Chapter 2

Basic structures and algorithms

Introduction

The aim of this chapter is to introduce some basic data structures and to show how
they can be used in a mesh generation context. To this end, some basic as well as
more sophisticated data structures are recalled together with some algorithms of
greater or lesser complexity. The discussion is then developed by means of various
application examples related to some algorithms or situations that are extensively
used in a meshing context.

While people having a computer science background may be familiar with these
basic notions (at least from a theoretical point of view), we would nevertheless
like to address this topic here in order to allow people less directly concerned
with algorithmic problems to gain some knowledge of this (vast) topic (notably
numericians or people having a finite element background, for instance). Moreover,
in the mesh generation context, specific applications and uses of the classical data
structures lead to specific situations and hence inerit some comments.

The literature about data structures and algorithms is quite abundant. Among
the usual references, the classics would include [Aho et al. 1983], [Wirth-1986},
[Sedgewick-1988], [Cormen et al. 1990], [Samet-1990], [Gonnet et al. 1991] and,

even more recently, [Knuth-1998a], not to mention many others that can also be
consulted.

The complexity, both in terms of the number of operations and of the memory
resource allocated, is analyzed from a theoretical point of view. However, specific
theoretical results obtained in ad-hoc academic situations must be slightly nuanced
when dealing with more concrete situations.

. Indeed, numerous assumptions like “the points must be in general position”
I a triangulation problem or all operations involved in a given numerical process
have the “same cost” or again are “exact” are clearly unlikely to be realistic in “real
life” (the world of numerical computations). Nevertheless, despite these remarks,
theoretical results allow for a good understanding of some difficulties and help us
to find appropriate solutions.

48 MESH GENERATION

*
*x K

Therefore, after having described the theoretical point of view in the first sec-
tions of this chapter, we give some indications and remarks about frequently en-
countered difficulties in realistic applications. After that, we turn to some applica-
tion examples to illustrate how to benefit from the theoretical material in simple
problems related to common meshing purposes.

The first section introduces the general problem using an academic example.
The second section presents the most commonly used elementary data structures
(array, list, stack, etc.). The third section deals with complexity problems for a
given algorithm. Section four analyzes the sorting and searching techniques and
introduces three main paradigms used in many methods. Data structures in one
and two dimensions are discussed in sections five and six, while topological data
structures are mentioned in section seven. Sections eight and nine deal respectively
with the notions of robustness and optimality of an implementation. The last

section proposes several practical application examples commonly found in mesh
generation.

2.1 Why use data structures ?

As an introduction, we look at a “naive” algorithm that can be used to construct
a triangulation. Let consider a set of points S, all contained (to simplify even
more) in a single initial triangle. The algorithm consists in finding, for each and
any point P, the triangle K enclosing it and then to subdivide K into three new
triangles by connecting P to the three vertices of K :

e ForPe§$

— Find triangle K’ containing the point P,
— Subdivide this triangle into three.

e End

While very simple, this algorithm raises several questions. Among these, we
simply mention the need to define the concept of a triangulation and how to
represent it, for instance by using adjacency relationships between the triangles.
Another question is related to the quick identification of the triangle containing the
point P to be inserted. Should we examine all triangles of the current triangulation
or take into account the fact that any triangle is obtained by subdividing its
parent ?

This simple example gives some indications on how to proceed and what to
know to implement such an algorithm (simple as it may be). This is not indeed
restricted to defining the operations required to code this algorithm, but also to
finding the data structure(s) adapted to the problem, in such a way as to define a

BASIC STRUCTURES AND ALGORITHMS 49

Program. According to [Wirth-1986], we have the following scheme :
Algorithm 4+ Data Structures = Program.

There is obviously a link between an algorithm and the data structures it uses.
Usually, the more complex a data structure, the simpler the algorithm will be,
although the simplicity of the algorithm is generally altered during the data struc-
ture update. For triangulation (meshing) algorithms in particular, a rich data
structure allows useful data to be stored and retrieved thus simplifying the task
of the algorithm, but on the other hand, any modification of the mesh induces
a set of modifications and updates of the data structure. On the other hand, a
simple data structure is efficient to update but forces the algorithm to perform
explicitly a set of operations to recreate some data it needs. As an example, a
data structure that keeps only the adjacency relationships between the triangles
of a mesh provides instantaneously the neighbors of a given triangle but requires
a computation to identify all the triangles sharing a common vertex. However, if
this information is stored, it can be retrieved immediately, provided it has been
updated as the mesh evolves.

