Chapter 8

Other types of
mesh generation methods

Introduction

This chapter briefly discusses some mesh generation methods which do not belong
to the classical types covered in the previous chapters. The fact that there is
such a wide variety of methods is some indication of the richness of the subject
but also indicates that there is no one method! that is a universal solution for
all possible situations. Thus, for instance, a semi-automatic method is sometimes
more powerful, more flexible or easier to use for some cases compared with a purely
classical automatic method. Moreover, some domains are defined by means of data
input that is not directly suitable for an automatic approach.

*
* X

The first section discusses product methods, which represent an elegant mesh-
ing method when the geometry of the domain has the required aspect, i.e., a
cylindrical analogy in terms of topology. Grid or pattern based methods are then
discussed which complete a mesh of a given domain starting from a given mesh
composed of a simple grid or a partition covering the whole domain by means of
a predefined pattern which is repeated. Therefore one can find the grid or the
given patterns in the domain (or in a portion of this domain). A mesh gener-
ation method by means of optimization is briefly presented which is capable of
handling problems with large deformation (such as forming processes). Moreover,
this approach allows for more specific applications.

Constructing a quad mesh (in two dimensions) is then discussed in sections four
and five where indirect approaches (by means of triangle combination) and direct
approaches are given respectively. The extension to hex mesh construction in
three dimensions can be found in section six. Then to conclude (without claiming

1
As least, as far as we know.
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exhaustivity), we mention some mesh generation methods that are well-suited to
some specific applications. In particular, we focus on methods resulting in radial
meshes and methods that make use of a recursive domain partitioning.

8.1 Product method

The aim of a product method consists in creating elements in d dimensions from
the data, on the one hand, of elements in p dimensions, 0 < p < d, mapped in
the space of d dimensions, and, on the other hand, of a meshed line serving as a
generation line.

8.1.1 Basic principles

Thus, locally, a point (¢.e., an element reduced to a point, a 0-dimensional item)
defined in the p-dimensional space and seen in a d-dimensional space produces
a series of segments (item of 1-dimension) defined in the d-dimensional space.
Similarly, a segment (item of 1-dimension) defined in the p-dimensional space
produces quadrilaterals in d dimensional space. A triangle serves as a support for
creating pentahedra, while a quadrilateral produces hexahedra (Figure 8.1).
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Figure 8.1: Correspondences. On the left we show the generation line, then the
construction by a product method associated with a point, a segment, a triangle
and a quad.

It could be observed that the basic mesh appears, in terms of topology, as a
layer of the resulting mesh, such a layer being defined for each discretization step

in the generation line. In this way, we obtain a cylindrical topology (which makes |

it clear in which cases the method applies).
Degeneracies may be encountered for some special positions of the generation

line with respect to the given mesh serving as data. Such a phenomenum can be
seen as the result of a merging operation where two vertices collapse due to some |

OTHER TYPES OF MESH GENERATION METHODS 269

property of invariance. In this case segments may produce, not only quadrilater-
als, but triangles (two vertices collapse then resulting in a three vertex element),
triangles may produce degenerated pentahedra and quadrilaterals may produce
degenerated hexahedra. Depending on the geometry, the degenerate elements
are valid, or not, in the usual finite element context. In this respect, for example,
hexahedra may degenerate into pentahedra, which are admissible elements, or into
non-admissible elements (Figure 8.2) with regard to the expected usage of these el-
ements, while pentahedra may lead to the creation of tetrahedra or non-admissible
elements (same figure and again related to the future application).
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Figure 8.2: Correspondences and possible degeneracies. On the left is a quad that
degenerates into a suitable triangle. Then two forms of degeneracies for a penta-
hedral element are given, one of them being admissible while the other is suitable
or not depending on the envisaged application. Finally, two patterns related to hex
degeneracies are displayed, only one of the patterns being valid.

8.1.2 Computational issues

In what follows, we discuss two methods that allow for the computation of the
vertices in the various layers of the desired mesh. Then, we add some details
about how to implement a product method.

Computing the intermediate vertices (“semi-manual” method). The
vertices of the various layers are defined in a semi-automatic manner through
a description of these layers. The possible choices, [George-1993], correspond to
the following data input :

¢ a constant stepsize or a number of layers between the initial section (the
basis) and the final one,

® a variable stepsize from one section to the next,

¢ the full definition of a function that associates a vertex position for each
section with the current vertex position in the initial section,
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e the full definition, for a given section (the source), of the way in which the
next section (the target) must be constructed,

e etc.

Computing the intermediate vertices (“semi-automatic” method). More
automatic, this method completes the vertices in the sections lying between two
reference sections, [Staten et al. 1998], the first serving as a source, the other be-
ing the target. The first section is the initial section or basis (once one considers
the entire domain). The target section is associated with an intermediary section
or with the final one (the last target section). At the same time, we give how many
sections must be constructed between the source and the target and we describe
the side of the “cylinder” contained between these two particular sections by means
of discretized edges meshed with consistency from one to the other. The source
and the target sections are assumed to be known in a parametric form. Then the
domain could be subdivided into several portions and an automatic algorithm can
be applied in each of them in order to complete the intermediary points based on
the available data input.
The computational scheme is as follows :

¢ one constructs a background mesh for the source section in its parametric
space based on the points lying on the sides on this section. As assumed,
this mesh is also a background mesh for the target section and thus will be
used when the various intermediate sections are dealt with,

e one classifies the (internal) points in the source section with respect to the
background mesh (we find the triangle that contains such a point and we
obtain its barycentric coordinates) and the same is done for the points in the
target section. At completion, two sets of three values? (a;, b;, ¢;)*o%ree and
(ai, bi, ¢;)*79¢* are available for the point P; considered in the source (resp.
target) section,

e one computes the distances between these internal points (in R3) with respect
to the triangles whose vertices (denoted by S; in what follows) are the images
of the three vertices of the triangles in the background mesh containing these
points (now considered in the parametric space). To this end, we use the
following formula, for point P; :

di:||a,~51 + b S + ¢ S3 — Pi”’

with respect to the source section for the points in this section and using
a similar formula for the points in the target section with respect to this
section. In this way, we obtain two distances d§°¥"¢ and d;*"9** that measure

2If the shape (the geometry) of the source and the target sections are identical, these two sets
are the same. Otherwise, for instance, the triangle containing the source point is not necessarily
that containing the corresponding target point assumed to be in front. In this case, to retrieve
the same element, negative barycentric coordinates are allowed.

OTHER TYPES OF MESH GENERATION METHODS 271

the distortion® at point P; for the two sections bounding the domain being
processed.

This information is then used to compute the position of the internal points in
the sections contained between the source section and the target section. This
calculus, for the point P; in a given section, includes a linear interpolation between
(ai, bi, c;)*°""¢¢ and (a;, b, ¢;)"*79¢" | a function of the section (defined through the
points supplied in the sides of the above mentioned cylinder) and a correction step
that modifies this value based on d°%*¢ and d;*"9*" (after an interpolation).

Implementation remarks The position of the intermediate points, the case
where a degeneracy occurs or when the final section becomes identical to the first
section (for instance in the case of a rotation) having been successfully established,
the computational aspect does not induce any difficulty. In practice, the mesh
generation problem comes down to numbering the vertices of the different layers or
sections corresponding to the discretization of the generation line. This numbering
step is rather similar to that already seen in a multibloc method, Chapter 4. Once
this numbering has been done, the element vertex enumeration is trivial.

8.1.3 Limits

Product methods (also referred to as eztrusion methods) can be applied to do-
mains which have the desired properties, ¢.e., one of the following topological

types :

e cylindrical topology : the domain can be described via the data of a two-
dimensional mesh and a generation line defining layers with which the three-
dimensional elements are associated,

o hexahedral topology : the domain can be described via the data of a one-
dimensional mesh and a generation line to construct a two-dimensional mesh
which, in turn, is coupled with a second generation line and produces the
desired three-dimensional elements.

Note, as a conclusion about the limits, that the validity (positive surface areas
or volumes, absence of auto-intersections (inter-penetrations or overlapping ele-
ments)) of the resulting mesh must be checked explicitly, which may increase the
computational cost.

8.1.4 Application examples

Figures 8.3 and 8.4 display two examples constructed by a product method applied
respectively to a meshed line and a two-dimensional mesh serving as data and a
rotation used as a generation line. In the first example, the generation line (a circle)
Is not connected with the data and classical expected elements are constructed
(quads), while, in the second example, the generation line is partially common to

3If, for example, the source section is planar, we have diouree = Q.
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some edges of the data and pentahedra (instead of hexahedra) are produced in
this region.

Figure 8.3: Line serving as data (left-hand side) and resulting mesh (right-hand
side) obtained by a product method corresponding to a rotation.

The examples in Figure 8.5 have been completed using a method described by
[Staten et al. 1998] which is used in ANSYS. One can see a mesh resulting from
translation and rotation (left-hand side) and a mesh resulting from translation
(right-hand side). The latter example has been completed in three steps whose
respective meshes, after merging, provide the final mesh. This partition into three
parts has been made so as to make the product method suitable for each of them.
This partition is defined so as to permit a compatible mesh merge (see Chapter 17
on how to merge two meshes).

Figure 8.4: 2D mesh serving as data (left-hand side) and resulting mesh (right-
hand side) obtained by a product method corresponding to a rotation.

OTHER TYPES OF MESH GENERATION METHODS 273

Figure 8.5: Ezamples of meshes resulting from the product method incorporated
in ANSYS. Left-hand side : the various sections result from the basis after a
translation combined with a rotation. Right-hand side : the domain s split into
three parts and, for each of them, a translation of the corresponding basis is used.

8.2 Grid or pattern-based methods

To some degree, these methods recall some of the constructions seen in Chapter 5
and also some ideas that will be seen in Chapter 16. The domain of interest is
merged into a regular grid G' composed of uniform squares (in two dimensions) or
uniform cubes (in three dimensions). The cell size is a function of the smallest
distance between two contour points of the domain and depends also on available
memory resources. A meshing process based on the (easily) so-defined grid can be
developed. It involves the following phases :

Step 1 : the removal of the cells of G which do not intersect the domain;

Step 2 : the processing of the cells of G containing a portion of the boundary of
the domain; two variations can be advocated:

— a cell whose intersection with the boundary is not empty is considered as
a mesh element; in this way, the final mesh will only be a piecewise linear
approximation of the given domain (the accuracy of this approximation
depends on the stepsize of the grid cells),

— or this type of cell is modified in such a way that the boundary is better
approximated.

Step 3 : the enumeration of the mesh elements :
— a purely internal cell becomes a mesh element (or can be split into
simplices);

— a cell intersecting the boundary is considered as above. It defines a
mesh element or it can be split into one or several triangular or quad
elements, or tetrahedral or hex elements, such a splitting being based
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on the analysis of the different possible configurations and the use of
the corresponding splitting pattern (Chapters 17 and 18).

Simple in principle, this method is unlikely to be suitable when the boundary
discretization, serving as data, includes widely different items (edges in two dimen-
sions) in terms of size while this situation generally requires a very fine stepsize and
then may lead to an overflow in the number of cells of grid G, and consequently in
the number of elements of the resulting mesh. Consequently, except for some spe-
cific problems, more flexible methods must be used (such as the quadtree-octree
methods as discussed in Chapter 5). Nevertheless, for certain specific applications
(for example for forecast computation), a relatively regular mesh is a source of
simplification at the computational level.

Figure 8.6: The grid made of parallelograms (left), the portion of the ring made of
radial quadrangles (middle) and the ring made of radial quads (right).

The above approach can be followed not with a regular grid, but when a pre-
specified mesh is given which encloses the domain. In this way, using as pre-
specified mesh a mesh composed of pre-defined patterns results in a final mesh
where most of the elements conform to this pattern. Thus, most of the domain is
covered with the pre-specified patterns and the remaining regions (¢.e., the regions
intersected or close to the boundary where the given pattern is not suitable) can
be dealt with either using a general purpose mesh generation method or a specific
processing of the patterns that intersect the domain boundary.

Figures 8.6 and 8.7 demonstrate the principle of this method. In the first figure,
one can see the domain in question, the part inside a circle having a rectangular
hole at its centroid. Three enclosing meshes are depicted. On the left-hand side,
the pattern is a parallelogram, in the middle, we have a part of a ring covered by
quads and, finally, on the right-hand side, we have a ring covered with radial quads
which are excentered with respect to the domain. In the other figures, we illustrate
a plausible scenario as to what the construction could be. We see successively the

patterns with (at least) one portion inside the domain, i), and in ii), the retained ,
patterns, i.e., among the previous, we have discarded those partially included in |
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iii) iv)

Figure 8.7: From i) to iv), one can see the quads strictly included in the hollow disc,
those included in this disc that are “consistent” with the boundary, the triangle
mesh resulting from an automatic mesh generator and the final mesh of the disc.

the domain and those judged too close to the domain boundaries to define a large
enough region in the vicinity of these boundaries. Then, in ii1), the not yet meshed
regions are meshed, this point concerns the regions close to the boundaries. Finally,
in iv), the resulting mesh is visible and is formed by the patterns that have been
retained and the mesh of the boundary regions as completed previously.

