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sub-meshes so as to have the sub-domains defined. Various techniques have been
proposed for this purpose (cf. [Simon-1991], [Farhat,Lesoinne-1993] for instance).

The main drawback of such a method is its memory requirement. In fact, it is
necessary to store the initial mesh and, at least, one of the sub-meshes. Moreover,
all the problems related to any partitioning methods must be addressed (load
balancing, interface smoothness, etc.).

A prioripartitioning. The purpose of this approach is to construct an a prior:
partition of the domain, from the data of a coarse mesh of it or directly from a
discretization of the domain boundaries. Once this partition is available, the
resulting sub-domains are meshed in parallel thus taking advantage of the parallel
capabilities of the computers right from the meshing stage.

The main difficulties in this approach are related to the load balancing aspect
(that must be deduced from the coarse mesh or the domain boundary) and to the
proper management of the domain interfaces. The coarse mesh may be an empty
mesh (without internal vertices), for instance resulting from a Delaunay method.
The interface between two sub-domains is constructed either from the data of the
coarse mesh or else from the data of the domain boundary discretization.

Chapter 4

Algebraic, P.D.E. and multiblock
methods

Introduction

This chapter describes some algebraic methods, some methods based on the so-
lution of P.D.E.s as well as multiblock-type methods. An algebraic method is
designed to carry out the mesh construction of domains having an analogy with a
simple shaped logical domain (such as a square or a quadrangle, a triangle, etc.)
while a P.D.E.-type method is designed to handle domains that can be mapped
onto a square (a cuboid in three dimensions) using different kinds of analogies.
These methods are therefore limited regarding the shape of the domains they can
successfully deal with. A multiblock type method is one possible solution to carry
out arbitrarily shaped domains. First, the domains are decomposed into simply
shaped regions where the previous methods can be used. Then, the mesh of the
entire domain is obtained as the union of the local meshes corresponding to the
above regions.

*
* K

. The first section discusses various algebraic methods based on a mapping func-
tion which is defined a priori. The second section briefly considers P.D.E. style
methgds where the mesh is obtained by solving an adequate system of differential
€quations. The third section shows how to define a multiblock method using one
of the above methods as a local meshing process.

4.1  Algebraic methods

Any algebraic mesh generation method consists of constructing a mesh on a (real)
domain using a given function that is explicitly defined. Main references about
algebraic methods, mostly for quad or hex geometries, include [Gordon,Hall-1973],
[COOk—1974] and, for transfinite interpolation style methods suitable for simple
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shapes, a recent synthesis by [Perronnet-1998]. The given function is used to map
an easily defined mesh in a logical domain Q having a simple shape (unit square,
unit triangle, etc.) onto the real domain Q@ (Figure 4.1). The so-created logical
mesh is in essence a structured mesh. In general, the mapping function consists
of polynomials defined in such a way as to ensure certain properties.

In this section, we assume that a suitable domain boundary discretization is
supplied as input data and we show how to construct a mesh covering the domain
thus defined. In two dimensions, the boundary discretization consists of a series of
segments (a polygonal line) enjoying some specific properties. In three dimensions,
this discretization is a surface mesh which also conforms to a peculiar type (see
below).
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Figure 4.1: General principle of any algebraic method in the case where the domain
2 1s seen as a quad. Three steps are involved, the data mapping on the boundary,
the mesh construction into the reference square and the mapping of this mesh onto
the actual domain (steps denoted by I, 2 and 3 in the figure).

4.1.1 Trivial mapping functions

It seems natural to use as the mapping function the shape function corresponding
to the shape of the domain (the mapping function is then the shape function of
the finite element with the corresponding geometry). Thus, in the case where
the domain “looks like” a triangle, the mapping function can be defined by the
formula :

F(fﬂ?):(l*f—ﬂ)al+§a2+77a3» (4"1)

where a; is the corner with index ¢ (see hereafter) of the real domain. Obviously
such a function only matches the corners of the domain. In other words, given a
mesh on the logical triangle, the resulting mesh does not match the given boundary
discretization (unless the latter is composed of straight lines). As indicated, the
above function is the shape function of the classical P! triangle (Chapter 20).

To improve the accuracy of the approximation of the domain, a more compli-
cated shape function can be used, i.e., by reference to a more sophisticated finite
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element. For instance, the mapping function :

FEn= (=80 =n)(1-2-2n)a; + £(1 —n)(2 - 27— 1) as
— B -2 —2)az + (1 =&)n(—26+2n— 1) aq
+ 461 =&)L —n)as + 4n(1—n)as + 4£(1 —n)yar
+4(1 = &n(l =) as,

(4.2)

insures the respect of a boundary composed by arcs of parabola for a domain
(Figure 4.2) similar to a quad (a; are the corners while @it4 are the edge midpoints,
for i =1,4).
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Figure 4.2: Quadrilateral domain whose boundary is approzimated by a number of
arcs of parabola.

Since the above functions, as well as the similar functions that can be easily
found for the other shape analogies, do not guarantee sufficient properties, other
types of functions must be developed.

4.1.2  Quadrilateral analogy

In this case, the given discretization of the real domain can be considered as a set of
fO‘ur logical sides, each of which consists of a series of segments. Thus, an analogy
Wwith a quadrilateral is exhibited. The endpoints of the sides are the so-called
corners, a;,_, ,, defined counterclockwise. Similarly, the domain is assumed to be
on the “left-hand side” of the boundary which is also defined counterclockwise.
The first side, defined from a; to as, consists of a series of n; segments. The
Se{:ond side, from as to as includes ny segments. For the sake of simplicity, the
third side (ay, as) is formed by n; segments while the fourth side (a1, a4) has ny
Segments. This means that the number of segments of the side discretization is the
Sal.ne for two (logically) opposite sides. In other words, two opposite sides must
€Njoy some similarity (for instance in terms of length) so that only two subdivision
Parameters (ny and ns) can be used.

Let #:(.) be the discretization of side 7. In fact, ¢;(.) is defined as a series of

:Fraight segments joining two consecutive points of the given boundary discretiza-
1on.
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Logical mesh on the unit square boundary. Let a§~ be the j** point serving
to define the discretization of the real side i with a} the first corner of side i and a/,
the other endpoint this side (where n stands for n; or ns), then one can construct
a discretization of side ¢ of the unit square in such a way as to conform to the
discretization of the real corresponding side, in terms of relative distances from

point to point.
Let (omitting index ¢ associated with the side under treatment) l; =, ...,

be the distance between a; and a;4; for j = 0,1,...,n— 1, then
n—-1
lyide = Z lj )
7=0

with this notation, the j** point on the logical side, say aj, is constructed on the

relevant side by means of a formula like
j-1
>
_ k=0
© lige
This process is then repeated for the four sides, resulting in the desired points

@ i=1,4.

