a proposal for such a structure. On the
other hand, in Chapter 2, one can gain some indications about data structures
when seen from a more abstract point of view.

1.6 Control space

It is useful to introduce the notion of a control space for various purposes (as will
be seen in the chapters devoted to the construction of adapted meshes). Indeed,
this space serves to determine the current background.

An ideal control space is simply the specification of a function H (z, y) defined at
any point P(z,y) of R? (for the sake of simplicity, we consider a two-dimensional
problem). In other words, the function is defined analytically and specifies the
size and the directional features that must be conformed to by the mesh elements
anywhere in the space. However, from a practical point of view, the control spaces
will not be ideal in the sense that the above function H will be provided only in
a discrete manner. Indeed, formally speaking, a control space can be defined as
follows, [George-1991] :

Definition 1.17 (A, H) is a control space for the mesh T of a given domain
Q if :

o Q C A where A covers the domain €,

® a function H(P,(f) is associated with every point P € A, where d is the
direction of the disc St (or the sphere S? in three dimensions):

H(P,d):AxS' 5 R.
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Thus a control space includes two related ingredients. First a covering trian-
gulation A, is defined (by means of such or such a method). Second a function
H, whose support is a covering triangulation A, is posed. This pair allows for
the specification of some properties or criteria to which the elements of the mesh
should conform.

In terms of geometry, A is an arbitrary covering triangulation. For example
it can be one of the following types :

3

type 1 : a regular partition, such as a finite difference type,
type 2 : a quadtree or octree-based partition (see Chapters 2 and 5),

type 3 : an arbitrary user-constructed mesh or the current mesh, for instance in
an iterative process, the last mesh which then acts as a background mesh.

In addition to this partitioning aspect, (A, H) contains, by means of the function
H, the global information related to different aspects. One could be the geometry
of the domain, the other could be the physics of the problem. These values allow
us to determine whether the mesh 7', under construction, conforms to the function
everywhere.

To construct H, one can consider one of the following approaches :

e compute, from the data, the local stepsizes h (the value h being the de-
sired distance between two points) related to the given points. A generalized
interpolation then enables us to obtain H (this process is purely geomet-
ric in the sense that it relies on geometric data properties: boundary edge
lengths, etc.);

¢ manually define the value of H for every element of A. A desired size is
then given everywhere in the space for isotropic control, or the desired sizes
according to specific directions are given for anisotropic control;

e manually specify H by giving its value for each element of the covering
triangulation constructed for this purpose (we return here to a type 3 space
as introduced above);

e use the cell sizes (in the above type 2 case), where this size is used to encode
the value of H. This then leads to the construction of the (A, H) space so
as to satisfy this requirement;

e define H from an a posteriori error estimate. We are then in an iterative
adaptive process. A mesh T is constructed, the corresponding solution is
computed and the error estimate analyzes this solution so as to complete H.
Then A is set to T" and the pair (T, H) forms the control space used to govern
the new mesh construction (cf. Chapter 21).

For each of the different types, this definition results in one or the other control
space types. In what follows, we will show how to create the internal points in
accordance with the specifications contained in this space (for a mesh construction
method) or to optimize a mesh (for a mesh optimization method).
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Definition 1.18 When the geometric locus of P + H(P,d) is a circle (a sphere
in three dimensions), with P in A and d varying, the control space is isotropic.
When this locus is an ellipse (ellipsoid), the control space is anisotropic.

Only these two cases will be discussed hereafter, leading to the definition of
the metric maps which are used to govern the mesh construction process.

Remark 1.7 The popular notion of a background mesh, extensively used for in-
stance in adaptive mesh construction processes, is nothing more than a control
space. In this case the covering triangulation 1s the mesh of the previous iteration
step while the function results from the analysis of the current solution by means
of an a posteriori error estimate.

Remark 1.8 The above function H 1s nothing other than a metric as will be seen

later. In this context the discrete meaning of H(P,d) will be seen as a d x d
symmetric definite matriz denoted, at point P, by M(P).

Note that some authors, while using different approaches, return to this no-
tion of a control space. For instance, source points can be introduced and this
information is used to complete an equivalent of the above H function.

1.7 Neighborhood space

Close to the previous idea of control space, the notion of a neighborhood space can
be introduced. Such a space acts to help any neighboring information or queries.
For instance, this is a way to facilitate the search for all the vertices located in
some regions as such a query could be of great interest for various purposes.

The neighborhood space structure is similar to that of a control space. It
includes two components, a spatial support together with some information related
to this support. The spatial support spatial may be as above with, however, a
special interest for the simple type of covering-up (grid, tree structure such as
quadtree in two dimensions) in which localization problems are evident. Along
with this support, the space includes some information of a topological nature.
For instance, for a grid, one encodes in its cells the fact that a point, an edge,
etc., exists or not. Thus, when such a cell is queried, we know whether a point,
an edge, etc., exists within a certain neighborhood. This is a simple example of
what could be encoded in this kind of space.