Notice that a (mesh) data structure contains integer values (numbers, indices,
etc.) or real values (triplets of coordinates of the vertices in three dimensions, for
instance). In Section 2.2, we will describe data structures allowing this kind of
information to be stored.

A data structure being fixed, we discuss the behavior of the algorithm. There-
fore, we recall, in Section 2.3, several fundamental notions about the complexity,
allowing to analyze the efficiency of standard algorithms and basic data structures.
In Section 2.4, we describe a series of algorithms, based on one of the computer
science paradigms, namely, Divide and Conquer. We give some examples of meth-
ods for searching and sorting, some of which we describe, such as the insertion
sorting technique, the quicksort and bucket sorting as well as binary searching
(dichotomy) or interpolation methods. Section 2.5 discusses the manipulation of
entities of dimension one (integers). To this end, we look at :

e general data structures allowing to store, retrieve or analyze sets of objects,

e structures allowing a selective access to some entities already stored. The
access can be performed according to several criteria of selection. We find
here, for instance, the approaches where the smallest item (in some sense),
the first, the last recorded, the neighbor of a given item, etc. is sought. Here
we will find the data structures like stack (LIFO), queue (FIFO), priority
queues, array with sorting and binary searching trees.

e data structures like dictionaries that can provide answers to questions like
“does this item exist ?” and allow items to be inserted or suppressed. We
will find here BST and hash coding techniques.

In Section 2.6, we discuss how to use data structures in two and three dimensions
for fast storing and retrieving of items such as points, segments (edges) or polygons.
Section 2.7 is devoted to the computer implementation of topological data.

50 MESH GENERATION

After this overview of basic data structures and algorithms, we discuss robust-
ness problems inherent to any implementation of a mathematical expression in a
computer. The degree of the problems and the notion of predicate are then an-
alyzed as well as the cost in terms of the number of operations and of memory
requirements (Sections 2.8 and 2.9).

To conclude, we mention some applications where the previously described
material can be used, in the specific context of the development of mesh generation
and modification algorithms (Section 2.10).

2.2 Elementary structures

In this section, we describe tables (arrays), pointers, lists, stacks and queues.
These structures are briefly introduced below using some simple examples.

2.2.1 Table or array

The table or the array is most certainly the simplest and the most efficient data
structure for numerous applications. An array can be simply defined as a fixed
set (connected or contiguous) of memory where items of the same nature (more
precisely, items having the same storage requirement) are sequentially stored and
are accessible by one or several indices. The important point is that an array
allows direct access to each and any of its elements. Indeed, if the array begins at
the address a and if each item requires b words of memory to be stored, then the
item indiced by 7 starts at the address a + (i — 1) b. This simple property means
that the array is a convenient data structure, easy to use and hence, is used as a
basic component in more sophisticated structures (trees, hash tables, grids, etc.)
described hereafter.

Figure 2.1: An array of length 6.

The intrinsic drawback of the array structure (besides the need to detect a
possible overflow) is related to the static memory allocation it requlres before
being used. In other words, if more space is needed at some point, a new array
must be allocated and the old one should be copied into this new one.

The Figure 2.1 shows an example of an array of length 6 containing integer
values. Items 3 and 5 are not yet affected and thus, the corresponding values are
undefined (symbolized by the ? sign).

An array allows to store vectors (a one-index array, in the usual sense), ma-
trices (array of two indices), etc. and, as mentioned, the arrays are used as basic
components in more elaborate data structures.

BASIC STRUCTURES AND ALGORITHMS 51

2.2.2 List

The list is another data structure is which the items are stored in a linear way
(sequentially). Unlike an array in which the items follow each other in a portion of
the memory, the nodes of a list can be accessed using an address or, more precisely,
a pointer. The notion of a pointer is naturally available in most programming
languages and, if not (for instance in Fortran 77), can be emulated as will be
shown in Section 2.5.