0 s
1

Figure 4.3: Logical mesh on the unit square. The doted lines show the two families

of lines serving as a support for the construction.

Logical mesh on the unit square. The above a} are now used to define a

simple mesh on the unit square. We define the lines joining two opposite points.
Then considering a line joining side 1 and side 3 together with a line joining line
2 and side 4, an intersection point can be found. Actually, the intersection points
result from the intersection of two families of lines. Applying this process for all
the lines results in a valid mesh in the unit square. Both the connectivities (i.e.,
the element vertex connectivities and numbering) and the vertex positions of this

logical mesh are trivially obtained.
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Mapping onto the real domain. The aim is now to map the above logical
mesh onto the real domain. To this end, a suitable mapping function, F, is
needed. The question is how to construct such a function. Indeed, several choices
are possible leading to different mesh generation methods. To help the choice,
one has to define what properties must be ensured. In this respect, we introduced
three categories of properties which concern some suitable invariances and some

degree of regularity.
e Pry : The image of a logical corner is a real corner. This is the well-known
corner identity. For instance, F'(0,0) = a;.

e Pry: The image of a logical side matches the corresponding real side. Thus,
F(&£,0) = ¢1(£,0) = ¢1(¢) (and similar expressions for the other sides).

e Prg: The image of a regular logical mesh is a regular real mesh. In fact, this
means that a regular mesh is obtained for a real domain whose boundary
discretization is uniform (for the two possible pairs of opposite sides). This
leads to an invariant property of F' when applied to the logical mesh itself.
Then, F'(&,n) = (£,7), point of coordinates € and 7 is mapped onto itself.

We initially restrict ourselves to simple polynomials (in fact, forms of polynomials
of first order for each of the variables). Then one possible method corresponds to :

f: @i ¢i(&,n)
F(&n) = =G (4.3)
&

where ¢ and 7 live in [0, 1]. The ;’s are functions of & and 7 defined as :

1-¢ £ n l—n

B (i e R -y N
1-¢ 3

B Gy s

_ 1 n l—n
== v

Remark 4.1 Note that the sum! of the o;’s is 1. Thus in the previous formula,
the denominator can be removed.

For this function, Pr, and Pry are satisfied while Pr3 does not hold. Thus, another
type of function may be sought. For instance, the function

f: ﬁl ¢i (f) 77)
F(gm) =" (4.4)
&

1A system like Mapple can be used to verify this property.
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where now :

P = (a1 +a3) (1 -1n), B2 = (a2 + aq) €,
B3 = (a1 +az)n, Ba = (az+aq) (1 =€)
implies that Pry, Pry along with Prs hold (as can be easily verified).

Remark 4.2 Obviously, the sum of the 3;’s is also equal to one.

As indicated, with this method, Pry, Pry along with Prs hold.

Proof. First, it is obvious to see that Pry holds. For instance, for 5 = 0, as =
aq =0, then 8y = B4 = 0 and B3 = 0. Thus, F(£,0) = B1 ¢1(£,7). As B, = a1 +as,
then 81 = 3" a; — ay — ag = 1 that implies that F(£,0) = $1(£,0) = ¢1(8).
Now, obviously Pr; holds. For instance, if € = 0, the above relation leads to
F(0,0) = ¢1(0) = ay.
Property Prs leads to checking whether the image of point (¢,n) is this point
4

when the real domain is the logical domain. So, we have to compute S Bidi(E,n).
1=1

In this particular case we have ¢ (¢) = < g ) , ¢2(n) = ( 717 > , 93(€) = < i )
and ¢4(n) = ( 2 ) , then :

Sasena (§)n (1) on(§) e (1)

The first component of this expression is 31 € + 35 + 33 ¢ whose value is :

4
§(1=n) (e1+asz) + & (agtaa) + € (a1+az)n = € (ar1+a3)+€ (as+as) = Zaif;

=1
that is £. Similarly, the second component is 7, thus :
4
Saaen=(5).
i=1 U
and the proof is completed. o

Another popular method is the transfinite interpolation which is defined in
a slightly different manner. In fact, the corresponding function is not only a
combination of the ¢;’s but involves such a combination coupled with a correction
term based on the corners. Note that a tensor product is used to define the main
part of the expression and the correction term is then added to meet the desired
properties :

FEn) = (L=n)61(8) +&¢a(n) +nds(€) + (1 — €) ¢a(n) (4.5)
—((1=8Q =n)ar +&(1 =n)az +Enas + (1 — €) nas) . '
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Exercise 4.1 Show that function I satisfies the three above properties (Hint :
follow the scheme of the above proof).

The mesh of the real domain is then easily obtained. Its connectivity is that
of the logical mesh. The coordinates of its vertices are known by applying F to
the above d; ’s.

The question is to decide which function F' is the best (4.3, 4.4 or 4.5). Clearly
the function of Relation 4.3 is probably not so good. To select one of the two
others, we have to look at the limitations of the method.

Figure 4.4: Image of a uniform unit square when using the function of Rela-
tion (4.3), left-hand side, and that of Relation (4.4) or (4.5), right-hand side.

Limitations. Unfortunately, the above method is unlikely to be suitable when
handling complex (four sides) geometries. Actually, if the real domain is convex,
the resulting mesh is valid while for some non convex domains, two complications
may arise. First, the image of a point inside the logical mesh may fall outside the
real domain and, on the other hand, the image of a valid quadrilateral in the logical
mesh may be a quadrilateral with a null or negative surface area, thus resulting in
overlapping elements and an invalid mesh.

In other words, such a method is suitable only under some restrictive conditions
about the shape of the real domain (in addition to its quadrilateral analogy).

Nevertheless, we would like to give some examples. In Figure 4.4, we consider
how the three above functions act with regard to Prg. Then, as previously men-
tioned, Relation (4.3) is unlikely to be suitable. In Figure 4.5, we show the mesh
obtained using methods (4.4) and (4.5) for a non convex domain. Both meshes are
Wrong but it seems that method (4.4) is less sensitive to the non convex geometry.
Nevertheless, other non convex geometries seem to indicate that the method of
Relation (4.5) is more robust in most cases.