Developing a binary tree (for instance, an alternate tree) is also a way of giving
access to the neighboring entities, in some sense, of a given entity.

1.8 Mesh quality and mesh optimality

The purpose of constructing a mesh is not simply a question of creating a mesh
(a covering-up) of the domain of interest but to obtain a good quality mesh.
Therefore, the immediate question is : “ what is a good quality mesh ?” or,
similarly : “ how can mesh optimality be defined ?”.
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In response to these questions, the literature contains a number of tentative
definitions which are more or less naive (and, in some cases, fanciful to the point
of eccentricity !). In this respect, let us mention some widely held ideas. A nice
looking mesh is a good mesh. However, this raises the problem of what “nice
looking” actually means. A good mesh is a mesh whose elements have the same
size and conform to a nice aspect ratio. In addition, some peremptory assertions
can be found such as “a Delaunay mesh is optimal”. The list goes on, but our aim
here is to find some reasonable criteria that are well suited to qualifying a mesh.

A preliminary and obvious remark helps us in this discussion. The mesh is
constructed with a precise purpose : solve a given problem. Therefore, the true
quality or optimality problem is related to the solution that can be computed
with the mesh as a support. In this respect, it makes sense to claim that the mesh
quality is good if the resulting solution quality is good. As a consequence and
following the same approach, optimality is obtained if the mesh size is minimal (in
some sense, for instance, if the number of elements or, more precisely, the number
of nodes and vertices is minimal) resulting in a minimal cost when computing
the problem solution. This characterization is then related to the nature of the
problem and, moreover, implicitly assumes that a suitable way to qualify the
solution quality is given.

In a numerical simulation by means of finite elements, an error estimate is
the sole judge. A nice mesh is one which leads to the best possible numerical
accuracy. For other cases, for instance in a surface visualization problem based on
a mesh of the surface of interest, the quality must be measured with regard to the
approximation quality or the graphic aspect of the surface mesh with respect to
the real surface. For other problems, the quality aspect may be related to different
objectives.

At first, this computational process is based on an approximation of domain
£ where the problem is formulated. Thus, a first condition regarding the mesh
quality is to make this approximation precise. In fact, we want to solve the given
problem in domain Q and not in an approximate domain different from the real
domain. This being established (that results in conditions about the boundary
elements of the mesh leading to a good boundary approximation), the mesh quality
is related to the solution and thus to the nature of the problem under investigation.
Using an error estimate enables us to see the quality of the mesh and, more
precisely, to know if its elements conform to a desirable size (a nice directional
aspect).

When such an appreciation is not available (t.€., no error estimate is used),
one can only judge in advance the mesh quality notion and to translate this point
in terms of a quality function about the mesh elements. For a problem of an
isotropic nature, it seems attractive to consider the equilateral triangle as optimal
while for a quad the square is a priori optimal. When no sizing information (about
the element size or the desired edge length) is provided, the only thing that can
be envisaged is to take advantage of the boundary (assumed to be correct) and
to complete regular elements whose size follows at best the size of the boundary
items (edges and faces). A fine discretization in a boundary region results in
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small elements while a coarser discretization may lead to larger elements. Then,
these sizing features will be used to find a reasonable size value for the elements
located at some distance from the domain boundaries. In particular, a progressive
gradation of the sizes is often a desirable feature when considering the elements in
a given neighborhood.

When a size map (control space) is provided, it is clear that a unit length in
the metric associated with this control space is the targeted value. This leads us
to the notion of a unit mesh which will be the good mesh we like to have (after
some additional remarks).

Definition 1.19 A unit mesh is a mesh with unit edge lengths.

Computing the edge length in accordance with the metric as defined in the
control space provides the expected actual values. This point will be discussed
later and, for the moment, it is enough to say that, in an isotropic context, a unit
length in a metric map specifying a value h actually gives a length A in the usual
sense and that the same is true in an anisotropic context.

Remark 1.9 A triangle with unit edge lengths is necessarily a good quality trian-
gle. This is not the case of a tetrahedron that may have an inconsistent volume
(quite small) while its edges are (about) unit edges.

After this remark about simplicial elements and due to the other various ge-
ometries that can be envisaged, edge length control must be coupled with other
criteria to make sure that an optimal quality is obtained.

Notice that the unit value is related to the underlying metric map and that
the latter could be the combination of a map of a geometric nature (due to the
domain geometry) with one or several other maps of a physical nature depending
on the behavior of the problem under investigation.

To conclude this brief overview, let us indicate that numerous detailed discus-
sions will be found in the following chapters to clarify the notions introduced in
this section and to indicate how to compute a length in a given metric map.