Various choices about the pattern are possible. For instance, in two dimensions,
One may think of the pattern related to the union of six equilateral triangles (a
regular hexagon) or to the configuration composed by elements whose vertices are
located in a radial manner with respect to a given point.
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8.3 Optimization-based method

Proposed by [Coupez-1991] in the context of forming processes where the geometry
can change dramatically from one time step to another, this method can also be
used as a mesh generation method or even as a mesh optimization method or a
mesh correction method.

Before going further in the discussion, we now introduce the theoretical back-
ground which serves at the basis of this method.

8.3.1 Theoretical background

For the sake of simplicity, we consider a two-dimensional problem where the ele-
ments are triangles only.

Notations and definitions. A triangle K is an oriented triple of (distinct)
integers. A mesh edge is a pair of (distinct) integers. The boundary of K, denoted
as 6K, is defined by the three edges of K. Now, let 7 be a set of triangles, we
denote by & the set of the edges of the elements in 7, S the set of the element
vertices and 68 the set of vertices in 67, the boundary of T, t.e., both & and
. 08 are a set of integers (or indices). With these notations, we first introduce the
notion of a so-called mesh topology.

Definition 8.1 A given mesh T conforms to a mesh topology if €, the correspond-
ing set of edges, is such that

Vee& ,1<card{ K €T such thate € §K} <2,

where card{.} stands for the number of elements in set {.}. In other words, any
edge in & is shared by two triangles (manifold case in three dimensions) or is a
boundary edge.

Given a mesh topology 7, its boundary 67 consists of the edges in & which
belong to only one element.

Remark 8.1 Unlike a mesh (as defined in Chapter 1), a mesh topology relies only
on topological properties. In this respect a mesh can be defined as a mesh topology
whose corresponding vertex coordinates result in a valid mesh (in the usual sense)
while a mesh topology is valid only in terms of neighboring relationships.

Following this remark, we can give a rough idea of the present mesh generation
method. First, a mesh topology is constructed, then it is modified so as to produce
a (valid) mesh. To this end, a local operator is introduced.

A simple local operator. Let 7 be a mesh topology and & the corresponding
vertex set, let P be a point, then joining P with the edges of §7 results in a new
mesh topology as can be easily seen. In what follows, this operator will be referred
to as Op(P,6T). A more precise analysis of this operator leads to examining two
situations :
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o cither P € 68 (point P is identified with index P),
e or P ¢4S.

iii)

Figure 8.8: Various applications of the Op(P,8T) operator. The poznt P i‘s out-
side T, case i), P inside T, case i), P is a boundary point, cases iii) and ).

In the first situation, the operator basically joins the vertices in S, apart from
P and its two immediate neighboring vertices, with P. In the second configuration,
the operator leads to connecting all the vertices in S with a given point P which
could be inside or outside the region whose boundary is 7. In Figure 8.8, one
can see the first situation (cases iii) and iv)) as well as the second situation (cases

1) and ii)).

Remark 8.2 If T is a convex region, then applying Op(P,8T) with P inside T
or P is a member of 8T results in a (valid) mesh following Definition (1.7).

However, when 7 is an arbitrary mesh topology and not a valid mesh, applying
Op(P,8T) does not result, in general, in a (valid) mesh. The question is then to
find some criteria to govern the application of the operator, e.g., how to repeat
this single operator with appropriate points P so as to complete a (valid) mesh.
Two criteria are introduced, one is based on the element surface area while the
other concerns the element shape quality.

Given 7, the surface area of this set of elements, Sur(7), is the sum of the
(non oriented) surface areas of the triangles in 7. Similarly, the.quality of T,
Qua(T), is the quality of the worst element in this set. The quality measure is
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any of the measures discussed in Chapter 18 where the surface area involved in
the expression is considered as positive (actually, we take the absolute value of the
real surface area).

Some basic observations. A mesh topology 7 is not a valid mesh if, at least,
one of its elements is negative thus resulting in an overlapping region. Hence, the
surface of 7 is larger than (or equal to) the surface of the corresponding domain.
As a consequence a mesh is a mesh topology whose surface area is minimum. This
observation leads to the first idea’to govern the operator Op(P,86T) : minimize
the surface area of the topology.

A second observation is as follows. Given a mesh topology 7, we can apply
the Op(P,dT) operator for different points P and, in this way, various new mesh
topologies can be constructed. In this situation, several new topologies may be
equivalent in terms of surface areas. Thus we need a criterion to decide whether
a given result is better than another. This is why, a quality based criterion is
introduced. Thus, the second key of the method is : retain the transformation that
minimazes the surface area and, at the same time, optimizes the quality criterion.

Now that we have specified the basic ideas of the method, we can turn to the
issue of a meshing algorithm based on these simple ideas.

8.3.2 Synthetic algorithm

In short, given a domain discretization, we initialize a mesh topology and then we
modify it by repeated use of the above operator until a valid mesh is completed.
To this end, the current mesh topology is analyzed and the regions with negative
or badly shaped elements are identified. These regions are considered one after
the other. Given a region, we define the corresponding (sub) mesh topology and
we apply the operator Op to this (sub) mesh topology.

A natural (sub) topology is the ball of a given vertex (see Chapter 2), i.e.,
the set of elements that share this point. Let P be a given point, then its ball
is denoted by Bp. In fact, any connected set of elements can be considered as a
(sub) topology. For instance, the two triangles sharing a given edge is a natural
candidate.

Given a mesh topology 7 and its boundary 67, we define V' the set of points
P such that

V=(PeP, Sur(Op(P,8T)) = g]eig Sur(Op(Q,d7))), (8.1)

in other words, V' is the set of points (indices) that, after using Op, minimizes the
surface area of the resulting mesh topology. In the above expression, P = 6SUG
where (7 could be an arbitrary point (see below).

We also introduce Q the set of points P such that

Q=(PeP, Qua(Op(P,dT)) = max Qua(Op(Q,d7))), (8.2)

i.e., Q is the set of points (indices) that, after using Op, optimizes the quality of
the resulting mesh topology.
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Now, the mesh generation algorithm is as follows :

e Initialization: 7 = Op(P,dS) where P is the point in 6§ which is the nearest
point to the centroid* of 4.

e (A) opt = .false.
e (B) Loop over the points of T, let P be the current point, then

— consider the ball Bp as a sub mesh topology,
— P is the set of vertices in dBp,

— we consider a point G which is the centroid of the points in §Bp, i.¢c.,
G = ZEL—I—DL, where P; denote a vertex in 7p other than P and np is the
P .
number of such vertices.

- P =PU{GY},
— we apply Op(P,éBp) where P € P and we define the corresponding
sets V and Q,

—if P € @NVY, return to (B),

— otherwise, pick the point P in @NV and retain the corresponding mesh
topology, the current topology is now the following :

T ={T —Bp}UOp(P,dBp)
fix opt = rue. and return to (B).

¢ End of Loop

o if opt = .true., then return to (A), otherwise the current state is stable.

On completion, a stable mesh topology is obtained. The issue is to make sure
that this state corresponds to a valid mesh.

Since the topology is valid (due to the way it is constructed), the (global) mesh
validity is ensured if the (signed) surface of all elements is strictly positive. In fact,
if there is a triangle with a negative surface, then an overlapping element exists
(a null surface implies that there is a completely flat element while a very “sma}l”
surface, with regard to the edge lengths, indicates the existence of a bad quality
element).

If the stable situation corresponds to a valid mesh (in the above sense), then
the resulting mesh is a suitable mesh possibly after an optimization stage. If not,
we have a stable situation which is invalid. This case deserves some comments.
The stability is related to the choice of the sub-topology used in the method. In
the case of a stable situation which is an invalid mesh, the only thing we can
try is to modify the sub-topologies in order to make it possible to continue the
process. In this way, the surface series still continues to decrease since the mesh
is modified. As an example of other types of sub-topologies, we can consider the

4This is one possible candidate, in fact, any point in 6S could be used.
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pairs of adjacent triangles (or some other patterns) instead of the balls used in the
previous algorithm.

In theory, such a process converges since we face a decreasing series whose
targeted bound (the right surface of the domain) is known in advance and because
the number of combinations (sub-topologies) that can be constructed is a finite
number. Thus, the convergence holds because, in the worst case, it is sufficient to
examine all these possibilities (irrespective of the cost of such a method related to
the underlying combinatorial aspect).

8.3.3 Computational issues

Various remarks about the computational aspects of the above algorithm can be
made.

First, maintaining a (valid) topology relies on checking that the corresponding
definition holds and, in addition, that the intersection of the initial topology except
the examined ball (the sub-topology, in the case where these sets are the balls) with
the sub-topology resulting from operator Op is nothing other than the boundary
dBp of the ball Bp. In other words,

(T — Bp) N Op(P,6Bp) = 6Bp .

Figure 8.9 illustrates a case where this result is not satisfied. Triangle AN B will
be formed twice if the sub-topology Op(N,§Bp) is retained.

Figure 8.9: Left-hand side : The initial sub-topology, right-hand side : joining
point N with the other points in the boundary of the ball of P again results in
triangle AN B which is already an element inside the ball in question.

Leading on from these observations, it is of interest to define a suitable strategy
regarding the way in which the operations are proceeded and the choice of the sub-
topologies used. For instance, it is proposed to perform a first stage without any
point insertion (by a pertinent choice of Op) and then to start again while point
insertions may be used in this stage.

8.3.4 Extension in three dimensions

The above approach extends to three dimensions. In this case, the elements are
only tetrahedra, i.e., an oriented quadruple of integers. The set & is the set of
element faces and Definition (8.1) still holds (where e is a triangular face).
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The operator Op(P,d7T) acts on the boundary of the mesh topology 7 meaning
that point P is connected with the triangles that form this boundary. The two
above criteria are also used, the first criterion concerns the volumes of the elements
under consideration while the second remains unchanged.

The synthetic scheme of the method is as above while the sub mesh topologies
that can be dealt with include the balls of the current points, the shell of the
current edges, i.e., (see Chapter 2) the tets that share an edge or, finally, any

connected set of tets.

8.3.5 Application examples

As indicated at the beginning, two different applications of this meshing method
can be envisaged. First, the method can be seen as a mesh construction method
for a domain starting from a discretization of the boundaries of this domain.

iii)

Figure 8.10: i) : the domain boundary, ii) : the mesh after connecting one point
(close to the domain centroid) with all the others. iii) : the mesh during th'e
optimization stage and iv) : the resulting mesh. Indeed, the current topology is
now a valid mesh.
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Then, this method can be used as a mesh optimization method or even as a mesh
correction procedure that applied to a mesh being modified during a computational
process. Another more “exotic” application can be also envisaged that makes it
possible to develop an algorithm resulting in the boundary enforcement (in the
context of a Delaunay type method, Chapter 7).

We now give some examples of meshes resulting from the present method.
Figure 8.10 depicts several steps of a two dimensional example. Figure 8.11 gives
a tridimensional case. The geometry is a node, a kind of cylinder (or a pipe) that
closes in on itself. Numerous examples, including some very impressive ones, can
be found in [Coupez-1991], [Coupez-1996], [Coupez-1997] that concern forming
problems. An initial configuration whose geometry is rather simple is modified by
stamping since a complex shape is obtained. The initial mesh is used as the initial
topology and, due to the large deformations that are applied, this mesh becomes
invalid. The method then is used to maintain a valid mesh at each state of the
domain deformation.

Figure 8.11: The initial mesh topology resulting from the connerion of one bound-
ary point with all the others (left-hand side) and the resulting mesh (right-hand
side). Indeed, the current topology is now a true mesh.

8.4 Quads by means of triangle combination

Constructing a quad mesh for an arbitrarily shaped domain (in Chapter 4, we saw
the case where the domain geometry was suitable for a direct construction, either
using an algebraic method or a P.D.E. based method or, finally, by means of a
multiblock approach) is a tedious problem which can be handled in two manners.
The first approach, a so-called indirect approach is based on using a triangular
mesh and then to create the quad by triangle combination. The second approach,
a direct approach, consists in designing a method that directly results in quads.
In this section, the first approach is considered while the second approach will be
discussed in the following section.
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Before going further, we give two preliminary remarks. The first remark is a
fundamental observation which concerns the existence of a solution to the problem
in question. The second remark, of purely practical interest, mentions the expected
cost of either approach.

Remark 8.3 In general, the existence of a mesh composed only of quads is not
guaranteed for an arbitrarily shaped domain. Indeed, provided with a polygonal
discretization of a domain boundary, it is clear that, at least, an even number of
edges ts required if we want to have a solution. If not, a certain number of triangles
(one for each connected component) may be necessary in order to cover the domain
entirely.