One can also observe that it is not possible to enforce some orthogonality

Properties in the element edges (in contrast to the P.D.E. methods briefly presented
below)
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Figure 4.5: Non conver domain meshed using the function of Relation (4.4), left-
hand side, and that of Relation (4.5), right-hand side.

A final comment about this mesh generation method concerns its rigidity. In-
deed, as for all structured meshes, the type of connectivities from point to point
results in a certain level of rigidity which means that it is not easy to deal with
a problem where some flexibility (in terms of sizes, variations from region to re-
gion, etc.) is required.

Variations. The two parameters n; and n, allow for some flexibility in the
method. The restriction leading to only two parameters being considered can be,
to some extent, over-passed. Indeed, it is possible to define four parameters (one
for each side discretization) and to define a more sophisticated method based on the
same approach. Such a construction results in a mesh consisting of quadrilateral
elements as well as some triangles to ensure a transition between the layers of
elements.

Triangular meshing for a quadrilateral domain. In essence, this algebraic
method completes a mesh whose elements are quadrilaterals (except In the case
where four parameters are defined). To meet a triangular mesh, the quads must
be split into two triangles (to maintain the same number of vertices). Such an
operation is trivial at the time a criterion is selected to decide which diagonal is
used to split a given element. In this respect, a given direction for the diagonals,
the diagonal lengths, the element qualities, etc., can be chosen to govern the
process. One should note that, in general, it is advisable to pay special attention
to the elements that have one of the corners as a vertex. In this case, considering
the diagonal that includes such a corner as endpoint is often a nice solution (see
Chapter 18 about the notion of an over-constrained mesh).

Computational aspects. Regarding the computer implementation of the method

(whatever the function F' may be), several remarks can be made.
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o First, one should note that the memory resources that are required can be
easily known (or estimated) using the two (four) parameters defining the
boundary discretization.

e The key-idea to complete the logical mesh is the intersection of two families
of lines, thus no difficulties are expected as such intersections are well defined
(in contrast to the case of a triangular analogy, as shown below).

e Applying Relation (4.) (i = 3,5) is easy at the time the terms ¢(.)’s are com-
puted. Actually ¢(.) is known in a discrete manner. For instance, ¢1(n,0)
is the polygonal line written as (af,a3) (a},a}) ... (a} _;,al,). This implies
using an interpolation scheme. Thus, the computational process can be as

follows :

— Given M a vertex in the logical mesh with coordinates ¢ and 7, we
pick the interval (dyl"&yl'ﬂ) within which falls ¢ as well as the interval
(af, a3 ;) (in terms of the third logical side). Similarly we find the two
intervals (sides 2 and 4) corresponding to 7.

— We find the relationships between ¢ and d} and &}H and we map the
same ratio between a} and ajl»_H (say the discrete form of ¢;). Similarly
we find the three other relationships for the three other sides.

— Then, the desired function is used by replacing the terms ¢;(.,.) by the
above interpolations.

e Null or negative surface area elements must be checked explicitly. To this
end, associating four triangles with a given quad (i.e., by using the two
diagonals, each of them enabling to define two triangles) proves to be an
efficient way to detect the cases where the method fails (see also Chapter 18).

As a consequence, implementing such a method, in its range of application, results
I a rather inexpensive mesh generation method and, actually, is quite easy.

4.1.3 Triangular analogy

An analogy with a triangular shape is exhibited in the case where the given dis-
cretization of the real domain can be considered as a set of three logical sides
(consisting of a series of segments). In addition, we assume that each side in-
cludes n segments (thus, only one parameter is defined). Then the algebraic mesh
generation method follows the same principle as the previous one.

‘The boundary discretization is mapped onto the unit logical triangle. The
lOg}CaI corners aj, G and as are the points (0,0), (1,0) and (0,1) and the three
{Oglcal sides are defined as @; —» a5 for the first, @aa — a3 for the second and
@1 — a3 for the third. Three families of lines are constructed. Points [zj- ,1=1,3
are obtained by intersecting these lines. One should observe that now the desired
Intersections are not well defined in the sense that the three relevant lines do not
define a point as a solution but a small region. Nevertheless, a point, for instance
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Figure 4.6: Logical mesh on the unit triangle. In dotted lines are the three families
of lines serving as a support for the construction. A close-up shows the region
defined by the intersection of three lines that serves to find a unique intersection
point.

the centroid? of such a region, can be defined which allows construction we are
seeking. In this way the logical mesh is obtained.

To map the above mesh onto the real domain, we use the same idea as for
the above quad method. In fact, several categories of functions can be used. For
instance, one may use a function like :

i 73 ¢i (5: 77)
F(&n)="———, (4.6)
PR

where the a;’s are the functions of £ and 7 defined as :

_ 1-§—n ¢
=TT Gy

o £ U
R

_ n 1-¢—n
= e T

For this function, Pry and Pry are satisfied while Prs does not hold.
Remark 4.3 Note that the sum of the o;’s is 1.
A form similar to Relation (4.5) is the following :

F(&n) = (1=&—=n)(¢1(8) + ¢3(n) + & (61(E + ) + d2(n) (4.7)
+7(¢3(§+n) + ¢2(1 - €)) — ((1—&—n) $1(0) + € $2(0) + n$3(0)) ,

2In principle, the point minimizing the distances to the three lines is the best possible solution.
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Figure 4.7: Transfinite interpolation for a “quadrilateral” domain, left-hand side
and same type of interpolation for a “triangular” domain, right-hand side.

while a form involving rational polynomials is :

F(&n) = 752 61(8) + 15 62(n) + £ éa(€ + 1) (48)
(g1 —€=na+ 75 ar + 15 as) . ‘

The previous functions satisfy the three desired properties. Limits and varia-
tions of the present method are of the same nature as for the above case. Compu-
tational issues do not lead to major difficulties.

4.1.4 Application examples

In this section, two simple application examples are provided where the domains
In question are not strictly convex. Nevertheless, the resulting meshes are valid.
The last example concerns a case where the (transfinite interpolation) method
fails. Indeed, due to the geometry of the domain, some overlapping elements are
constructed (i.e., negative elements exist). To some extent, it is possible to modify
such an invalid mesh so as to obtain a suitable solution. For instance, in this test

example, by means of successive iterations of point relocations, the mesh can be
corrected.