To clarify, we now describe the case of a double linked list. In this case, each
node contains three fields : the key which represents the expected information and
two pointers that allow access to the neighboring nodes. To handle a list correctly,
we need two additional pieces of information : the head and the tail of the list
(Figure 2.2). The head and the tail give access to the first and the last node of
the list.

To check whether a key is contained in a list, it is sufficient to cover the list
starting from the head, following the pointers until the tail is reached (then the
key does not exist in the list, except if it is in the last node).

head tail
next
v pomter B R !
NULL ‘_L “*"”T . J B B o= el :
previous
pointer

Figure 2.2: A double linked list (containing the same keys as the array of Fig-
ure 2.1).

Adding or deleting an item in a list is equivalent to adding a node and updating
the relevant pointers or breaking existing pointers, while managing head and tail
pointers, if necessary. The following schemes illustrate the operations of searching
for and inserting an item in a list, that is (with obvious notations) :

Algorithm 2.1 Searching for an item z in a list.

Procedure ListContains(List,x)
node + head(List)
WHILE node # NULL AND node.key # x
node + node.next
END WHILE
RETURN node (if node # NULL, then z is present in the list)

52 MESH GENERATION

Algorithm 2.2 Insertion of an item x at the beginning of a list (newnode being
the new element).

Procedure ListInsert(List,x)

node + newnode

node.key « &

node.prev NULL and node.next « head(List)
head(List).prev < node

head(List) « node

Algorithm 2.3 Insertion of an item z in a list after a given position current.

Procedure ListAppend(List,current,x)

node + newnode

node.key ¢ r

node.next < current.next and node.prev « current
current.next.prev < node and, finally, current.next < node

Several types of lists exist (other than the doubled linked list). Indeed, one can
find the simply linked lists (one of the two pointers is missing), the circular lists
(items are accessible via a circular order), the sorted lists, etc. Irrespective of
the case, a list is a simple and flexible way of managing dynamic sets of entities
(the number of entities varies throughout the process), although in some cases
(Section 2.3) the searching operations can be expensive. Hence, notice that lists
are well adapted to cases where the considered values do not follow any specific
order. Notice also that the size of the list must be known in advance (if it is
implemented as an array), otherwise dynamic allocations are to be expected as it
evolves.

Exercise 2.1 FEzplain how to implement a circular list. How many pointer(s) is
(are) required ?

Exercise 2.2 Eramine a data structure based on a linked list but in which the
entities point to an array. What advantages can be expected from such an organi-
zation ?

2.2.3 Stack

As for a plate stack, where only the plate on top of the stack can be accessed, the
stack is a data structure allowing access only to the last item inserted. For this
reason, it is referred to as a LIFO list (Last In First Out). The usual operations
associated with a stack are twofold : Push add an item to the top of the stack
and Pop remove the item on top of the stack (if one exists, i.e., if the stack is not
empty).

A stack is very easy to implement using simultaneously an array (the stack
itself) and an integer, the stack pointer, that indicates the index of the last item
stored in the stack, Figure 2.3.

BASIC STRUCTURES AND ALGORITHMS 53

: stack
14 - pointer

17 3
3 2

Figure 2.3: A stack (containing the same keys as the array of Figure 2.1 or the
list of Figure 2.2).

If the stack pointer is null (void), the stack is empty. If this pointer exceeds the
size of the stack, the latter overflows. In this case, a solution consists in allocating
an array that is (two times) bigger and copying the old stack in this new structure.
Another solution consists in using a linked list (see next exercise).

Exercise 2.3 Can we use a simple linked list or should we use a double linked list
to tmplement a stack ?

2.2.4 Queue

A queue is a data structure whose behavior is very close to that of a queue of
persons (as can be seen in a post office!). The main operation with a queue is to
access the next entity, which is equivalent to removing this item from the queue.
Moreover, each new item is appended at the end of the queue. According to this
logic, we have a FIFO type structure, First In First Out. If the structure used
to implement a queue (an array for instance) is of bounded size, an overflow is
encountered whenever an item is added to an already full queue. On the other
hand, attempting to remove an item from an empty queue leads to an underflow.