Remark 8.4 The approach by means of combination starts from a triangular
mesh (assumed to be conforming) of the domain and thus is nothing other than a
post-processing of an existing mesh. As a consequence, the design, the validation
(robustness, reliability) is only related to this processing that is, in principle, faster
than validating an entire mesh construction method.

Having made these remarks, we now describe an approach based on combina-
tion. We assume a favorable case (where the boundary includes an even number
of segments) and we consider a domain in the plane (the surface case will be seen
below).

8.4.1 Two basic combinations

The simplest pattern corresponds to two adjacent triangles that form a convex
polygon. These two triangles make it possible to define one quad. A different
pattern is formed by one triangle and its three neighbors. The corresponding
polygon then has six sides. It allows, a priori, the construction of three quads
(a point being introduced, for instance at the centroid of the initial triangle and
then joined with the sides of the above polygon thus giving the three quads in
question). Figure 8.12 demonstrates these two examples of triangle combination.

A [ -
! | T |
i — /

Figure 8.12: Left-hand side : the combination of two triangles gives one quad,
right-hand side, the combination concerns four triangles and results in three quads.

8.4.2 Selection of a combination

Given one or several combination patterns, the question is to define the pairs
(or the sets) of triangles that must be combined to define the quads. The basic
technique consists in finding in the triangular mesh a path that makes it possible
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to pass from one triangle to the other. This path, obtained by visiting the triangles
in some way, is stored in a stack. Thus, the triangles are put in a stack and pushed
once the quads are constructed.

The construction of the stack (the path) follows some rules. A starting triangle
is selected (having two boundary edges if such an element is found). This triangle
is the first in the stack.

The current triangle is colored and one of its edges is selected. The neighbor
(through this edge) is put into the stack if it is not already colored and if the quad
thus formed is valid (actually, this quad is not really constructed). The stacked
triangle is the child of the initial triangle. When it is no longer possible to continue,
the triangles are removed from the stack. When carrying out such an operation
we meet two situations.

There is an edge which has not yet been used. The corresponding neighbor
is put into the stack as the child of the related triangle. Otherwise, the quad
construction begins.

Let us assume that a certain number of triangles has been put into the stack
and that some quads exist. Suppose we are at triangle K, while going from its
neighbor after having passed through the edge e; of triangle K; (e; is then the
edge common to the two triangles in question). We try to pass through the edge
€2, edge next to e; while in the direct sense. This is possible if, on the one hand,
the edge e, is not a boundary edge and, on the other hand, the triangle neighbor
of K1 through this edge has not already been processed. If the edge cannot be
traversed, we consider the next (using the same convention), in this way we find
one triangle, say K3, or this branch of the stack is no longer active (the edge is
a boundary edge or the neighboring element is already in the stack). In the first
case, Ky is put into the stack and we report that this element follows K;. In the
second case, we count the number of children of K not already involved in a quad.
The children of a given triangle are its neighbors that have not already been taken
into account. Therefore, a given element may have zero, one or two children.

If K; is the last triangle in the stack, we use the following algorithm :

o if the number of children of K; is null, we remove K; from the stack and we
return to triangle K;_q,

e if the number of children of K is one and if the triangle is still active (i.e.,
has not been used to construct a quad), we construct a quad by combining
K; and its child while verifying that this element is convex. Then K; is
removed from the stack. If the combination of K; and its child forms a non
convex polygon (or a quad with two consecutive aligned sides), the triangle
child will remain and we try to form a quad using K; and its father if this
pattern is adequate,

o if the number of children of K; is two and if the triangle is still active, we
from three quads from K; and its three neighbors (its two children and its
parent), then K; is removed from the stack.
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This algorithm continues as long as the stack is not empty. Once it is empty,
the quad mesh is obtained. Nevertheless, some isolated triangles can be present
in this mesh. Thus, the resulting mesh is a mired mesh.

Remark 8.5 The thus-constructed path may not pass through all the triangle§ mn
the domain. In such a case, we start again from one triangle not already visited
and one path by the thus-defined component can be obtained.

A solution resulting in a mesh without any triangles, consists in applying the
combination strategy on triangles whose size is twice the desired size (in terms of
edge length) and then splitting the resulting quad into four elements. The triangles
that can still exist are subdivided into three by introducing centroids and edge
midpoints. In this way, the mesh has only quads and, due to the method, is a
conforming mesh.

8.4.3 Optimization

The resulting meshes, in most cases, are not of good quality everywhere in the
domain. Adding strict criteria about this quality during the process is possible
a priori but impedes the quad creation. In such a case, numerous triangles nec-
essarily exist since the corresponding combinations are rejected. Therefore, it is
advisable to leave some degree of freedom in the construction and, since, bad
quality elements may appear, to apply an optimization stage a posteriori. The
optimization tools are the local tools capable of carrying out local configurations
(a set of adjacent elements). Chapter 18 contains a detailed description of general
purpose optimization tools, so, here, we will just give some brief indications about
tools acting on quad elements.

Among these tools, we can find some operators related to certain typical con-
figurations :

e an internal vertex only common to two quads or common to one quad and
one triangle can be removed. We then successively obtain one quad or one
triangle whose quality is necessarily better than that of the initial configu-
ration,

e a vertex shared by three quads is in general related to a bad quality quad.
Then, the initial pattern can be replaced by two quads which are better a
priori,

e a quad with two (internal) opposite vertices common to only three elements

can be removed (the two points are merged and the quad disappears),

o the edge common to two quads can be removed by using the alternative con-
nexion with the two other vertices (we find here the edge swapping operator
as described in Chapter 18),

e a set of adjacent quads forming a six side polygon may be replaced using
only two quads, etc.
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An optimization operator is retained if the resulting quality is better (the initial
context is analyzed according to a quality criterion or a topological criterion).
Note that the relaxation, on average, of the degree of the internal vertices (see
again Chapter 18) is a promising operation for this type of mesh.

8.4.4 Alternate method

In this approach, one examines, for all triangles in the initial mesh, the quality of
the quad formed by combining the triangle in question, K, with its neighbors, K;.
‘Therefore, there are three possibilities a priori. Each possible quad is identified by
the edge common to A and K;. With each of these edges is associated a quality
value which involves the angle in the quad at the two vertices endpoints of the
edge in question.

Let [ABCD] be a quad whose vertices are defined in the direct sense. In the
classical isotropic case, the quality measure of a quad is defined at vertex P by
means of the formula :

2;—9 it 0<o<z
Qp = 2_% if I<f<rm > (8.3)
™
0 if <

where @ is the angle between three consecutive vertices, P; PP;, in the quad. This
function varies linearly between 0 (flat quad) and 1 (rectangle). The quad quality
is then defined as the minimum value of the quality values in its vertices :

Qp . (8.4)

= min
Pec{A,B,C,D}

This quality measure can be extended to the general case (anisotropic case).
To this end, it is just necessary to define the dot product with regard to a given
metric.

Dot product in a given metric. The dot product of two vectors @ and # in
the Euclidean space characterized by a metric My (X) is defined as :

(@, @) py(x) =F UM (X)T
The norm of a vector w is then given by :

1] ma () = V1 IM (X))@ .

Angle measurement in a metric. Let A, B and C be three points such that
@/\Eﬁ > 0, the notation A stands for the cross product in the classical Euclidean
metric. The value of the angle (in radians) between the vectors BC and BA with
respect to the metric M (X) is given by :

(BC, BAY 1, x) )
IBCl a0 1BAllaax) )

6B, (x) = arccos ( (8.5)
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Quad quality in a metric. The quality function defined in the isotropic case
(Relationship (8.3)) can be extended to an anisotropic metric in the following way :

20
M) o< Opnn(x) < %
(Qrlax) =3 5 @ if I <Oux) <7
0 if T < Oamy(x)
and, thus :
) ‘ ' 8.6
(XYP)Er{rHT}B,C,D}(QP)Mz(X) (8.6)

Remark 8.6 The quad quality computation in a Riemannian case (anisotropic
metric) requires evaluating 16 quality values in the Fuclidean case.

A simplified quality function can be used. Let ABCD be a quad, its quality
can be defined as the value of an angle associated with the edge AC' (common to
the two triangles) as :

O pm,(x) = min ([0a]m,(a), Balmaoys (0] maay [0c]ma(cy) - (8.7)

General scheme. The edges are sorted based on the decreasing quality value.
The quads are formed by combining the triangles following this order. Once a
quad is constructed, the corresponding edge is removed from the list of possible
edges. A data structure such as a heap is used to store the triangles that remain
to be combined. Indeed, at each quad creation, the list of the edges to be dealt
with must be updated.

With this strategy, the quads that are constructed are, in some sense, the
best possible. However, The number of isolated triangles is not minimal. Several
ideas can be advocated so as to minimize this number of triangles or to avoid
them altogether. On completion, there are still some triangles that have not been
combined. These elements are then subdivided into three quads after introducing
the edge midpoints and the centroids. This leads to propagating the refinement to
some adjacent elements (cf. Figure 8.13). In such a case, the size of the elements
in the final quad mesh is half the size of the triangles in the initial mesh (assumed
to conform to a given size map). To solve this problem, one can use a technique
based on the twice size (as previously discussed).

As the way in which the triangles to be combined are governed by the quality
of the resulting quads, two particular drawbacks must be avoided :

¢ combining a triangle with some edges aligned with one of a neighbor,

¢ leaving too many isolated triangles. Indeed, the vertex introduced at the
centroid of the element is of degree three and thus rigidifies the mesh thus
making the quality optimization more delicate.
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Figure 8.13: Triangle combination so as to form quads. Left-hand side, an isolated
triangle is subdivided into three quads. Right-hand side, the quad resulting from
the combination of two triangles is split into four quads.

Remark 8.7 In the isotropic case, it is possible to use a different quality measure

(see Chapter 18) :
hmaz Z d?,
\i=1,4

where hpqe 1s the largest length of the sides and the two diagonals, d; is the
distance between any two points in the quad (i.e., sides or diagonals), Spin is the
minimum of the four (triangle) surfaces that can be associated with the quad and
o s a normalization factor such that the square quality value is one.

Q=a (8.8)

Remark 8.8 A procedure which is easy to implement, based on a frontal type
propagation, can also be used to combine the triangles. Given a triangle, the
triangles adjacent to an edge are examined and combined in this order (the list of
triangles to be processed is no longer sorted according to a quality criterion, thus
simplifying the algorithm).

Figure 8.14: Ezample of a quad mesh by triangle combination. Left-hand side,
wnetial anisotropic triangular mesh. Right-hand side, resulting quad mesh. Note
that the size of the quads is half that of the triangles.

8.4.5 Dealing with a surface

Using a triangular surface mesh, it is also possible to obtain a quad mesh of this |

surface. The method is rather similar to that previously described.
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In this approach, we assume a discrete parametric surface provided in the form
o(u,v) = (z,y,z), the parameters u,v being defined in a rectangle. The metric
Mo introduced in the general case corresponds here to the (anisotropic) metric of
the principal radii of curvature or to the (isotropic) metric of the minimal radii of
curvature, these metrics being defined in the parametric space. The definition of
these different metric maps is described in Chapter 13.

8.5 Quad by means of a direct method

Unlike the previous schemes, various direct methods can be envisaged to obtain
a quad mesh (without the temporary help of a triangular mesh). Three of these
have received some attention :

e an advancing-front type method,
e a special understanding of the above grid superposition type method,

e a domain decomposition combined with an algebraic method in each sub-
domain.

8.5.1 Advancing-front type method

This type of method consists in generating the domain paving by going through the
domain starting from its boundaries (in this respect, we return to the advancing
front type methods as seen in Chapter 6) [Blacker,Stephenson-1991].

More recently, [Cass et al.1996] advocated the use of this approach in the case
of parametric surfaces while using the tangent planes together with the radii of
curvature.

Another method in this class makes use of the STC, the spatial twist continuum,
[Murdoch,Benzley-1995). Given a quad mesh, the STC can be constructed. This
structure 1s made of chords which links the quads. It can be seen as the dual of the
mesh (in some sense, this structure is what is the Voronoi diagram for a triangular
mesh). Conversely, given a STC, say a series of chords inside the domain which
follow some rules, it is possible to define a quad mesh.

Remark 8.9 In essence, this approach is sensitive to the domain (surface) bound-
ary discretization. In addition, the number of segments in the boundary mesh must
be even.

8.5.2 Grid Superposition

Here, one follows an idea close to that seen in the section devoted to mesh con-
Struction by means of a grid (a set of quad or square boxes) or by using predefined
batterns (quads in this context). Figures 8.6 and 8.7 give one academic example
of the aspect of the meshes completed by using such an approach.
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8.5.3 Using the medial axis

In Chapter 9, we will see the precise definition of the medial axis of a domain in
two dimensions together with a method suitable for such a construction (actually,
a discrete approximation of this line). Briefly, we assume the data of a discretiza-
tion of the domain boundaries and an approximation of its medial axis. Then,
this information can be used to subdivide the domain into regions with a simple
geometry. These regions are constructed in such a way that certain properties
hold, ensuring it is possible to cover them by means of quads. Depending on the
case, the mesh is completed by using an algebraic type method or by following a
midpoint subdivision method.