4.1.5 Surface meshing

The two above types of methods also provide a way to mesh a surface following
the desired analogy which is defined by a discretization of its four (three) bound-
ary edges. One should observe that the resulting surface is only controlled by its
boundary discretization. Thus, while rather easy to implement, such a method
May result in a poor approximation of the real surface or even may result in unde-
_Sll‘able twists or folds (see Chapters 13 and 15 where the transfinite interpolation
18 used for surface definition).
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Figure 4.8: Domain inducing degeneracies (overlapping elements are present), left-
hand side, and mesh resulting from local corrections, right-hand side.

4.1.6 Hexahedral analogy

Methods similar to those previously described can be defined so as to handle
three-dimensional domains that can be considered as analogous to a simple logical
domain. In this case, the real domain is assumed to be similar to a cuboid.

Actually, eight corners can be identified as well as six faces which are similar
to quadrilateral faces. To follow a mesh generation method similar to those in
two dimensions, the discretization of the faces is assumed to be of the structured
type. For a quad face, a typical discretization is a grid defined by two subdivi-
sion parameters. For a triangular face (see hereafter the pentahedral or the tet
analogies), only one subdivision parameter is supposed. Thus, provided ¢;(., ., .),
(1 = 1,6), the adequate discretization of these faces, the logical mesh of the unit
cube can be mapped on the real domain using the following function :

6
Z (&7} ¢1(€)77)C)
F(’E)”v() = 3:—1_6_—
2 o
i=1

, (4.9)
where the a;’s are the following functions of ¢, n,¢ :

o =% z T; Lit1 Tit1
= T — —
' T i i) (T + Ti-1) (Tig1 4+ 2zic1) (Tig1 +ziy)’

and _ _
Zi Zi Tit1 Tit1
Ti+Ti1) (Ti + Fic1) (Tig1 + Tic1) (Figr +Tig)’
where i = 1,3 with z;4, =&, nor ¢, j = 0,2 (i +j modulo 3)and Z; = 1 —z;. As
before, this function satisfies the ”corner identities” and matches the boundary.

Q43 = iL‘z‘—l(

Proof. First, one can verify the following properties (held for ¢ = 1,3 and j =
1,6). First, the a;’s are such that :

et 1=0—a;=1and a; =0 for j #1,

e i 1=1-—a3=1landa; =0forj#1.
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Thus, we have :

e 17(0,0,0) = a; where a; is the first corner and we have similar relations for
the other corners (i.e., property Prq holds).

o F(£,1,0) = ¢1(£,7n,0) where ¢; stands for the discretization of the real face
identified to the first face of the logical cube (i.e., the face ¢ = 0), ... Then,
property Prs holds.

. a,‘(f,’_l) = CY,'_|_3(.I‘,'_1), ai(fi) = ai(a:i) and ai(fiH) = ai(:r,~+1)7 then Rela-
tion (4.9) is symmetric in some sense, faces ¢; and ¢i+3 act in a symmetric
way when Z;_; replaces z;_;. Indeed, we return to the discussion about
Relation (4.4). While some symmetric features exist, property Prz is not
satisfied. 0

As for the quad analogy, a method can be easily derived so as to ensure Prs.
The idea is the same, we take as a function the following :

P& n =t (4.10)

with (for i = 1,3) :

Bi = (i + aiy3) Tiy

Bivs = (i + aiys) zioy .
The transfinite interpolation for the hex analogy is as follows :

FEne) =5 (1= + (- n) 6ae.) + (1-8) daln, )

+Cha(&,m) + n5(8,C) + £¢s(n,€)

(1= =1 =) ar +£(1 - n)(1 = ) as (4.11)
(1= Qaz+ (1= &)nCas+ (1 - €)(1 = n)C as
+E(L=n)Cag + ¢ ar + (1 - €)nCag)] .

Then, Pry, Pry as well as Prjy are satisfied.

Proof, First, it is obvious that Pr;, holds. Regarding Pry, the proof needs to
have the ®;’s defined by a transfinite interpolation. To show Prs, we use the same
Method as before. I.e., we prove that the image of point (£, 7, ) is invariant due
to the particular form of the ¢;’s. 0O
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4.1.7 Pentahedral analogy

In this case, one can follow the same method with a mapping function like :
5
2 i (&, n,¢)
5
Yo

1=

F(&n,¢) = (4.12)

where the a; are defined by :

o= (1= ¢)t=82 £ "
(1-=€&=n+Q) E+C¢) n+¢)’

€+ A=C+8) 1—=n) (E+n)’
TSI el SHN N e
M+¢) (L+n=C) (E+n) (1-¢)

s =C ¢ n 1-¢&—n
I+E-Q(I+n=-02-€E-n—C)
as = (€4 1) ¢ 1-¢ & n

C+1=€=n2-E=n=- Q-9 (1-¢"

One should note that a;(1 —¢) = «4(¢) and conversely, which means that faces
one and four play a special role (in fact, they correspond to the logical faces ¢ = 0
and ¢ = 1). With this definition, Pr; and Pry hold while Prs is not achieved.
Note that defining a function ensuring Pr3 is a tedious task.

4.1.8 Tetrahedral analogy

For a tetrahedral analogy, one could retain the function :

5 aidi(en)
5 a

i=

F(&n,¢) = (4.13)

where the a; are defined by :

T Li41 Tit2
(i +xic1) (i1 + zic1) (g2 + 2i-1)

a; = (1—x-1)

for i = 1,4 with zj4; = &,n,(or 1 =€ —n—( for j = 0,3 (i + j modulo 4). In
fact, we meet the barycentric coordinates (that can be used in this case, as we are
considering a simplex). In other words, we have :

P £ n_ 1-€6-n-¢
=0 gm0 ==
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n 1-&-n-¢ ¢
m+8) I=n-0 ((+&)’
1-&—n-¢ ¢ §
(1=€64¢) (C+m)(E+n)’

¢ £ 1
I=&=n)(1-n-01-£(-¢)°
Thus, Pry and Pry hold while Prj is not satisfied. Note that it is not possible to
partition a tetrahedron into uniform sub-tetrahedra (unlike the same problem in
two dimensions, for a triangle). Nevertheless, it could be of interest to have the

corresponding uniform distribution of points. But, exhibiting a function ensuring
Prs 1s, a prior:, not obvious.

ay = (1-¢)

=(1-mn)

‘—Y4=(€+7)+C)(

4.1.9 Other algebraic methods

The above algebraic methods only infer point coordinates (in this sense, they are
of a Lagrangian type). Thus, no way is provided to control directional features
such as orthogonality (for instance, at the boundary level). Different algebraic
methods can be investigated to permit such a control. For instance, a Hermitian
type method can be defined involving not only point coordinates but also some
derivatives. We will see in Chapter 13 the Coons patches which are based on a
method that can also be used in this mesh generation context.