A simple linked list offers all the required facilities to implement a queue.
However, if the maximum number of items to be stored is known in advance, an
array is preferable as it avoids the memory allocation or deallocation problem and
the possible overflow. For more details, we refer the reader to [Cormen et al. 1990]
and to the following exercise.

Exercise 2.4 Find a data structure to implement a queue using an array of fired
size, and address the problems of overflow and underflow (Hint : «f the head (the
tail) of the queue is reached and if free space is available in the array, “move”
(pack down) the items of the queue).

!without wishing to make any unfair assumptions about this type of institution in any par-
ticular country

54 MEsH GENERATION

2.2.5 Objects and pointers

In Section 2.2, we assumed that it is possible to associate to each entity one or
two additional fields (the pointer(s)) indexing nodes of the same type. On the one
hand, the notion of pointer may not exist in some languages and, on the other
hand, if the number of items is known in advance, the use of pointers serves no
purpose. To demonstrated this, let us look at memory allocation/deallocation
problems in this context. A simple way of handling this situation is to manage
a list of free memory entries, a free list. When more space is needed, we apply a
First-Fit method. The list is explored and the first free available block of memory
(of appropriate size) is used. If this area is bigger than necessary, it is split and
the remaining block is appended to the free list. In a similar way, the addition of
a free block is performed by referencing it in the free list (possibly by merging it
with the neighboring memory blocks if such blocks are free).

H H el
v] o o Y , .
1. , L 4 a | b ileiidilel

H H
e . ‘ |
2.1, a 51.. a_ b { el ldi Lii‘[
i
H H e

- S v W IR

3. lall b Tclld Jel Tel, a Jelidl [e

Figure 2.4: Memory management with the First-Fit strategy.

This point is emphasized in Figure 2.4 where H represents the pointer to the
head of the free list. Notice that two integers are associated with each information
unit, a pointer to another block linking the free list) and an integer giving the ac-
tual block size (used in the First-Fit operation). In the example, we have allocated
a, b, ¢, d and e in line. If a becomes available and if b also becomes available, then
the area aUb is defined as free (available). Then, d becomes available. Hence, the
free list is maintained.

Fortunately, more sophisticated memory management mechanisms exist. Nev-
ertheless, if the size of the memory required is not known in advance or if the
notion of pointer does not exist, attention must be paid to the memory manage-
ment procedure. We emphasize this point in the case where a double linked list
stored in an array is used. Each record contains the given information and two
integers defining the next and previous records in the list. The example of Fig-
ure 2.5 illustrates this implementation for the list given in Figure 2.2. The same
representation can be obtained using three arrays (one for the key, one for the

BASIC STRUCTURES AND ALGORITHMS 55

pointer to the next and one for the pointer to the previous item) instead of only
one.

head tail
'
1 2 3 4 5 6 7 8
v | ' v
— ,,,4"77 4+ . 1 ! ’ [1 PR
40177 | -1.5(43.3 1 | 1011

Figure 2.5: Linked list of Figure 2.2 implemented with an array. Middle, the list,
top, the pointer to the following node and bottom, the pointer to the previous node.

2.3 Basic notions about complexity

We discuss here the problems related to the complexity of an algorithm. As will be
seen, this notion concerns various aspects and affects the “quality” of the algorithm
considered.

2.3.1 Behavior of a function

As seen in Section 2.1, the construction of an algorithm and/or a data structure
requires evaluating the number of operations involved and, in addition, looking
closely at memory problems.

Addressing these points involves analyzing the complerity in time as well as
the complezity in size of the algorithm and/or the data structure. A simple and
generic way to analyze these notions is to introduce a mathematical function f
related to the size n of the inputs of the problem, where for instance, n is the
number of points to be inserted in the triangulation. Finding the exact value of
f(n) can be difficult or even impossible. However, we are not usually interested in
this value, but rather in a rough estimate. Several ways of quantifying this point
exist. The usual notations are f(n) = ©(g(n)) or Q(g(n)) or O(g(n)) or o(g(n))
which indicate respectively that, for a sufficiently small n and for a “known” g(n),
we have :

® ©: cig(n) < f(n) < ca9(n) where ¢; and ¢y are two constants. Hence, f
and g have the same behavior when n grows.