Domain partitioning. The domain’s boundaries and its medial axis make it
possible to define a domain partition composed of a certain number of regions that
are bounded by a portion of this line, one of several portions of the boundary and
one or several “cuts” joining these two categories of sides.

Mid-point subdivision. This technique makes it possible to cover a polygon
by means of quadrilateral regions. An internal point is constructed, for instance
the centroid G of the initial polygon then the edge midpoints are introduced (for
the edge boundary of the polygon). It is then sufficient to join point G' with two
consecutive midpoints to obtain the quad regions that are sought.

The regions resulting from the domain partition are dealt with in this way and
a first quad covering-up is thus obtained.

Quad construction. A repeated use of the above algorithm results in the final
mesh completion. Another technique uses an algebraic method (as in Chapter 4)
in each region while ensuring the conformity of the output mesh (we meet again
the consistency constraints of the multiblock methods about the way in which the
subdivision parameters propagate from one region to another).

Figure 8.15: Partitioning method based on the medial axis : approrimate skeleton
of the domain and cut lines (left-hand side), quad mesh resulting from this partition
(right-hand side).
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8.6 Hex meshing

We consider here only the case of an arbitrarily shaped domain. Indeed, if the
domain geometry is adequate, we already know some methods capable of con-
structing a hex mesh (algebraic method, P.D.E.’s based method, product method,
etc.). First, it could be observed that the triangle combination method for quad
meshing in two dimensions does not extend to three dimensions as it is tedious to
define a tet combination resulting in a hex that uses all or, at least, the majority
of the elements in the mesh.

On the other hand, splitting the elements of a given tetrahedral mesh by means
of 4 hexes results in poorly shaped elements and bad connectivities (or vertex
valence, see Chapter 18).

Thus, a direct construction method must be considered and, in principle, we
return to the three methods that have been introduced for quad meshing purposes
in two dimensions, the advancing-front method, grid based method or use of medial
surface :

¢ advancing front based method. We meet here the principles of any classical
advancing front method (Chapter 6). Nevertheless, the expected difficulties
are now more critical. Indeed, it is tedious, given a face, to find the various
points candidate for hex creation. Several techniques have been proposed,
[Blacker,Meyers-1993], [Murdoch,Benzley-1995] and [Folwell, Mitchell-199§],
which, in some cases, introduce some non hexahedral elements (pyramids,
prisms, tets) and thus lead to mized meshes;

e grid based method. The chosen grid could be uniform or hierarchical (an
octree, or even an octree whose cells are subdivided into 27 octants (and not 8
as in the classical case)). The main difficulty then consists in dealing properly
with the octants that intersect the boundary or that are close to it. The main
references in this area are [Schneiders et al. 1996] and [Schneiders-1996a];

¢ method using the midsurface. A midsurface (approximated or having the
same topology as the exact midsurface) is constructed (Chapter 9). It
then serves to partition the domain in terms of regions whose topology
is simpler so that a direct method can be envisaged, [Price et al. 1995],
[Price, Armstrong-1997].

8.7 Miscellaneous

In this section, we mention some methods which can be suitable in certain situa-
tions and which have not been covered in the previous discussion.

8.7.1 Radial meshes

A radial mesh can be a source of benefit for some numerical simulations that can
account with this specificity. Radial meshes can be developed based on various
methods. For instance, a product type method is a natural candidate for such a
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result. An alternative method is the pattern based mesh generation method as
briefly discussed above. Using a classical method (such as an advancing front or
a Delaunay based method) with pre-placed vertices may also be a solution.

Figure 8.16: Classical radial mesh as completed by a product method (left-hand
side) and non classical radial mesh as resulting from a series of verter and edge
collapsing (right-hand side).

In Figure 8.16 (left), one can see the classical result obtained by a product type
method where the data consists of a discretized segment and a generation line that
reduces to a rotation. One should note that the mesh elements near the center of
the domain are very badly shaped due to the rigidity of the method which imposes
a constant number of subdivisions along each section. Thus, in Figure 8.16 (right),
we can see the mesh obtained using a variation developed by [Hecht,Saltel-1989)
which consists in balancing the element sizes (note that some triangles remain in
the resulting mesh). In short, the classical product mesh is modified by means of
edge and vertex collapsing (see Chapter 18) so as to prevent the construction of
elements that are too small. In this way, the number of subdivisions may vary
from one section to another, thereby reducing, to some extent, the rigidity of the
classical approach.

8.7.2 Recursive partition

The key-idea is to make use of the “divide and conquer” paradigm (Chapter 2) to
construct the mesh of a domain using its boundary discretization as input data.

Given a domain by means of its boundary discretization (a series of polygonal
segments in two dimensions, or a triangular surface mesh in three dimensions), a
mesh generation method can be designed with is based on a repeated partition
into two sub-domains of the current domain. Once a polygonal (polyhedral) sub-
domain is composed of only three (or a small number) of segments or of four (or
a small number) of triangular faces, it is then possible to mesh it by means of one
(or a small number) of triangles (tets).

Let us restrict ourselves to a two dimensional problem. We consider the polyg-
onal line serving as boundary discretization. A boundary vertex is selected and
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a line passing through this point is constructed in such a way as to separate the
domain into two sub-domains. This line is furthermore subdivided by means of
segments and thus, two polygonal contours are defined. Thus, the initial mesh-
ing problem is replaced by two similar sub-problems. When a polygonal contour
reduces to three (four or a meshable pattern), the subdivision is no longer pursued.

From a practical point of view, several issues must be carefully addressed in-
cluding :

o the choice of a candidate vertex, the basis of the separating line,

o this line by itself and its appropriate subdivision so as to reflect the initial
boundary stepsizes,

o the determination of meshable patterns.

Finding a separatrice line leads to selecting two points on the boundary such
that the line whose extremities are these points is fully inside the domain with such
a boundary. Therefore, we find an intersection problem that is, on the one hand,
very sensitive to numerical errors (round-off errors) and, on the other hand, one
which could be time consuming. Then, provided with such a line, it is generally
necessary to subdivide it into segments so as to reflect the discretization of the
initial boundary. A technique, close to that used when splitting the edges when
creating the internal points in a Delaunay type method (Chapter 7), is then a
possible solution. A sizing value is associated with the line endpoints, the length
of this line is computed and, based on the desired point distribution, the line
is subdivided into several adequately sized segments. Notice, in passing, that the
separatrice lines will be present in the final mesh (as they stand or slightly modified
if a point relocation step is performed with a view to optimization).

Remark 8.10 The data of a size map (i.e., a control space) serves as input i'n-
formation that makes the above subdivision possible in accordance with some size
specifications.

A few remarks about this type of approach may be given. The choice of the
separators strongly affects the resulting solution and a strategy must be defined
to ensure a nice solution. In this respect, priorities in the selection of the basic
points of the partition can be introduced (in a way, we return to some ideas close
to those used in an advancing front type method, using the local aspects (such as
angles), partition balancing, etc.).

In three dimensions, the same principle applies, at least formally speaking.
However, the numerical problems are relatively much greater, in particular those
related to intersection problems (the separatrice surface must remain inside the
domain). Also, preventing the construction of ill-shaped elements (flat tets) and
the definition of not meshable regions (such as the Schonhardt polyhedron) must
be carefully considered.
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In conclusion, this type of method, widely used in some commercial software
packages, is a solution that enables automatic mesh construction for complex do-
mains. Nevertheless, various numerical troubles may be expected and, in addition,
the complexity (in terms of CPU cost) is far from easy to evaluate a priori.

Other methods ?

Do methods other than those covered in the previous chapters and more briefly in
the present chapter exist ? The answer is not so clear. It is likely that solutions do
exist for some particular configurations. And the answer would certainly be yes
again if we consider some applications related to a “domain” other than the finite
element domain (computer graphics, physical analogy, etc.), while observing that
some of these methods developed in a specific context (spring analogy, molecular
dynamics, simulated annealing, genetic algorithms, etc.) can be seen as occur-
rences of some previously known methods (although possibly under a different
name) or as variations of some “classical” methods. In conclusion, it is necessary
to remain attentive and open-minded in such judgments while retaining a critical
view about any a priori new or novel method.

Chapter 9

Medial axis, mid-surface
and applications

Introduction

Mid-surface or medial surface (medial azis in two dimensions) construction for a
given domain is a very promising field of research that has multiple applications.
For instance, given a two dimensional domain, the medial axis can be used for
domain simplification, spatial dimension reduction and also as a first step to design
an algorithm for quad mesh generation. Similarly the medial surface or mid-surface
associated with a three dimensional domain can serve the same purposes. This is
why we believe it worthwhile devoting a chapter to this class of methods.

Several methods can be advocated to construct the medial entity of a domain,
also referred to as the domain skeleton or neutral fiber. A brief survey of the pos-
sible methods that have been investigated can be found in [Turkiyyah et al. 1997)].
In this respect, quadtree-octree based methods, tracing algorithms, adequate P.D.E.
solutions as well as Voronoi based methods can be considered for medial axis (mid-
surface) extraction. Among these methods, we focus here on the last approach.
Since this method considers the Voronoi cells of a given domain, it can be based
on Delaunay triangulation of the domain. This opens up the discussion as to what
1s termed a Delaunay admissible discretization (in two dimensions) or a Delaunay
admissible simplicial surface (in three dimensions) when the domain is a polygon
or a polyhedron.

Based on such a boundary discretization, it is possible to complete an “empty”
Delaunay triangulation! of the domain of interest. From that, algorithms can be
developed resulting in the construction of the corresponding medial entity (actu-
ally, a discrete approximation of the entity).

Thus before considering medial entity construction and the various applica-
tions that can be derived from it, the first sections focus on Delaunay admissible
boundary discretization.

This triangulation is termed empty in the sense that it does not include any vertex inside
the domain. The sole element vertices are those serving at the boundary discretization.
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The case of Delaunay admissible edges in a two dimensional space is considered,
then we turn to the same edge problem in three dimensions before going on to the
case of (triangular) faces. Then we discuss the construction of the desired medial
entity and, finally, we briefly introduce various applications based on this entity.

9.1 Delaunay-admissible set of segments in R?

Let § be a set of points? in R? and let F be a set of segments whose endpoints
are members of S. The question is to make sure that applying a Delaunay trian-
gulation algorithm (Chapter 7) to S results in a mesh where the segments of F
exist as element edges. In other words, given any segment f in F whose endpoints
are A and B, we wish to have f a triangle edge at the time the points in § (in
particular A and B) have been inserted by the Delaunay triangulation method.

Remark 9.1 Actually, f will be formed if there erists a point P such that a
Delaunay triangle fP erists. Another naive equivalent condition is that there is
no pair of points, P and Q, located each on one “side” of f such that edge PQ
will be formed that intersects f.

If F is such that the previous property holds for all of its members, then F is
said to be Delaunay-admissible (or Delaunay-conforming) and, for the time being,
we just retain this naive definition for this notion.

Now, given F a set of segments, it is not guaranteed that F is Delaunay admis-
sible. The problem is then to characterize this property, to find the condition(s)
the segments in F must have to meet it and, in the case where F is not Delaunay
admissible, to modify F in such a a way as to obtain a new set of segments which
conforms to the desired property?.

9.1.1 Terminology and notations

Before going further, we introduce some notations (see also Figure 9.1 and Ta-
ble 9.1). Given F, a set of segments, f = AB denotes a segment of this set, S
stands for the set of the endpoints of the f’s. £; denotes the line supporting f,
this line defines two subspaces, ?-l}' and ”Hf_. Given f, B;’”" is the open ball whose
diameter is f (this ball corresponds to the smallest circle that can be constructed
passing through the endpoints of f). Finally, given a triangle, say a triple ABC

?The points are not assumed to be in general position. Indeed, in what follows, a co-circular
pattern, possibly after a swap, does not lead to difficulty.

2A precise definition of the notion of a Delaunay admissibility of an set of k—faces can be
found in the ad-hoc literature and, for instance, in [George,Borouchaki-1997]. Such a theoretical
definition involves the Voronoi cells, dual of the Delaunay triangulation. Actually, using such a
duality is not strictly required in two-dimensions if ones wants to prove some theoretical issues
(see below). Nevertheless, this argument will be reviewed later since it leads to a rather elegant
proof when the dual problem (Voronoi) is easier to solve than the primal problem (Delaunay).
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or a triple like fM where f is a segment (an edge) and M is a point, Bagc (resp.
Bpar) is the open ball circumscribing the triangle ABC' (resp. fM).