4.1.10 An alternative to algebraic methods

We consider in detail the case of a three-dimensional method. Apart for the hex-
ahedral analogy, the two other shape analogies (tet and pentahedral) can be dealt
with by the previously described algebraic method. Nevertheless, while simple
in principle, these methods are not so easy to implement (and probably do not
guarantee property Prs). Thus, a different mesh generation principle can be ad-
vocated.

To start the meshing process, we follow the first three steps of a classical
algebraic method, i.e.,

¢ we construct a discretization on the boundary of the logical domain in ac-
cordance with the given discretization of the boundary of the real domain,

¢ we complete the mesh of the logical domain following the above boundary
definition,

¢ we map the logical mesh onto the real domain by means of the classical P!
interpolation scheme corresponding to the shape analogy.

The resulting mesh is then modified using a deformation technique. Let M be
& point of the current mesh, we compute a new location for M as follows

M=M+ é S wr(M) a de f(ay) (4.14)
aRr€B
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Figure 4.9: Deformation governed by the boundary points, left-hand side. Straight
mesh (middle) and resulting mesh, right-hand side.

where the ay’s are the members of B the boundary of the domain (i.e., the a’s
are the boundary vertices of the real domain) and the quantities involved in the
formula are :

e def(ay), the distance between the (real) point aj and the image of the cor-
responding ag,

e oy 1s a weight associated with ay. Actually, one can compute the average
length of the edges sharing ay,

e «, a normalization factor, which is defined as

a= " wp(M)ay, (4.15)

ar€B

e wi(M), a coefficient associated with ay, is defined as d,:ﬁ(M) where § is a
value of attraction (for instance 4) and dy(M) is the distance between the
image of ay and M.

Now, note that def(ax) is zero for the corners®.

Computational issues. While almost quadratic, the above algorithm has proved
to be robust enough to carry out some non trivial geometries (nevertheless, a “too
non convex” domain will be quite difficult to handle with success).

The theoretical analysis of this method is quite easy. Actually, each point cre-
ation needs the analysis of the members of B. Thus, for instance for a hexahedral
domain whose subdivision parameters are equal (n; = ny = ng = n), the cardi-
nality of B is of the order of (n + 2)?, i.e., something like n2. While the number
of points is something like n®. Then, the number of operations is in n® resulting
in a complexity in n3, say O(ng), n being now the number of vertices. As a
consequence, the method is in essence almost quadratic.

In Table 4.1, np is the number of vertices, ne is the number of elements, ©
is the CPU time in seconds while v, indicates the number of points dealt with
within one second and v, the number of elements created in the same time. One

3Due to the use of the interpolation function which preserves the corner identity.
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- np ne [4 Up Ve
cas 1 2,024 | 9,261 1.10 | 1,840 | 8,419
case 2 | 5,984 | 29,791 | 6.56 912 | 4,541
case 3 2,601 4,096 1.24 | 2,097 | 3,303
case 4 | 5,566 | 9,261 | 4.51 | 1,234 | 2,053
case 5 | 16,896 | 29,791 | 31.27 540 952
case 6 | 2,744 | 2,197 1.68 | 1,633 | 1,307
case 7 | 17,576 | 15,625 | 44.08 398 354

Table 4.1: Statistics related to some selected examples (the first two lines concern
a tet analogy while the following three concern a pentahedral analogy and the last
two concern a hexahedral analogy).

5
3
could observe the ratio <L> between ty and t; where ¢; (¢ = 1,2) is the time

npi
required for creating np; points. While the behavior is the same for the three

types, the global efficiency is related to the number of members in B compared
with the number of points (thus the constant from case to case is rather different).
Indeed, this constant is related to the number of face vertices of the logical element
as compared with the number of vertices of the real mesh.

Extensions. One should note that the above meshing method by means of de-
formations is also a way to update a given mesh whose boundary discretization
moves from one step to another of a given iterative process.

Remark 4.4 The same method applies in two dimensions. In this case, it is very
easy to define. Moreover, its complexity remains reasonable as it is something like
n2, say O(ns).

4.2 P.D.E.-based methods

P.D.E. mesh generation methods represent an elegant alternative to algebraic
methods and may be used when the domain (€ with boundary denoted by I' here-
after) can be identified by a quad (in two dimensions), or a cuboid (in three dimen-
sions). The major reference for P.D.E. type methods is [Thompson et al. 1985].
Contrary to any algebraic methods, a transformation from the domain to this quad
(Cuboid), the logical domain, is sought. A generation system is associated with
such a transformation, which allows us to compute the required mesh.

4.2.1 Basic ideas

In what follows, variables z,y, (resp. z,y,z) describe the domain (Figure 4.10)
while the logical region is described using variables ¢, 7, (&,n,¢). The problem
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now becomes one of finding the functions

z=x(&n) and y=y(&n),
or
=z, y=vn(), and z=2z(&n,C),

according to the spatial dimension, assuming that the transformation maps the
logical region one-to-one onto the domain and that the boundaries are preserved.

y _a
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Figure 4.10: Logical domain (a unit square), left-hand side, and real domain, right-
hand side.

The one-to-one property is ensured by requiring that the Jacobian of the trans-
formation is non-zero. The transformation (for example in two dimensions) is

defined by the matrix :
= (2 )
Ye Un

where z¢ stands for g—z, Ty stands for g—f], and so on. The Jacobian J is z¢y, — Ty Ye.
As it is assumed to be non-zero, the inverse of the transformation exists and
variables £, 7 can be expressed in terms of z,y as follows :

§=¢&(x,y) and n=n(z,y)

The two ways of expressing the variables are mathematically equivalent and lead
to two possibilities for solving the problem. If variables &, 5 are expressed in terms
of ,y, the logical mesh can be transformed into a mesh on the domain, and the
physical problem is solved in the domain as in the classical way. On the other
hand, if variables &,y are expressed in terms of £, ), either the physical problem
can be written in terms of these variables and then solved in the logical region, or
we return to the above classical solution.

As a simple example of P.D.E. methods, we briefly consider the following gen-
eration system based on the regularizing properties of the Laplacian operator A.
We consider the two following systems :

5.1‘1‘ + gyy = 0 in Q,
{ Boundary conditions  on oQ (4.16)

and
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e ¥ = O (4.17)
Boundary conditions  on o0 '

which are then inverted in order to find z(&, ) and y(€,n), thus we obtain as the
generation system :

g112ee + g2y + 29102y = 0. (4.18)
911Yee + g22Yny + 2912Yen = 0.

with )
gij = Z AmiAmj
m=1

where A = (—=1)"7™(Cofactor,, ; of [M]) and [M] is the above matrix.