¢ O : f(n) < cg(n), c being a constant, and we have an upper bound,
¢ Q: f(n) > cg(n) where ¢ is a constant. We have then a lower bound,

e 0 f(n) < cg(n) for any positive constant c.

56 MESH GENERATION

The quantifications in O and o can be seen as two ways of comparing two functions
from slightly different points of view when looking at the bounds. One way of
qualifying these two measures is indeed to write :

lim £ ¢,
n—oo g(n,)

for O, while for o, we have :
lim —(—72 =0.
n—oo g(n)

As an example, notice that 2n? = O(n?) but 2n? # o(n?), while we have nlogn =
O(n?) as well as nlogn = o(n?). Figure 2.6 illustrates the comparisons of behavior.

A ng(n)) Cg(n) i

| o) | /) ; S
‘\ /// cig(n) ‘ ///,/ L\ ///T ot
el o o <o

f(n) = O(g(n)) f(n) = O(g(n)) f(n) = Q(g(n))

Figure 2.6: Illustrations of the notations ©, @ et Q.

Notice however that the previous expressions include some constants that can
be very large. For instance, an algorithm of complexity n? is a priori faster than
an algorithm of complexity 100 n, if n is smaller than 100 in the case where the
constants are equal, if not it can lead to the opposite result. Another remark
1s that the complexity measures the behavior for large input sizes rather than
for small size problems. This will be discussed in Section 2.4 when dealing with
sorting algorithms.

Exercise 2.5 Are there some values for which an algorithm in n® is more efficient
than an algorithm in 1000 n?logn ?

Exercise 2.6 Let f and g be two functions assymptotically positive. Among the
following assertions, indicate which are true and which are false :

o 1) f(n) = O(g(n)) with f(n) = /n and g(n) = n*n ",
e 1) f(n) +g(n) = O(min(f(n),g(n))),
o iii) f(n) = O(g(n)) means 2/ = O(2901),

¢ 1) f(n) = O(g(n)) means (1 + =) f(n) = O(g(n)).

BASIC STRUCTURES AND ALGORITHMS 57

2.3.2 Complexity, worst case, average case, optimal case

Looking back to the study of the complexity of an algorithm, one has to notice
that several complexities can be defined. More specifically,

¢ the complexity in the most favorable case and that in the worst case, i.e.,
the mimum and the maximum number of operations strictly required,

e the average complexity, i.e., the complexity obtained by averaging the com-
plexity on a series of cases.

The worst and optimal complexities are usually easy to determine as it is sufficient
to look at the extreme configurations. The average complexity, however, requires
the introduction of probabilities. These notions are now illustrated by the following
example :

Algorithm 2.4 Searching for a key x in the array Tab.

Procedure IsContainedInArray(Tab,x,found)
11
found « .FALSE.
WHILE (found = .FALSE.) AND (i < n)
IF Tab(i) =z THEN found + .TRUE.
ELSE 1 ¢+t +1
END WHILE
IF i=n-+1 THEN found = .FALSE. (lost, z has not been found),
E1SE found = TRUFE. (found)
END IF

where the goal is to see whether a given key z belongs to the array T'ab at an index
¢, the length of T'ab being n. The problem is to determine how many comparisons
are performed in this algorithm in the optimal case, the worst case and on average.

If the first entry of the array is z,the algorithm stops after only one test and
its optimal complexity is 1. If the array does not contain &, n comparisons are
involved. To find the average, in the case where z exists in the array, we find a
number of comparisons equal to :

E(x € Tab) = ZiPr(.z', i)
i=1

where Pr(z,1) represents the probability of finding z at the index ¢ of the array.
As Pr(z,i) = L, we find that E(.) = 2L, which can be written as E(.) = ©(n).
In other words, if the array is not sorted, a linear number of tests (in n) is expected
on average.

These three measures of complexity show different information. More precisely,
the worst complexity is a good measure whenever the time to run an algorithm has
been fixed. We find here the concrete situations where we expect to have a given
complexity, for instance linear, depending on the sizes of the input of the problem.
In this case, in fact, it is the worst case that brings the desired information.

58 MESH GENERATION

Exercise 2.7 The previous example, in the line WHILE, requires two tests of equal-
ity and a comparison, hence three tests. Show that the number of tests can be
reduced to only one if x, the sought key, is inserted in the array at the inder n+1
(by increasing its size by 1, this new node being called sentinel).