Notation Meaning

forAB segment in question

Projs(P) projection of point P on f

Ly line support of f

HT, L two half-planes related to L

B?’”'", Bapc, Byp | small ball of f, circle circumscribing ABC(fP)

Table 9.1: Notations for the entities involved in the edge problem in two dimen-
sions.

min
By

Figure 9.1: A segment f = AB, member of F, the corresponding ball B}ni" and
the two associated half-spaces ’H}' and ’H;

9.1.2 Classification

Given a set F (and the corresponding set S where, to make sense, we assume that
more than three non-aligned points exist), we need to analyze the configurations
associated with all any f in F and, depending on the case, to see whether or not F
Is suitable or must be modified. This analysis concerns the various configurations
that can be encountered. Let us consider an edge f, then the following cases can
be found [Pebay-1998b] :

Case 0 : 7{}' (or Hf_) 1s empty,
Case 1 : B}’”" is empty,

Case 2 : B}"m contains one or several points (other than A and B, remember
that we are considering an open set).
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9.1.3 Analysis of the three configurations

Obviously, a segment f falling within (Case 0) will be formed and then retrieved
as an element edge. So it is for a segment f corresponding to (Case 1) as proved
in what follows. Let A and B be the endpoints of segment f. Then, a condition to
have AB an element edge is that there exists a point P in S such that B;p = 0.
Since such a point exists, then a segment in (Case ) is Delaunay.

Proof. Let P be an arbitrary point in S, for instance in 7-[;. Since P ¢ B}’””,
the circumball Bfp is such that Byp N ’ij C B}”i" then Byp N ’H}' =0. If
Bip N, = @, then Bfp = () and AB is Delaunay. Otherwise, at least one point,
say @, exists in Byp N %f_. Replace P by @ and repeat the same process (i.e.,
return to “since”). At completion we have found a point P such that Bfp = 0 and
thus AB is Delaunay admissible. Actually, the solution point is that for which the
angle APB is maximal. a

Note that, given f, the condition “B}m" is empty” is a sufficient condition of
Delaunay admissibility which, in fact, is too demanding.

Now, we turn to {Case 2.). In this case, one or more points are located in
B}’””. Let P be the point such that angle PAB is maximal. Then,

o if Byp is empty, triangle fP is Delaunay and thus will be formed (and f will
be formed),

o otherwise one or several points exist in B;p and triangle fFP is not Delaunay
meaning that f is not Delaunay.

We then have a condition of Delaunay admissibility for f. It involves the point
in set 8§ with maximal angle and the simple examination of the Delaunay criterion
for the corresponding triangle makes it possible to decide whether or not f is
Delaunay.

Delaunay-admissibility and Voronoi cells. The Delaunay admissibility of a
given segment in R? can be also easily expressed in terms of the properties the
corresponding Voronoi cells must have.

Thus, following Chapter 7 and more precisely Relationship (7.1), the Voronol
cell associated with a point A is the region V4 such that :

Va ={M such that d(M,A)<d(M,N), VN €S} (9.1)

where d(.,.) is the usual distance between two points. Now, consider four points |
in 8, the two endpoints of segment f = AB under consideration and two other

arbitrary (non-aligned with the previous) points, P and @ that can impede the
construction of AB. Four Voronoi cells can be defined, successively Va, Vg, VP

and Vg. It is obvious that these four regions fall within one of the three situations |

depicted in Figure 9.2.
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Figure 9.2: The three possible patterns that can be encountered when considering
the Voronot cells related to four (non-aligned) points in R2,

Now, f = AB is Delaunay-admissible if edge AB exists in the Delaunay tri-
angulation. In terms of Voronoi cells, AB is a Delaunay edge if V4 and Vg share
a (Voronoi) edge or a (Voronoi) vertex*. Thus, AB will be formed in case i), in
case 1i) and not in case iii) as displayed in Figure 9.2. Thus we have a condition
about the Voronoi cells that allows us to see whether or not a given segment is
Delaunay.

Exercise 9.1 Write the fact that V4 and Vg share an entity in terms of properties
about the balls involved in the context. On the fly, retrieve the above conditions by
showing that

VanVeNAB# 0 < B} empty,

VanVp #0 and V4NV NAB =0 <= Bjp empty,

where P is such that angle APB is mazimal.

9.1.4 Construction of a Delaunay-admissible set of edges

Given F a set of segments in R? and the corresponding set S, we want to see
whether of not this set is Delaunay and, if not, how to modify the unsuitable
segments so as to form a Delaunay set of edges. The segments in F are examined.
Only those falling within (Case 2) are considered. Let f be such a segment.

We first examine the case where only one segment exists in F and where only
one point, P, falls within B}”i", for instance in 7, Figure 9.3 :

o if Bsp D’H}' 1s empty, triangle fP is Delaunay and thus will be formed (and
f will be formed),

* otherwise one or several points exist in Byp not in B}”m and f is not formed®.
But, a point M exists along f = AB such that B and B where

*In such a case, the four points under consideration for the local analysis are co-circular and
AB: can be easily obtained (at least after a swap, Chapter 18).

It can be easily proved that there is no point Q, other than the points falling within B¢p,
such that the triangle fQ is Delaunay.
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fi = AM and f, = M B, are empty and we return to (Case I) for these two
new segments. Thus removing f from F and replacing it by f; and f5 is a
suitable solution.

S
/// ,:'//// /// N
LD,
r /[,,// < //“i 7.{ +
v/ % f
{ f /
AN /B
\ \4 - // / -
\ I / H ¥
— ///
min

Figure 9.3: In this pattern, B}"i" contains only one point, P, then assuming that

P e N7, the circumball Csp may comprise one or several points in the region o
f I g

7{}' which is shaded in the figure.

Proof. To prove this result, we just have to define the above point M. One
solution is to define M as the projection of point P on f, the point denoted by
Projs(P) in Figure 9.4 (left). Then after replacing f by the above f; and f,, we

min

analyze these two new situations. Obviously, B}’Zi” and BY)'" are empty. This is
due to the fact that relationships

Bf™ C B and BJ™ C BP" (9.2)
hold, combined with the fact that the possible points of 7-[}' that can interact are

outside B}”m (see Figure 9.3) and thus outside B}'}i" and B’;;m (see Figure 9.4, left-
hand side). o

Remark 9.2 Relationship (9.2) is the basic key to the problem.

Remark 9.3 Following Figure 9.4 right, one could observe that using as point M,
the midpoint of AB may lead to a solution only after several subdivisions.

To pursue, we have to examine the case where we have only one f and several
points in BJ’,’“'”‘ The following scheme

e Pick the point P in B}”i" such that APB is maximal,
e If Byp is empty, f is Delaunay, END.

e Otherwise, apply the above construction. Consider the new segments fi and
f2 and repeat the process.

completes the desired solution.
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Figure 9.4: Left-hand side : P in BJ’Z”" no longer belongs to BT;;”;ojf(P) and

B%:ij(P)B' Right-hand side : P in B}m" falls within Bi where M is the
midpoint of AB.

Proof. Actually, Relationship (9.2) gives the key. The radii of the relevant
minimal balls decrease and then the number of points in these balls decreases. As
the number of points is finite, the solution is yielded. ]

Remark 9.4 Note that the above construction is based on the projection of the
pownt with mazrimal angle while another point impeding the construction could be
used. This means that the resulting solution is not necessarily optimal (in specific,
it 15 tedious to decide whether or not a given f has been split too much).

Now, by means of exercises, we consider the case where the set F includes more
than one segment.

Exercise 9.2 Discuss the validity of the above proof in the case of two segments
AB and AC sharing point A. Hint : first, observe that if the angle BAC is obtuse,
segments AB and AC' can be decoupled in some sense. Otherwise zf@ 15 acute,
the two segments are coupled. Adding a point in AB may lead to adding a point
for AC'" and conversely. Nevertheless, among the points impeding the construction
of AB and AC, one can be retained that further decouples the resulting situation.

Exercise 9.3 In the same configuration, find a counterezample where subdividing
edge AB using the midpoint results in a solution for edge AB which is no longer
valid when considering edge AC. Hint : assume the angle between the two segments
to be acute and show that adding a midpoint may lead to repeating to infinity the
same pathology.

Exercise 9.4 Turn now to a non manifold boundary. Consider the case of a
point A where several edges meet and where every angle between two segments is
acute. Hint : examine the vertices surrounding point A. Find the smallest distance
between these points and A. Introduce a point on all edges emanating from A at a
distance less than the above value.
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Remark 9.5 As previously mentioned, we have some flexibility when a projection
1s demanded. In the above construction, a specific point has been chosen and then
projected but other projections may lead to the desired property. Thus a more subtle
analysis can be made, in specific, if some criteria must be followed. For instance,
it could be of interest to ensure that the resulting fi and fa are not too different
in terms of length.

Exercise 9.5 Look at the case where the open balls are replaced by the closed balls.
Note that these cases may result in some small changes in the previous discussion.

9.1.5 Delaunay-admissible boundary discretization

The previous material can be used for a slightly different problem. Given a polyg-
onal discretization of a closed curve I' boundary of a given domain, we want to
see whether or not this discretization is Delaunay conforming. If not, we want to
modify it so as to complete such a Delaunay conforming discretization.

- “Projn(P)’

Figure 9.5: Right-hand side : the context when a point P must be projected, the
initial edge f and the curve T. The small ball of f, those of fi and fa resulting
from the “theoretical” method. Left-hand side : the small ball that is not strictly
included in the initial one when P is projected on T' and not on f.

Then, the above approach can be retained and, in specific, the construction of
the projection of a point that impedes the Delaunay process can be used. Nev-
ertheless, in contrast to the above theoretical framework, such a point must be
precisely located on T' and not on an edge f of I' which leads to a different loca-
tion when TI' is a curved boundary. In other words, if f € T', then f; and f, as
defined above are not necessarily close to I' and we wish to avoid such a case.

Now, following Figure 9.5, Relationship (9.2) may be not satisfied. Thus, the
convergence of the method is an issue. Actually, based on the strict decreasing
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of the radii of the small balls that are involved, the same result as above can be
obtained.

9.2 Delaunay-admissible set of segments in R?

Following [George,Borouchaki-1997], dealing with the non Delaunay admissible
segments included in a set of three-dimensional segments leads to the same result
as in two dimensions and the same sufficient condition holds. Such a segment can
be split, if necessary, using the adequate projections, as previously detailed in two
dimensions. Similar reasons ensure the convergence. Indeed, the spheres involved
in the construction are strictly enclosed in the former spheres they replace.

Let f = AB be a segment in R3. Segment AB is Delaunay if the Voronoi cells
V4 and Vp share a Voronoi entity (vertex, edge or facet). Thus, Bap empty is a
sufficient condition for Delaunay admissibility.

Proof. Since Byp is empty, the midpoint of AB is in V4 N Vg, thus we have
VanVe # 0. 0

Remark 9.6 The solution may be obtained after a swap (in the case where V4aNVp
reduces to a single point).

Now, assume that Bap is not empty. Then one or several points exist in B4 pg.

One of these points, say Py, is such that angle m is maximal. Now, left as an
exercise,

Exercise 9.6 Show that for any point P in Bap such that APB < Zﬁl\B, we
have Py € Bypp where Bapp is the ball whose great circle is the circumcircle of
triangle APB.

Exercise 9.7 Show that if face ABPy is not created, then AB cannot erist.

As a consequence, the above point P; is a natural candidate for forming a face
with AB. Then, Bagp, empty is a condition for AB to be Delaunay.

Proof. Since Bagp, is empty, the center of the circle passing through A, B and
PliSinVAﬂVBﬂVplthenVAﬂVBﬂVm#@. i

The above result can be obtained by considering the triangulation point of view.
The segment AB is Delaunay admissible if, obviously, there exists one Delaunay
tet (a series of Delaunay tets) with AB as an edge (to make sense, set S must
include more than four points, including A and B, and then the number of tets is
at least two).

‘ Let P; be the above point (that in Bsp with m maximal). Bapp, empty
1s a condition that ensures the existence of a Delaunay tet with face ABP; and
thus with edge AB. Such a tet exists.
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Proof. Let r;i: be the radius of the disc ABP;. Then, we consider a family
of balls passing through A, B and the above P; whose radius varies from r;n;¢ to
infinity. For a value of this radius, the ball touches a point, let P, be this point.
Then, tet PyABPs is Delaunay since, by construction, its ball is empty. O

Exercise 9.8 After element Py ABPs, find the other elements sharing AB. Show
that they are Delaunay. Hint : use the same method to find the desired points
based on the disc of the face common to the previous element. Then show that
each resulting tet 1s Delaunay.

Another less demanding condition is now introduced. Still based on ball ABP;
which, now, is not assumed to be empty. Among the points in this ball, we select
one, say Py, such that the solid angle between P, and triangle ABP; is maximal,
then if tet PyABP5 is Delaunay, AB will be formed. In this way, we have a
condition based on two specific points.

Remark 9.7 Above tet PLABP; is the tet of mazimal (circum)ball among all the
tets with a vertex in Bapp, .