This results in a system expressed in the logical space (where a mesh exists).
It is a non-linear coupled system which can be solved using relaxation techniques
or, more generally, iterative methods after an initialization by a solution in which
the real boundary conditions are prescribed.

Variants. Variants of the previous generation systems can be experimented with
to obtain special properties. For example, adding a non-zero right-hand side and

considering :
61?1‘ + gyy = P 4 1
{ Boundary conditions (4.19)

along with

Nee + Tyy = Q
{ Boundary conditions (4.20)

enables us to control the distribution of points inside the domain. In this situation,
the inverse system is :

{ g11$f§ + g??znn -+ lez'tfﬂ + Jz(Pxf + an) = 0) (421)
911Yge + g22tnn + 29120en + 2 (Pye + Qyy) = 0.

using the same notation and J, the Jacobian, being defined by J = det([M]).
The right-hand sides P and Q interact as follows :

For P > 0, the points are attracted to the “right”, P < 0 induces the inverse
effect.

For @ > 0 the points are attracted to the “top”, @ < 0 leads to the inverse
effect.

Close to the boundary, P and @ induces an inclination of lines £ = constant
(or § = constant).
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P (Q) can also be used to concentrate lines ¢ = constant or n = constant
towards a given line, or to attract them towards a given point. To achieve this,
the right-hand side can be defined as follows :

n m 5 R %
P& = = ) aisign(§ = &)eme88 = 3 bisign(e - g)em 4 le=e 4=

i=1 i=1

where n and m denote the number of lines in & and 7 of the grid. Such a control
function induces the following :

for a; > 0,7 =1,n, lines & are attracted to line &,
for b; >0, i = 1,m, lines & are attracted to point (&, 7).

These effects are modulated by the amplitude of a; (b;) and by the distance
from the attraction line (attraction point), modulated by coefficients ¢; and d;.
For a; < 0 (b; < 0), the attraction is transformed into a repulsion. When
a; = 0 (b; = 0), no particular action is connected to line & (or point (&, m;)).

A right-hand side @ of the same form produces analogous effects with respect
to 7 by interchanging the roles of ¢ and 7.

The major difficulty for automating this class of mesh generation systems is
how to choose the control functions (P, Q, etc.) and the parameters they involve.
However, these methods can be extended to three dimensions and, for a complete
discussion, the reader is referred to [Thompson-1982a], where other forms of right-
hand sides P and @ producing other properties are discussed (for example, the
concentration of lines £ or 7 towards an arbitrary line and not only towards a par-
ticular one (§ = constant or n = constant) or towards a given point to increase the
mesh density near this point). In the above mentioned reference, and some others
(for instance, [Knupp,Steinberg-1993)), other types of generation systems, includ-
ing parabolic and hyperbolic operators, are discussed and numerous examples are
provided.

How to define the quadrilateral (cuboid) analogy. When using a gener-
ation method of the present class, it is convenient to find the best analogy from
the domain to a logical shape (quadrilateral or cuboid). Such an analogy is often
obtained either by partitioning the domain into several simpler domains, or by
identifying the domain with the required shape, using several methods.

For example, in two dimensions, there are several major classes of decompo-
sitions of the domain under consideration from which different kinds of grids will
result in order to capture the physics of the problem as well as possible. In this
respect, a domain can be discretized following an O-type, C-type or H-type anal-
ysis (Figure 4.11). To obtain such an analogy, artificial cuts must be introduced.
Such analogies extend to a greater or lesser degree to three dimensions.
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Figure 4.11: O-type, C-type and H-type decompositions.

4.2.2 Surface meshing and complex shapes

P.D.E. based methods can also be employed to generate surface meshes or domains
having more complex geometries as local mesh generation processes (as will be
discussed below in the multiblock method).

4.3 Multiblock method

As algebraic methods and P.D.E. methods are unlikely to be suitable for complex
geometries, other methods must be used to deal with such geometries. Multiblock
type methods are an initial answer to this problem. The underlying idea of such
methods is to take advantage of a local meshing process such as an algebraic or
a P.D.E. meshing algorithm and to over pass its limitations by applying it in its
successful range of applications.

4.3.1 Basic ideas

Provided with a local meshing process (of the algebraic or P.D.E. type) the aim
1s to split the geometry in terms of regions where the local meshing process ap-
plies. Thus, in two dimensions, a domain is decomposed in terms of convex (or
not too deformed) triangles or quadrilaterals (when an algebraic method is used)
or in terms of quadrilaterals only (when a P.D.E. method is involved). In three
dimensions, the partitions that can be handled successfully are made of tetrahe-
dral, pentahedral or hexahedral regions (when algebraic methods are considered)
or hexahedral regions only (when P.D.E. methods are used).

Thus the key-point is to obtain such a suitable partition. Two kinds of par-
.titions may be considered. The first type considers a partition to be conformal
In itself while the second does not require such a property (Figure 4.12). See
Chapter 3 where three categories of multiblock methods are introduced. In what
follows, we consider a composite type method which is more demanding, in terms
of continuity, at the block interfaces. Note that patch or overlapping type methods
are less demanding in this respect but, for some aspects, can be based on what is
described below.

Conformal partitions lead to a very simple method as the union of the meshes
of two distinct members of the partition automatically results in a conformal mesh.
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Otherwise some care must be taken to partition the domain (unless if a non con-
formal mesh is desired, as it is for some solution methods). For instance, in the
example in Figure 4.12 (right), one must enforce the continuity between the lower
line of the upper region with the upper lines of the two lower blocks.

] ]

Figure 4.12: Conformal and non-conformal decomposition of a two-dimensional
domain. Three quad regions are defined which form a conformal partition (left-
hand side) and a non-conformal partition (right-hand side).

Obtaining a partition is a tedious task and generally it is the user who must
undertake the task, which means that automating such a process is not so easy
(see Chapter 9).

Some constraints must be considered to construct the partition of the whole
domain, especially when a conformal partition is expected. A member of the
partition is called a block® or a super-element, and some consistency is needed
from block to block (or super-element to super-element).

Thus, the problem is one of finding an adequate partition into blocks or super-
elements such that the interfaces between the blocks are consistently defined.