2.3.3 Amortized complexity

Another notion of complexity, known as the amortized complexity, measures the
average performance of each operation in the worst case. More precisely, some
algorithms or structures are such that the more costly operations are very rarely
executed. In some other cases, a costly operation means that the required oper-
ations will be inexpensive afterwards. An example of such a behavior is given in
the case of a stack.

Let consider a stack and let us assume that the operator Multi-Pop(Pile,k)
which consists in applying the operator Pop to k items (for k smaller or equal to
the size of the stack). Let us look at a sequence of n Push, Pop and Multi-Pop.
A Push and a Pop are in O(1) while a Muiti-Pop is in the worst case in O(n),
hence, the worst case for a sequence of n operations is in O(n?). Is this the true
complexity of the algorithm ?

As each item cannot be popped more than once, the number of Pop (Pop and
Multi-Pop) is at most equal to the number of Push, that is about O(n). Then,
whatever the value of n, a sequence of Push, Pop and of Multi-Pop takes a time
in O(n). Indeed, the amortized complexity of the operation is in ﬂnﬂ =0(1). To
summarize, this quantity measures the average efficiency of each operation in the
worst case during the execution of a set of operations.

2.4 Sorting and searching

Numerous methods may be used to sort an array containing items on which an
order relationship is defined.

2.4.1 Sorting by comparison algorithms

Sorting by insertion. Let us consider an array of size n and let us assume, at
the stage 7 of the processing, for i = 1, ...,n — 1, that the sub-array i (between
the indices 1 and ¢) has already been sorted. The algorithm of sorting by insertion
consists of inserting v = T'ab(i+ 1) in the sub-array 7 in the right place, by moving
the items greater than v towards the right. This can be written as follows :

Algorithm 2.5 Sorting by insertion from the smallest to the largest.

Procedure InsertionSort(Tab)
FOR : =2,n
key « Tab(i)
J—i—1
WHILE j > 0 AND TAB(j) > key
TAB(j+ 1) + TAB(j)

BASIC STRUCTURES AND ALGORITHMS 59

J<31-1
END WHILE
TAB(j +1) « key
END FOR

to obtain a sorting algorithm from the smallest to the largest. The relevant quan-
tity in the analysis of this sorting algorithm is clearly the number of items moved
towards the right side. If the input is seen as a permutation of n different numbers,
this quantity can be easily seen as the number of inversions in this permutation
(i.e., the sum for all elements of the number of larger items located on the left
hand side).
If the array is originally sorted in the reverse order, the worst complexity is
n
obtained. It corresponds to) ¢, that is O(n?). Finding the average complexity
=1

is more difficult and requires constructing a random model. Here, we simply
indicate that the required number of permutations is equally probable. Under this
assumption, we can demonstrate that the average number of permutations is in
O(n?).

While not really efficient in the worst case and on average, a sorting algorithm
by insertion is still very useful for small examples or in cases where the data are
already almost ordered. In the last case, a simple comparison is sufficient to decide
whether or not each item is in the right place. Hence, this sorting algorithm is
almost linear in time.

Exercise 2.8 Indicate how to use this sorting algorithm to sort a linked list (its
keys). Is the complexity of the process affected ¢

Quicksort. The quicksort algorithm sorts in place, that is by permutating the
data. This method is widely used because it has proven to be robust, efficient and
easy to implement. Its efficiency is close to the optimum. Its robustness is mainly
related to the fact that it is insensitive to the properties of the values to be sorted.
The ease of implementation is due to the simplicity of the underlying concept.

Indeed, the main idea consists in taking one item of the array, the pivot, and
splitting the array into two pieces around the pivot. The elements which are
larger (resp. smaller) are placed on the right hand side (resp. left hand side) and
the process is iterated on each of the sub-arrays. The splitting procedure is also
simple and consists in scanning the array and exchanging the elements larger than
or smaller than the pivot (once it has been fixed). The sorting algorithm can be
written as follows :

Quicksort(Tab,left,right)
where T'ab is the array to be sorted and le ft and right are the left and right indices

of this array (for instance, left = 1 and right is the number of values in Tab).
This procedure is written :

60 MESH GENERATION

Algorithm 2.6 Quicksort from the smallest to the largest.