Now, to complete the discussion, we have to follow the same scheme as in the
above section starting from a simple situation and going further to the general
case (and, in specific, a case where several edges emanate from one point).

9.3 Delaunay-admissible set of triangular faces

We now face the same problem for F, a given set of triangular faces, where one
face is denoted as f. The main difficulty that is expected is related to the fact
that Relationship (9.2) does not extend to a face in three dimensions. Given a
triangle f in R3 along with B}"i” its minimum ball having as great circle, gcy, the
circle circumscribing f, then any subdivision of f results into sub-triangles and,
Figure 9.6, in general, we don’t have

By C B, (9.3)

where f; denotes one of these sub-triangles. Actually, introducing a subdivision
point inside the initial face f or along one of its edges leads to great circles that
are not included in the initial great circle. Moreover, in the case of a surface mesh,
splitting a face may lead to splitting the neighboring faces so as to preserve the
conformity of the mesh.

Despite these observations, we want to find a solution®. First, we establish the
catalogue of the possible patterns. Then we propose a method while discussing
the convergence issues.

6 As in Section 9.1, a naive approach to the problem is to make sure that a Delaunay tetra-
hedron exists with f as a face. Note that the cases where a face f does not exist do not reduce
to a situation where an edge PQ, where P and Q are two points one on each of the half-spaces
separated by a plane supporting f, intersects f.
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Figure 9.6: The great circles, gc., (thus the corresponding balls) after subdivision
are not strictly included in the initial circles (the initial ball). Moreover, some
radii can be significantly greater than the initial one. Left : the face f = ABC
is subdivided based on an internal point M. Right : the subdivision point M s
located along one edge of f.

9.3.1 Notations

As for the two-dimensional case, we define some notations (see also Figure 9.7
and Table 9.2). F is now a set of triangular faces, f = ABC denotes such a face
and S stands for a set of points including the extremities of the frs. Iy is the
plane supporting f. It defines two subspaces, ’H}' and M} . Given f, Bf"'" is the
open ball whose great circle, gcy, 1s the circumcircle of f (this ball corresponds
to the smallest sphere that can be constructed passing through the vertices of f).
Finally, given a tetrahedron, say a quadruple ABCD or a quadruple like fM
where f is a face (a triple) and M is a point, Bapcp (resp. By ) is the open ball
circumscribing the tetrahedron ABCD (resp. fM).

Notation Meaning
f or ABC the face in question
I1; the plane supporting f
7{}F , Hy the two sub — spaces related to 1y
B}"in the small ball of f

min the small ball of segment AB
B’_”é.” the small ball of segment AB (opposite )
gey the great circle of f (gcf = B}’”" NIIy)
Bapcp , Bsp the circumball of ABCD (resp. fP)

Table 9.2: Notations for the entities involved in the face problem.
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Figure 9.7: A face f = ABC, member of F, the corresponding ball B}"i", the great
circle (disc) gcy, the plane 11y and the two associated half-spaces 7-[}" and ’H;.

9.3.2 Classification

A priori classification.  Given a set F (and the set S), we want to see whether
or not F exists in Del(S) the Delaunay triangulation of S (to make sense we
assume that more than four points compose 8). If not, we construct a new set F’
(and the related set S) such that Del(S”) has the desired property (i.e., the faces
in F' exist in the triangulation based on S').

Thus we need to analyze the configurations associated with any fin F. For a
given triangular face f, the following cases can be encountered :

(Case 0) : 7-[}' (or H7 ) is empty, more precisely one find (Case 0.1) if gey is empty
or (Case 0.2), otherwise,

(Case 1) : B}’”" is empty

(Case 2) : B}’”" is not empty, which leads to several situations : (Case 2.1) if ge;
is empty or (Case 2.2) otherwise.

Reduced classification. A more precise analysis of the above classification
leads us to remove (Case 0.2) as well as (Case 2.2). In other words it is always
possible to ensure that the gcy’s are empty.

Assume a configuration where gc; is not empty. Let P be a point in gcy
(thus in II), it is immediate to see that this point will impede the construction
whatever the context (with respect to BT, 7-[;" or 7{;) Indeed, the circumball
of any tet with f as a face will include point P and thus such a tet is not Delaunay.
Actually we face a problem in two dimensions (in plane I1;). Given an arbitrary
triangulation in a plane (the plane Iy here), it is possible to achieve a Delaunay
triangulation by means of edge swapping. As a consequence the cases where a gcs
is not empty can be removed after edge swapping, thus resulting in a new set F
with empty gcs’s. Thus, the classification reduces to :
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o (Case 0) : ’H}' (or H}) is empty,
o (Case 1): B}’”” is empty,
o (Case 2): B}m’" is not empty,

while, at the same time, the gc;’s are empty. Based on this classification, we want
to see if F is suitable or must be modified so as to obtain what is needed.

9.3.3 Analysis of the three configurations

We examine the three above situations, see [Pebay-1998a] for more details. A face
in (Case 0) is Delaunay.

Proof. Assume that 7{}" is empty, then the points candidate for connection with
f are in H7. Let @ be the point in ’HJT such that the solid angle formed with f is
maximal, then the ball of tet ABCQ 1s empty. ]

Since gcy is empty, the sole points that can impede the construction would be
exactly located on the boundary of gey (and thus co-circular with A, B and C).
In this case, f is easy to obtain, possibly after a swap.

Actually, above point @ could be obtained based on what follows :
e pick a point, say P, in 'H;. Consider the tet ABCP and its ball Bagcp-

— if Bagcp is empty, then Q = P.
— otherwise, a point M exists in Bapcp, set P = M and repeat the same
process.

The solution results from the fact that

if MEBABCPQ’H; then Bapcwm ﬂ?{;CBABcpﬁ’H;. (9.4)

Now, a face in (Case 1) is also Delaunay.

Proof. First, if Pis a point in 7{}', not in B}’””, for tet ABC'P we have BygcpN
7‘[; C B;”i" thus Bapcp N My is empty. If P is in 7{;, we have a similar
conclusion, Bagcp N 7-[}' 1s empty.

Now, consider a point P in 7-[}", not in B}"i", form the tet ABCP. If BapcpN
H}F is empty, set Q = P. Otherwise, a point M exists in Bapcp N ’H}', set
P = M and repeat the process. At completion, we have found a point @ such that
Bapcg N 7{;’ is empty.

Since Bapcq O'H; - B}nm, then BABCQ empty holds. 0

It may be noted that we again meet the conditions of Delaunay admissibility of
a given face which are similar to those of an edge in R?. Now we have to examine
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the remaining case. Let us recall that in (Case 2), for a given face f, we have a
situation where :

BP"#£0 Hy #0 HF#0 and ge; =0, (9.5)

in other words, B}m" encloses one or several points, some in ’H}L, some in Hf_. Let
P be the point in B}’”” also in 7-[}' such that Bypcp is maximal, then Bageop ﬂ?{f
is empty. Thus, a condition for f to be Delaunay is that Bapcp 07{; = 0. Since
the same holds when considering the points in M, the condition is the same
for the point in one or the other half-spaces which maximizes the corresponding
circumball.

To summarize, unless the above condition holds (which is actually tedious to
check), the faces in (Case 2) are not Delaunay.

9.3.4 Construction of a Delaunay-admissible set of faces

Based on the previous classification, some faces are Delaunay admissible whereas
others require specific processing. As previously seen, only faces falling within
(Case 2) must be examined. We have a situation where B}m" encloses at least
one point, say P, for instance in 7-[;, and the ball circumscribing the quadruple

fP encloses at least one point, say Q, in ”H}' (if the above circumball is empty,
the face f is Delaunay) while the great circle related to f is empty.

The only case where this particular situation is not the situation encountered
would be the following :

e a point P isin B}"i" as above for instance in H; and, at the same time, one
point (or more) exists in the boundary of gcs and a Delaunay tet could be
formed based on P and this (these) point(s). In this case, a swap may be
required to retrieve f.

For the sake of simplicity, we discard this particular case and we first discuss the
case where only two such points exist (P and Q). Before going further, bear in
mind that any subdivision by given patterns of an unsuitable face may result in
replacing this face by several Delaunay admissible faces but at the same time, due
to conformity reasons, may lead to splitting some neighboring faces (if we consider
a surface mesh) for which the corresponding small spheres may be as large as we
want.

Towards a general scheme. After the above remark, the solution cannot be
directly completed by “subdividing” the faces. Therefore, the expected result
can be obtained only by using a multiple step scheme where, at each step, some
criterion is enhanced. The scheme we propose is as follows :

e (A) we process the non Delaunay face edges,

¢ doing so, we introduce some new faces as well as some new edges,
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e as long as, among these new edges, there are some non Delaunay edges, we
return to (A),

o then we process the faces (and, now, all face edges are Delaunay-admissible).

Edge enforcement. The edges of the given faces that are not Delaunay admis-
sible are dealt with using the previous method. In this way, they are subdivided,
if judged useful, and an admissible partitioning is completed.

Nevertheless, when subdividing an edge, for instance into two sub-edges, a new
edge is introduced. In fact, the problem doesn’t reduce to considering stan.d al‘one
edges in R? but edges that are face edges. Thus, it is necessary to maintain a
topological face structure.

At completion, we have a set of faces all of whose edges exist, and we then turn
to the face enforcement step.

Face enforcement. Following Footnote 6 above, we examine more precisely a
configuration where the given face is missing due to two points P and @, one in
My, the other in #¥ (this point may be also in BY™ or not), such that edge PQ
is Delaunay admissible and impedes the construction of face f. Some occurrences
of such a pattern are depicted in Figure 9.8.

p P P
B D 2 c
G A%c @F
Vi \*
o 20,8 E g8

Figure 9.8: A face f = ABC, member of F, is not Delaunay due to an edge PQ.
Several tets sharing PQ erist whose vertices, apart from P and Q, could be those
shown in the figure.

If edges AB, AC and BC exist, we are faced with a situation where PQ
intersects ABC, then only tets PQAB, PQAC and PQBC exist as can be easily
proved (left-hand side of the figure). Thus, the corresponding circumballs are
empty. Then, observe that the only way to prevent the creation of the three above
tets is to violate the Delaunay criterion. In other words, a solution is to introduce
a point in the intersection of these circumballs.

We first consider the case where P, in B™" is such that the sphere passing
through P and f is larger than that passing through @ and f. Let M be the
projection of P onto the face f. A priori, based on the position of P with regard
to f, M is either internal to f or is located on one of the edges of f. Since PQ
cuts f, it is easy to see that M is necessarily inside f and falls within the three
above balls, therefore this particular point will prevent the creation of edge PQ.
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Using the so-defined point M, one subdivides the face f by means of three
sub-faces. The new edges are processed so as to obtain Delaunay-admissible edges
(via the above method or using some edge swap in the plane of f) and we consider
the set of resulting faces.

At completion, three results hold. First, point P is no longer inside any balls
associated with the sub-faces replacing face f. Next, the radii of the balls related
to the edges and those related to the newly created faces decrease. Thus, point
P has been discarded from the balls of the new faces. Indeed, point M acts as
a “wall” between P and @ which are no longer coupled together (i.e., P is not
closer to () than any other point in ).

This ensures the convergence of the process.

We now turn to a case where there are several points in B}’””, such that
several edges intersect the face f. Among these points, we pick the one forming
the maximal solid angle with f (the sphere passing through f and this point is
maximal). We project this point onto f and we repeat the same process, then we
consider again the B}"i” (the above point being discarded), we repeat the same
process as long as a point exists inside one of these new balls.

Remark 9.8 Notice that the only impeding edges are those which cut the face
(thus, in Figure 9.8, three cases correspond to this situation while the fourth case
s not of interest).

Remarks about the convergence. We postulate that the global convergence
holds. For the face edges, this results from the previous discussion. Regarding
the faces, the same result holds if we can make sure that the process has no loop.
This proof remains to be properly established, as far as we know (unless some
particular assumptions are assumed about, for instance, the value of the angles
between two edges).

From a practical point of view, one can find in [Pebay-1998a], an algorithm
based on the previous issues which is completed by some heuristics. The key-idea
1s to enforce the edges prior to considering the resulting faces. Furthermore, to
each of these faces, the following process is applied :

¢ a subdivision based on the a choice about the three possible cases (one
point being added on one of the three edges) such that the retained pattern
maximizes the minimum angle between the resulting triangles,

e an edge swap (in the case of coplanar faces, this being exactly or approxi-
matively verified).

This heuristic strategy has proved to be adequate in numerous significant examples

(see the above reference).

9.3.5 Delaunay-admissible boundary discretization

We face the same problem as in two dimensions. Given a discretization of a
closed surface ¥ boundary of a given domain, we want to see whether or not
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this discretization is Delaunay conforming. If not, we want to modify it so as to
complete such a discretization.

Then, the above approach can be employed and, specifically, any point, edge
or face creation required to ensure the desired property must be such that this
entity is precisely located on ¥ and not on a face f of ¥.