4.3.2 Partitioning the domain

This task is done by the user and, in this sense a multiblock method can be
regarded as a semi-automatic method. The aim of this task is to define the different
blocks necessary to define the domain in such a way that each block is a priort
suitable for the local meshing process which will be applied to it. At the same
time, some consistency must be ensured from block to block. Moreover, while
following these constraints, an accurate approximation of the geometry must be
obtained together with a control of the nature of the expected mesh (in terms of
the number of elements, element sizes, etc.). To this end, both the way in which
the partition is defined and the choice of the different subdivision parameters must
be properly carried out.

To illustrate this multiple aspect, we consider a problem in two dimensions and
we consider that two kinds of local meshing processes are available, one capable of
carrying out triangular regions, the other suitable for quad regions (see Figure 4.13
where one can see how the subdivision parameters of the various blocks are related
to one another). There remain two subdivision parameters, one for the triangle
analogy and another one for the quad regions. The problem is now to choose these
parameters appropriately in order to define a suitable partition.

4and as several blocks are created, the method is called a multiblock method.
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Figure 4.13: Definition of the blocks defining the partition (left-hand side). Rela-
tionships between the subdivision parameters so as to enforce the continuity (right-
hand side).

Geometric aspect. This step is motivated by two goals. First, the geometry
of the domain must be well approached by the blocks and, on the other hand,
the shape of the blocks must be as close as possible to a convex region (to insure,
in addition, a successful application of the local meshing process). With regard
to these two aspects, a certain number of blocks must be constructed. A block
is described by its corners, its edges (and its faces, in three dimensions). While
several blocks may be useful, care must be taken of the interfaces from block to
block. In two dimensions, this leads to defining the block edges in such a way as
to insure a nice continuity. In three dimensions, faces from block to block must
be carefully defined.

A pertinent choice of the number of blocks, together with that of the possible
subdivision parameters, enables us to obtain a good approximation of the geome-
try. In the regions with high curvature, several blocks or a fine discretization (i.e.,
a large enough subdivision parameter) is one solution to suit the geometry.

On completion to this step, several blocks are available whose corners, edges
and faces are known.

Conformal and consistency requirements. The previous coarse partition
can, in some cases, be refined to insure both the conformal aspect of the partition
and the consistency between the items which are logically connected. Indeed,
a subdivision parameter is associated with the block edges but some edges are
Connected (in the same block and from block to block), thus the number of possible
subdivision parameters can be reduced. See again Figure 4.13 where we have only
two possible different subdivision parameters.
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4.3.3 Computational issues

Given the previous analysis, the blocks are now well defined. This means that
we have defined the necessary corners, edges and faces which are the constitutive
entities of the blocks. Now, we have to consider all these entities in a global way.
Thus, a possible synthetic scheme of a multiblock method is as follows

Step 1 : Corner definition. This stage involves a global numbering of the cor-
ners of the different blocks so as not to have a local numbering (when one
considers only a given block) but a global corner numbering that could be
used subsequently.

Step 2 : Edge definition and meshing. The edges are defined by their two end-
points (which are corners as previously introduced) and a subdivision pa-
rameter (n). Then, according to the meshing capabilities, each edge is split
into n + 1 segments (meaning that n intermediate points are created along
it). In terms of point locations, we face a curve meshing problem (see Chap-
ter 14). In terms of point numbering, we have, as above, to define a global
numbering of the thus created vertices.

Step 3 : Face definition and meshing. The faces are defined by their edges.
Following the type of the face (triangle or quad) and according to the different
subdivision parameters, the face is meshed using for instance an algebraic
method or a similar surface mesh generation method which completes a
structured mesh. The resulting mesh is then of a nature that will enable us
to continue the process (i.e., the surface meshes are of the structured type).
As above, a global numbering of the created vertices must be done.

Step 4 : Block definition and meshing. The blocks are defined by their faces and
then, the local meshing process is applied. The numbering of the internal
vertices can be then made sequentially starting from the first available index,
i.e., the last number of the last face vertices plus 1.

Step 5 : Global mesh construction. Actually, this step is automatically com-
pleted since a global numbering of the vertices has been developed in the
previous steps.

Thus the idea is to process all the corners, all the edges and all the faces before
processing the mesh of the different blocks. Relationships between corners, edges,
faces and parent blocks are to be properly defined. In peculiar, a given edge (face)
shared by several blocks must be defined in a global and unique way but, from a
block point of view, can appear in various ways. Thus, some flags are needed to
insure consistency between the global definition (which is unique) and the different
local definitions (which can vary based on the block considered).

Global definition of the corners. The corners are introduced to match the
previous requirements (geometry, consistency, etc.). An index (for instance, start-
ing from index 1 for the first corner of the first block) is associated with each
corner.
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Global definition of the edges and faces. Provided the corners (let np, be
the number of corners), the edges must be defined in a global way. One solution
is, when considering an edge, say ab where a and b are the two endpoint indices,
to define the edge as ab if ¢ < b and as ba otherwise.

Then, when visiting an element like abe, we meet edge ab whereas when looking
at element dba, we meet edge ba. In terms of edge definition, edge ab as well as
edge ba must be uniquely defined. Note that the previous convention allows this
to be done.

The global definition of the faces follows a similar rule. Let us consider a quad
face whose endpoints are a, b, c and d. These indices are sorted from the smallest
to the largest and this new series of indices is the global definition of the face. In
fact, let a be the smallest index among the four face indices, we consider the index
of point b (which is next to a) and that of point d (which precedes a), then

o if d < b, then use ad as a basis for global numbering,

o otherwise, use ab (see below).

Definition of blocks in terms of corners, edges and faces. The point is to
identify the corners, the edges and the faces of the various blocks so as to return
to the global definition of these entities.

Let us consider a hexahedral block involving three subdivision parameters, n;
(¢ = 1,3). The block definition involves 8 corners, 12 edges and 6 quad faces. The
issue is to find the proper correspondence between these entities and the block and
to know the indices of the points that are involved (the corners, the edge vertices
and the face vertices) as well as the indices of the vertices which will be created
inside the block. A simple way to access all these vertex indices is to associate a
numbering matriz with the block. To this end, we introduce a matrix with three
indices which conforms to the following :

M(O:n14+1,0:n,41,0:n3+1),

where, for instance, M(i,j,0), for i = 0,ny and j = 0, ny corresponds to the “bot-
tom” face of the block. More precisely, M(0,0,0), M(n1,0,0), M(0,nz,0) and
M(n1,ny,0) are the four corners of the face and M(i,0,0), M(nq, j,0), M(%,n2,0)
and M(0, j, 0) where i and J vary corresponding to the four edges of the face. Thus
the proper definition of the block involves filling its numbering matrix for the en-
tities already known while the part of the matrix not yet known will be defined
Wwhen the block is meshed.