9.4 Medial axis

First, we recall the definition of the medial axis of a domain. Given a domain
in B2 the medial axis of © is defined as follows :

Definition 9.1 The medial azis of a domain is the locus of the centers of the
circles of mazimum radius that can be inscribed in the domain.

9.4.1 Delaunay triangulation and medial axis construction

Following on from the above, it is possible to find the medial azis or the skeleton
of a given polygonal domain based on its boundary discretization. From the above
definition, the medial axis of a domain is the locus of the center of a circle of
maximal diameter as it rolls inside this domain.

Given a Delaunay admissible discretization of a domain boundary, it is easy
to obtain a Delaunay triangulation of this domain whose sole vertices are the
endpoints of the edges of the above boundary discretization. In terms of the
Voronoi diagram corresponding to the above triangulation, we encounter two types
of Voronol entities, the Voronoi edges and the Voronoi vertices. A Voronoi edge is
equidistant from two Delaunay vertices while a Voronoi vertex is equidistant from
three such vertices”. The Voronoi edges dual to a boundary edge are removed and
the resulting edges form a polygonal line (which can reduce to a point). Under
appropriate assumptions, this line enjoys some nice properties and thus gives a
rough idea of what the medial axis is. Note that among the Voronoi edges that
are removed, we encounter first the non finite Voronoi edges® (also referred to
as unbounded edges) as well as some finite edges related to concave parts of the
boundary.

A theoretical issue can be written as the following theorem :

Theorem 9.1 If h tends to 0, where h is the length of the longest edge of the dis-
cretization of the boundary of Q, then the union of the finite internal Voronoi edges
associated with the triangulation of Q based on its boundary vertices approaches
the medial azris of €.

In other words, the medial axis is basically obtained once h tends towards 0,
by joining the centers of the circumcircles of the triangles in the Delaunay mesh.

First, we give a sketch of the proof. Then we discuss the convergence issue of
the proposed method (i.e., the finite internal Voronoi edges).

Tor more in the case of co-circular points.
8Indeed, such edges intersect a boundary edge.
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Proof. Since h tends to 0, the boundary discretization is Delaunay admissible.
Then the triangulation of © based on the boundary vertices is Delaunay. As
a consequence, the Voronoi edges are easy to obtain based on the dual of the
current triangulation. Now, among these edges, those which are not related to a
boundary Delaunay edge are inside the domain and the circles centered in these
edges are inside the domain. Moreover the above circles have maximal radii. Thus,
the so-selected Voronoi edges form the medial axis of Q.

The first three points are obvious. Given an arbitrary boundary discretization,
it is possible to modify it so as to complete a Delaunay admissible discretization.
Moreover, such a discretization can be uniform which will further simplify matters.
Let hpin be the smallest distance between two non consecutive boundary vertices,
then h < —m“k is a suitable value for the definition of the distance between two
consecutive boundary points. Indeed, a uniform mesh of the boundary can be
constructed with boundary edges of length h. This mesh satisfies the condition of
Delaunay requirement. As a consequence, a Delaunay triangulation of the domain
can be easily constructed whose vertices are the above uniformly spaced boundary
points.

The dual of this triangulation can be constructed. The edges of the dual that
are non related to a Delaunay boundary edge are inside the domain. The latter
property results from an appropriate choice of h as can be easily seen.

(Type 2)

Figure 9.9: The three types of triangles that can be encountered in an “empty”
simplicial mesh in two dimensions.

It still remains to prove that, when & tends to 0, the circles centered on these
edges are inside the domain and are maximal. From a computational point of
view, three types of Delaunay triangles exist based on the number of boundary
entities they have. A Delaunay triangle may have (see Figure 9.9) :

¢ no boundary edge, termed a (Type 0) triangle,
e one boundary edge for a (Type 1) triangle

e two boundary edges® and the triangle is termed a (Type 2) triangle.

9The case where the three edges of a triangle are boundary edges is a specific case where the
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Accordingly, the medial axis can be found by considering the way the different
triangles contribute to it. First, we consider the case of a (Type 0) triangle before
discussing a pair of two adjacent triangles.

o (Type 0) triangle.

Let T’ be the boundary of domain Q2 and let ABC be the triangle in question.
The circumcircle of this triangle touches the boundary at three vertices. It is
maximal. If k is small enough, the circle is internal to Q as it satisfies the Delaunay
criterion. At A, B or C, it is tangent to I' if this boundary is at least of class
C'. Otherwise, we have a simple contact, the contact point being a corner (I' is
only of class C° at this point). Therefore, the circumcenter (which is inside the
triangle) belongs to the medial axis. This point is a special node or a critical node
of the axis in which three Voronoi edges meet. Based on the configuration related
to the three adjacent triangles (see below), such a node is the beginning endpoint
of three branches of the axis (which can be reduced to this point in some cases,
for instance in the case of co-circular points).

To know the regularity of the contact between this circle and the boundary, it
is necessary to analyze the edges of ' in one or other side of this contact vertex. If
[ is at least of class C'!, these two edges tend with h towards the (unique) tangent
and the contact is of class C1. If T is of class C°, the two edges form an angle
(other than IT) and we have a simple contact, with no tangency property.

Note, in addition, that whatever h, a (Type 0) triangle does not vanish (its
surface area does generally not tend to 0 with h).

Now, to obtain the entire medial axis, apart from the critical nodes, we have
to examine the contribution of all pairs of adjacent triangles. First, we discuss the
case where one of the two triangles is of (Type 0), thus leading a priori to three
possibilities. Then we turn to the case where one triangle is of (Type 1) resulting
in two new cases (while a pair (Type 2)-(Type 2) doesn’t make sense).

o Case of a (Type 0)-(Type 0) pair.

A combination (Type 0)-(Type 0) is depicted in Figure 9.10. We denote by O,
the center of the circumcircle of triangle ABC and by O that of circle of ADB,
AB being the common edge. If the four vertices are not co-circular, the centers
O, and O, are distinct. The segment 010, is a part of the medial axis. Indeed,
the circle centered at O;, as well as that centered at O, obviously conforms to
the definition and, moreover, all circle centered on 0,03 and passing through
the endpoints A and B of the common edge is maximal, inside the domain and
touches this domain at two points. The point O, is, potentially, the origin of three
branches of the axis (see below) among which is the branch 010, so it is for the
point Oy. The case where the four vertices are co-circular implies that O; = O
and this critical node is, potentially, the origin of four branches of the medial axis
as will be seen shortly.

domain approximation reduces to this single triangle. Thus a (Type 3) triangle, corresponding
to this case, is not really interesting.
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Figure 9.10: The contribution of a (Type 0)-(Type 0) pair. Left : the four vertices
are co-circular. Right : the four vertices are not co-circular.

o Case of a (Type 0)-(Type 1) pair.

Figure 9.11: The contribution of a (Type 0)-(Type 1) pair. Left : the case of a
C' boundary at point C, Oy tends towards Oy with h. Right : the case of a C°
boundary at point C, Oy tends towards O3 with h and, in general, OY is distinct
from Oy.

Figure 9.11 illustrates a (Type 0)-(Type 1) combination. Let ABC' be the
triangle of (Type 0) and BDC' be the triangle of (Type 1) which is adjacent to
the previous through the edge CB. Edge CD is a boundary Delaunay edge whose
size is h. As above, we notice O; and O, the centers of the circles circumscribing
the two triangles in question. If C'D tends with h towards the tangent at C' at
I then O, tends towards O;. Otherwise, O tends towards a point O3 distinct
from O;. If h is small enough (non null), in the first case, any point belonging
to 0104 is a point of the medial axis and thus 0103 is a portion of this axis.
In the second case, it is the same but the medial axis will have a discontinuity
reflecting the corner in the boundary at C (see the remark below). Notice again
that the various points O involved in the construction are or are not inside the
corresponding triangles. The contribution to the medial axis of a pair of triangles
is not necessarily located inside these triangles. To end, if D is co-circular with A,
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B and C, then the contribution to the axis is reduced to the center-point of the
circle of ABC'.

Remark 9.9 The boundary regularity induces the medial axis smoothness. A
point like OY results in a local regularity of type C° in the axis. Otherwise, this
line is locally at least of class C'.

o Case of a (Type 0)-(Type 2) pair.

A (Type 0)-(Type 2) junction is a priori possible. Nevertheless, if h is small
enough, this pattern does not exist. Indeed, when h vanishes, a (Type 2) triangle
reduces to one point. Thus, this case is only feasible from a discrete point of view
and does not participate to the theoretical discussion. Note that for numerical
reasons, this case can arise for a sufficiently small (but non null) A.

e Case of a (Type 1)-(Type 1) pair.

Figure 9.12: The contribution of a (Type 1)-(Type 1) pair. Left and middle : first
possible situation. Right : second case where a beam is encountered.

In the following, Figure 9.12, (Type 1)-(Type 1) junction is discussed. Indeed,
two such junctions can be found based on the geometry of the domain boundary.
Let ABC and BDC be the two triangles sharing the Delaunay edge BC which tra-
verses the domain. The first category of (Type 1)-(Type 1) junction is encountered
when AC and BD are the Delaunay boundary edges while the second corresponds
to the case where the Delaunay boundary edges are BC and C'D meaning that
point A is the base of a beam of edges traversing the domain from one boundary
to the other.

Let us consider the first case, when h tends to 0, let us assume that C remains
unchanged, thus A tends towards C. Then, the circles passing through C tangent
to the boundary are centered on the “right” normal'® at the boundary at vertex C.
Among this family of circles, let us pick the one which is tangent to the opposite
boundary, let O be its center. Let B’ be the point where this property holds,
then the retained circle is centered on the “right” normal at the boundary at this
vertex B’. Let us examine!! triangle AB’C as well as triangle B’D'C. They are

10This notion of “right” normal is due to the fact that point C' tends towards point A from
the “right” side.

11Depending on the boundary curvature near points C and B’, the Delaunay triangles that are
formed are AB’C and B'D'C or AB'D’ and B’D’'C. Nevertheless, the discussion is the same
whatever the situation (while using the “left” normals).
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Delaunay triangles. The circumcenters of these two triangles, O; and O,, define
the Voronol edge 010 and O is located on this edge. Since h tends to 0, the three
points O, Oy and Os tend towards the same point, actually point O. Now, from a
discrete point of view, if h is small enough, 0,05 is the approximate medial axis
as contributed by the two triangles in question.

Now we turn to the second possible situation, namely a beam corresponding to
one or two concave parts of the boundary. A close look at Figure 9.12 (right-hand
side) leads to proving that the circumcenters of any triangles in the beam tend
towards O (resp. O2) with h based on the position of the triangle under examina-
tion. Depending on the boundary regularity, these two points are distinct or not,
which is also visible about the axis regularity (which may contain a portion of a
parabola whose links with the adjacent segments give the resulting smoothness).

o Case of a (Type 1)-(Type 2) pair.

A (Type 1)-(Type 2) junction is now discussed. As for the (Type 0)-(Type 2)
case, the (Type 2) triangle vanishes thus contributing with its terminal node and
the corresponding Voronoi edge (which may not exist in the case of co-circularity).
The medial axis ends at the center of the circle of the triangle of (Type 2), to
complete it, one can link this point with the terminal node.

To summarize, one defines the critical nodes (related to the (Type 0) trian-
gles) then the branches between two such nodes. These branches result from the
contribution between a (Type 0) triangle and its neighbor of (Type 1), and then
from those of the pairs (Type 1)-(Type 1) until a contribution of a pair (Type 1)-
(Type 0) or (Type 1)-(Type 2), in which case the medial axis ends at a terminal
node (except in a case of co-circularity where the axis ends before this point).
Thus the proof of Theorem 9.1. holds. O

After this discussion, let us mention a few remarks.

Remark 9.10 From a practical view point, h is a small value (and thus does
not tend towards 0) and the above discussion only gives a general idea about the
expected resull.

Remark 9.11 If one considers a polygonal approrimation of a curved boundary,
the circles circumscribing (Type 2) triangles tend towards the osculating circles of
the boundary curve.

Remark 9.12 As previously seen, the topology of the medial axis is defined based
on the critical and terminal nodes. The branches in the aris are defined between
two such nodes.

Remark 9.13 One should define the medial axris as the locus, when h tends to-
wards 0, of the circumcenters of the Delaunay triangles. This method is nice
a priori but is nevertheless badly suited to the case where the boundary is not
sufficiently smooth. Indeed, two neighboring centers do not necessarily converge
toward a unique point, thus leading to a discontinuity (a hole) in the aris. Ez-
amples a such cases have been seen in the above discussion and can be found
in [Turkiyyah et al. 1997].
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9.4.2 Voronoi cells of a set of points and medial axis

The data input of points located on the domain boundaries which are dense
enough, while not explicitly defining the corresponding boundary edges, make
it possible to retrieve the same result. A Delaunay triangulation is built, based on
the insertion of these points and the corresponding Voronoi cells are considered so
as to find the medial axis of this cloud of points. If this cloud is dense enough,
this axis 1s that of the domain that is implicitly defined by this type of input data.