Global numbering of the edge vertices. The given edges are first dealt with.
Let free = npc+1. Then, for the first edge we apply an algorithm as below. Next,
the free value being completed, we turn to the next edge until all the edges have
been visited -
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Algorithm 4.1 Global numbering of the edge vertices.

Procedure GlobalNumbering
DO FOR ¢ = 1,n (n being the number of desired points
along the current edge, after the subdivision parameter
free = free+1,
v; = free, i.e., vertex ¢ of the edge is labeled
with index free,
END DO FOR ¢ =1,n

Then, for edge ab, if a < b, the vertex indices are :
a, free, free+1,..., free+n,b,
while if @ > b, these indices are :
a, free+n, free+n—1,... freeb.

The adequate sequence of indices is put on the various numbering matrices
which correspond to the various blocks sharing this edge. Depending on the block,
i.e., depending on the location of a@ and b in the block under examination, the
sequence free, free+1,..., free+nor free+n, free+n—1,..., free is merged in
the matrix at the relevant place. Actually, the matrix indices of interest are those
of the line (of indices) “joining a and b”.

Global numbering of the face vertices. Then we consider the face vertices.
First, the vertices located along the face edges are already labeled (see above). It
remains to find a global label for the vertices interior to the face prior to filling the
corresponding numbering matrices. The idea is to define (for the sake of simplicity,
we consider a quad analogy) two directions of numbering. For instance, if free is
the first available label, the first line of the matrix could be :

free, free + 1, free +2,..., free+n
and, the second line could be :
free+n+1, free+n+2,.. free+n+n.

Thus, according to the global definition of a face, several systems of numbering
can be found. Let a; be the four corners of the face. We pick the smallest index,
say ai, and we examine the indices of the corners before and after a; (see above),
then

o if as < aq, the base of numbering is a;a; meaning that a (sequential) varia-
tion from a; to as is used,

o if ay < ay, the base of numbering is a;as meaning that a (sequential) varia-
tion from a; to a4 1s used,
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Table 4.2: The two “global” indice systems when a; is the smallest index among
the four a;’s and, left, when ay < a4 or, right, as < as (in this table, for the sake
of simplicity, we assume free = 1 (which is obviously not possible, as in practice
a shift must be made) and n = 2 for both pairs of edges).

thus resulting, a; being identified, in two possible situations. Then, depending on
the case, eight possible numbering systems can be found.

Now, the global indices of the face vertices are stored onto the numbering
matrices at the proper places depending on what the a;’s are.

Global numbering of the internal vertices. Once again, let free be the
last index used when labeling the face vertices, then the internal vertices are
sequentially numbered. Three directions are used (in terms of index variation),
an i-direction, a j-direction and a k-direction. Given the corners of the block,
the i-direction follows edge a1, as, the j-direction follows edge a1, ay and the third
follows edge a1, ag (for a hex block).

Element vertex enumeration. At this stage, a global numbering system is
available for all the vertices. In fact, a vertex is also known through its logical
position in a given block. This is done using the matrix M associated with the
block (we assume the same hex example as above). Then, the enumeration of
the vertices of the different elements of the resulting mesh is easy to obtain. For
instance, given 7, j and k, the vertices of the corresponding (final) element are the
values contained in :

M(i, 5, k), M(i+ 1,7, k), M(i+ 1,7+ 1,k), M(i,j + 1,k) and

Mk + 1), M@E+ 1,5,k + 1), M+ 1,54+ 1,k + 1), M(6, 5+ 1,k + 1)

for the bottom (resp. top) face of the element.
~ Note that while this enumeration is trivial for a hex or a pentahedral analogy,
It requires some care for a tet analogy. This is due to the fact that, on the one
hand, the final mesh is not formed of similar layers of elements and, on the other
hand, that a region bounded by two triangles leads to the construction of one,
two or three tet (in contrast to the other cases where two faces on two consecutive
layers define only one element).

Thus the tet case is more tedious. Actually, given a face (say the bottom face
of the block), we can classify the triangles covering this face into four categories.

* those resulting in three tets when considering a layer (say, in terms of index
k, when going from k to k + 1). Here, we must fill a small pentahedron,
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e those also resulting in three tets (although they are inverted as compared
with the previous ones),

e those resulting in two tets (those sharing a point with the “blended” block
face), where the region to be meshed reduces to a prism (a pentahedron from
which a tet is removed),

e those resulting in one tet (those sharing an edge with the “blended” block
face or those located at a corner at level n — 1). In this case, only a small
tet must be meshed.

Exercise 4.2 Find the four patterns encountered when dealing with a tet. Find
the vertex indices (prior to applying the numbering matriz) of the final mesh based
on these cases.

Limitations. In principle, a multiblock method has the same range of applica-
tions than the local meshing processes that are used. Nevertheless, as the partition
of the domain is made so as to over pass these limits, a multiblock method can
successfully handle any arbitrarily shaped domain. In fact, the user is responsible
for the success of the method by constructing a partition in suitable blocks.

Remark 4.5 Applied in the surface case, say the blocks consist of triangles and
quads in B3, the multiblock method provides a way to mesh a surface. Note that,
in this case, the geometry of the surface is only related to the edges of the partition
(see also Chapters 13 and 15).

4.3.4 Application examples

The example in Figures 4.14 and 4.15 is a two-dimensional application of a multi-
block method. The coarse partition consists of 10 quad regions and 8 triangular
regions. There are 18 corners and 33 edges. Actually, only one subdivision param-
eter is used (for consistency reasons), leading to rather different element density.
One should note that different block partitions can be used in this case resulting
in different global meshes.

Figure 4.15 depicts a simple three dimensional application example. The figure
on the left shows the part of the domain effectively considered. It consists of
seven blocks. The figure on the right displays the mesh of the whole domain
obtained from the previous mesh after several symmetries and (sub)mesh merging
operations (see Chapter 17 about such mesh manipulation operators).
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Figure 4.14: Input data for the multiblock method, left-hand side, resulting mesh,
right-hand side (two dimensional example).

Figure 4.15: Detail of the part effectively dealt with and resulting mesh after post-
Processing (three dimensional example).