9.4.3 Computational issues

In practice, three types of numerical difficulties generally arise. First, the case
where there are co-circular points leads to an imprecise definition of the axis (which
should be reduced to one point) because the Delaunay triangulation is not uniquely
defined in such a situation. The second issue concerns the choice of the h’s in such
a way as to ensure a suitable regularity of the line completed by the construction.
A third problem, which is immediate, is related to numerical errors. For instance,
one case of such a problem leads to find (Type 2) triangles and thus branches in
the axis while such triangles (branches) do not exist in theory. Moreover, the two
following exercises demonstrate some interesting issues.

Exercise 9.9 Find the relationship between the h’s on the boundary discretization
and the lengths of the portions of lines in the approzimate medial azxis.

Exercise 9.10 Find the relationship between the h’s on the boundary discretiza-
tion and the boundary curvature in order to guarantee a nice enough smoothness
in the approrimated medial axis.

Notice that the aim is to minimize the size of the mesh by choosing variable
h’s, the simplest solution clearly being to consider a constant and small value for
these h’s.

Finally, a rough idea of the medial axis is given by the following.

Remark 9.14 Joining the midpoints of the internal Delaunay edges allows a line
to be constructed whose topology, when h is appropriately sized, is similar to that
of the medial axis. Notice that defining as bifurcation point ( (Type 0) triangle)
the element centroid is an easy solution (since this point falls within the triangle)

but, depending on the context, could be a rather coarse approzimation of the exact
result,

9.5 Mid-surface

COnstructing the mid-surface of a domain using a Delaunay triangulation based
only on surface boundary points adequately distributed on this surface is more
tedious. Before giving a few remarks about this approach, we recall the formal
definition of what a mid-surface is (similar to Definition 9.1).
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Definition 9.2 The medial surface of a domain is the locus of the centers of the
spheres of mazimal radius that can be inscribed in the domain.

Find the mid-surface of an empty Delaunay triangulation (with no internal
point) of the domain appeals an immediate comment. If the domain boundary
mesh is not Delaunay-admissible, there is no guarantee (Chapter 7) that such an
empty triangulation exists (due to the Steiner points). Moreover, when h tends
towards 0, a situation assumed in theory, this phenomenum is not relevant. Thus,
we can discard this difficulty, for the moment.

We therefore assume the existence of the desired triangulation. Then, the
equivalent of Theorem 9.1 (which we prefer not to attempt to formulate and prove
here) is simply assumed. Note, without going into detail, that the proof is neces-
sarily harder than in two dimensions. Specifically, if we want to use a classification
of the tets, we clearly find many more types than above.

Exercise 9.11 Classify the tets as a function of how many of their edges or faces
belong to the domain boundary (while their four vertices are assumed to be on this
boundary).

This being done, it is shown that there are tets having only boundary edges
(and no boundary faces) and the precise examination of their neighboring elements
1s necessary in order to find a possible contribution to the mid-surface. Let us
recall that in two dimensions, the contributions to the medial axis corresponded
to the dual of the triangulation, say some Voronoi edges. In three dimensions, the
situation is much more complex. regarding the dual, we find some Voronoi faces
and some Voronoi edges whose presence indicates the way in which the underlying
tet touches the boundary.

A few papers discuss, in greater or lesser detail, these aspects and, among
these, the reader is referred to [Yu et al. 1991] and [Armstrong et al. 1993].

9.6 Medial axis (mid-surface) transform

This is a process commonly called the ” Medial Azis Transform” (M.A.T. for short),
see for instance [Price et al. 1995], [Armstrong et al. 1995] or [Sheehy et al. 1996].
This transformation, used in a meshing context, has also long been used for graphic
purposes [Blum-1967].

The key-idea is that the data of the medial axis together with some additional
information (radii, branches, etc.) make it possible to retrieve the boundary of
the domain in question.

9.7 Applications

Numerous applications take advantage of the medial axis (resp. mid-surface) of ,

a domain in R? (resp. R3). A first application consists in partitioning a domain
into several sub-domains. Furthermore, this approach allows quad (hex) mesh

generation methods to be applied in these sub-regions. On the other hand, the |
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analysis of the entities in the medial axis (mid-surface) provides some indications
about the domain geometry which, in turn, allows for some different operations
such as dimensional reduction (a domain in R3 is seen as a surface, a domain in
122 is seen as a line), or a simplification of geometry details where a detail is found

to be based on too “small” an entity in the axis.

9.7.1 Domain partitioning

In two dimensions, using medial axis identification, it is possible to split the domain
into geometrically simple regions. This subdivision is based on the types of the
triangles which indicate whether a branch exists or not. The existence of a branch
(a triangle of (Type 0)) reflects the fact that several paths on the domain are
possible starting from this branch. The types also indicate the local concavity or
convexity of the domain boundary.

Following these observations, it is possible to define some cut lines that separate
the domain. A (Type 2) triangle corresponds to a convex region. A (Type 1)
triangle traverses the domain from one boundary to another and the examination
of the elements neighbor of this triangle indicates the geometrical nature of the
domain boundary.

A first method. The vertex of a (Type 2) triangle common to its two boundary
edges is a terminal node of the approximated axis and a line emanating from this
point defines a cut. This line is followed, passing through some triangles with
(Type 1) and (Type 0) until a (Type 2) triangle is found (by vicinity). In this way,
we define a graph which allows for the definition of a partition of the domain by
means of polygonal regions (assuming the data of a polygonal boundary).
Provided the domain has no hole and assuming the boundary edges between
two vertices in a (Type 2) triangle are considered as one side, assuming also that
the edges included between such a vertex and a node in a (Type 0) triangle and
also those between two nodes with (Type 0) as one side, then the number of sides
in the so-defined polygon is the number of the triangles of (Type 0) traversed in

the path plus two. In this way, the resulting polygons have three, four, five or six
sides!?.

Another method. The above method can be replaced by a method which relies
more explicitly on (Type 0) triangles. One constructs the three lines joining the
pode in the triangle and its three vertices. Then, while traversing the axis, one
Joins this node with that of the next (Type 0) triangle. This results in a partition
of the domain into a set of quads and/or triangles only (Figure 9.13).

Either approach provides a partition of the given domain. Notice that numer-
Ous variations can be used in order to optimize such a partition, in particular, by
explicitly taking into account the concave points (or, at least, some of them based
on the angles) so as to convexify the resulting regions as well as possible.

1 . - X . . .
2This result can be found in the literature. Is it possible to find more sides 7 Presumably
not.
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Figure 9.13: Domain partitioning based on its medial azis, in two dimensions. De-
launay triangulation and medial azis approzimation (left-hand side) and partition
resulting from method 2 (right-hand side).

Whatever the method, the resulting partition can be used with a view to quad
construction.

The same partitioning principle can be used in three dimensions. We use the
faces in the mid-surface and their type (i.e., the type of the underlying tets)
to find the cutting surfaces in the domain. However, it is clear that the actual
implementation is much more complex and, have yet to be thoroughly mastered
(the examples that can be seen in the literature are, for the most part, rather
academic).

The process begins by analyzing the corners, the edges and the faces in the
mid-surface. Based on this classification, one considers the way in which a sphere
of maximal radius centered in one entity of the mid-surface touches the domain
boundary. In accordance with the situations that arise, one find whether it is
possible or not to complete a particular (polyhedral) region. The goal is then
obtained once the domain has been entirely subdivided by means of such regions.

In conclusion and with no further discussion about this problem, we think that
some nice research issues are likely to be found and various new programming
developments may be expected in this area.

9.7.2 Quad mesh construction

First, it is possible to use a partition in polygons (each having a small number
of sides) and to deduce from it a (coarse) quad partition. If the polygon is not a
quad itself, the midpoint subdivision method completes what is expected.

The latter technique consists in inserting one point in the region (for instance,
its centroid) and one point in each of its sides (for instance the midpoint for a
free side, i.e., a side related to a portion of the medial axis and one point, close in
some sense, for a boundary side). It is easy to see that only quads are obtained
in this way. The number of quads is the number of sides (a triangle results in
three quads, etc.). This subdivision is made globally and results in a first coarse
conforming covering-up of the domain (Figure 9.14, middle).
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The resulting covering-up serves as a basis for the construction of the final
mesh. To complete this mesh, there are two approaches. The first consists in
repeating the midpoint subdivision process. The second method uses a classical
algebraic mesh generation method (Chapter 4).

Whichever approach is used, the global conformity of the mesh must be main-
tained. This leads to imposing consistency about the number of subdivision of a
given coarse element by taking into account its neighboring elements and, there-
fore, this imposes some constraints that propagate from element to element.

Finally, given the subdivision parameters, there is no special reason for having
the points of the given boundary follow this point distribution. Thus, new points
are constructed in the boundary and it is these points that define the new geom-
etry of the resulting mesh and thus that of the final discretization of the domain
(Figure 9.14, right-hand side).

Figure 9.14: Ezamples of quad meshes based on the medial axis, in two dimen-
stons : Delaunay triangulation of the domain (left-hand side), domain partitioning
using the approzimated medial azis (middle) and domain mesh resulting from an
algebraic method (right-hand side).

9.7.3 Hex mesh construction

As can be imagined, this topic is in principle the extension to three dimensions
of what we did in two dimensions. In practice, the expected difficulty is much
greater. Simply notice that two mesh generation methods can be used to mesh a
region resulting from the partition :

¢ as in two dimensions, a midpoint subdivision method (possibly repeated) or
an algebraic type method (Chapter 4) or a similar method, [Price et al. 1995],
[Price,Armstrong-1997),
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e solely in three dimensions, an approach by extrusion (the product method
as seen in Chapter 8) which consists in using a mesh of the considered region
of the mid-surface and to extrude it in a third direction (towards the domain
boundary),

while ensuring compatibility at the region interface level.

9.7.4 Other applications

Among the other applications using the medial axis or the mid-surface of a do-
main, one can envisage dimensional reduction [Donaghy et al. 1996] or domain
simplification [Armstrong et al. 1995].

Dimensional reduction. In essence, this operation consists in replacing a com-
putation in two dimensions by one in one dimension (in three dimensions by a
computation based on a surface). Observe that the shell case is a case where the
domain is a three dimensional domain but where the computation is made based
on a surface (after some assumptions and using some data values that allow for
the three dimensional aspect of the problem in question).

Dimensional reduction is mostly used in two situations :

e the problem, in its intrinsic dimension, can be approximated by a prob-
lem posed in a space with a lesser dimension (assuming some more or less
restrictive hypotheses),

o the solution of the reduced problem provides an indication, albeit relatively
coarse, about the solution of the exact problem and thus already makes it
possible to know some important parameters for a reduced CPU cost.

Here again, the medial axis (in two dimensions) serves at a basis for the dimen-
sional reduction procedure. However, the medial axis, by itself, is not usually the
ideal solution. Indeed, the adequate solution can be formed by a combination of
regions (entities) in zero dimension (some points), in one dimension (some edges)
and, in some places, in two dimensions, all of them being adequately linked to as
to permit the further usage of the reduced model. Notice also that a simplification
process (see below) enables us, in some cases, to obtain a more complete reduction.

Geometry simplification. Simplifying the geometry of a domain is an oper-
ation that has proved useful in various contexts (and it will be discussed again
later, in particular, in the surface mesh case, Chapter 15). For the moment, we
use the properties of the medial entity in order to simplify the geometry. The
key idea is to remove some details that are judged useless (in other words, too
small in some sense) in the geometry while preserving the general shape and the
topological structure of the geometric model.

Remark 9.15 Detail removal must be made in accordance with the targeted appli-

cation. Indeed, during the solving of the problem, a small detail may be the source |
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of a singularity in the solution and thus removing it may alter the computed so-
lution. Thus it is recommended to remove details whose influence remains local,
For graphical purposes, the size of a detail is the only factor to be considered.

The medial axis and the corresponding radii (in two dimensions) indicate the
size of a given detail as compared with its neighborhood.

Visiting the medial axis, one detects the possible holes and the possible loops.
Then, one evaluates the size of these holes (by observing the path visited in the
axis by comparison with the average radius of a maximal circle traversing the same
path). In this way, it is possible to decide whether a hole can be suppressed or not
(edge collapsing, see Chapter 18, is then a suitable solution).

Then the edges are examined. With each edge is associated a value defined as
the ratio between the edge length and the average radius of the maximal circle
that touch it. Again, this value allows for the decision. In this way it is possible
to simplify the geometry by suppressing the fillets, the small notches, the small
protrusions or the small stepsizes.

In three dimensions, suppressing a face is much more a delicate operation and
(see Chapter 19), such an operation will be made using a series of edge collaps-
ing while (same chapter) maintaining topological coherence and smooth enough
regularity for the thus-simplified surface.