Procedure Quicksort(Tab,left,right)

IF left < right
m Partition(Tab, left, right)
Quicksort(Tab, left,m — 1)
Quicksort(Tab, m + 1, right)

END IF

The procedure Partition corresponds to the following algorithm :
Algorithm 2.7 Procedure Partition for the Quicksort algorithm.

Procedure Partition(Tab,left,right)
tpivot I—C‘M%-w
pivot « Tab(iptvot)
7« left
Exchange Tab(left + 1) and Tab(ipivot)
FOR i =left+1 TO right DO
IF TAB(i) < pivot,
J < J+1 and exchange T'ab(:) and Tab(j),
END IF
END FOR
exchange Tab(left) and Tab(y)
RETURN j

In [Knuth-1998b], it is proved that the average complexity of the quicksort is
in the order of 1.38nlogn, where the logarithm is taken in the base of 2, thus
leading to O(nlogn). This is interesting because the sole operation used in the
sorting algorithm is the two-two comparison of the elements. It is then possible
to prove that, on average, each sorting algorithm requires a minimum number of
comparisons is on the order of Q(nlogn), in the worst case.

Notice however, that the worst complexity is in @(n?). This is obtained when
the array is already sorted in such a way that, at each step of the recursion, the
smallest (resp. largest) element is picked as the pivot. To avoid this unbalanced
case, a solution consists of choosing the pivot in a different way. One strategy
can be to choose an element randomly in the array. But, using a random number
generator in this case can be seen as superfluous. The easiest way to improve the
efficiency is to use the technique known as the average of three in which the pivot
is chosen as the average value of the element on the left, middle and right of the
array.

The version of this algorithm described above can be improved in two different
ways, thus leading to almost 30 % speedup, depending on the implementation.
Firstly, the recursion can be avoided by using a loop. This requires storing the
bounds of the sub-arrays for a further processing. Then, to avoid the time devoted
to pushing and poping the data because of the recursion, a simple sorting algorithm
by insertion can be performed in place of a recursive call when the number of

BASIC STRUCTURES AND ALGORITHMS 61

entities to be sorted is very small. In a similar way, the small sub-arrays can be
kept (not processed) during the recursion and sorted by insertion in the whole set
of data. The critical size below which a recursion is not efficient depends on the
implementation and is usually between 2 and 25.

Exercise 2.9 Analyze the case of a quicksort algorithm that does not account
for the sub-arrays of size smaller than k, these being processed using a sorting
algorithm by insertion on the whole set. Show that the expected complerity is in
O(nk + nlog%).

Exercise 2.10 Replace, in the algorithm Quicksort(Tab,left,right) above,
the two recursive calls by a loop using a stack for the two sub-arrays.

2.4.2 Bucket sorting

We have just seen that the quicksort algorithm is based on two-two comparisons
of the elements. Hence, the number of operations is only related to the order of
the data and not to the specific value to be sorted.

A dramatically different approach for sorting is based on the use of the value of
the entities to be sorted in such a way as to separate them. More specifically, the
domain containing the entities to sort is divided into equally sized pieces of size
d and each entity is associated with the block containing it. This association is
obtained using a function (integer part), denoted | |, and then, all items belonging
to the same block are chained together in a linked list.

The general scheme of a (recursive) bucket sort is the following :

Algorithm 2.8 Recursive bucket sort.

Procedure Bucketsort(zi, z2, ...,Zn)
Tmin ¢ min(T1,Z2, ..., Tn)
Tmaz ¢ maz(zri, T2, ..., Tn)
5 [(Emas — T
FOR 1= 1,n
idr I_;-(z, - .’Dm,‘n)J
add z; in List(idz)
END FOR
FOR 1t =1,n,
IF the size of List(i) is at least 1, Bucketsort(List(i))
END FOR

Remark 2.1 The number ny of blocks can be taken to be equal to the number n of
data, so as to achieve an balanced partition. However, when n becomes very large,
it 1s desirable to chose ny, < n (if only for memory allocation problems).

If each block contains (J(1) points after the block construction, then the par-
tition is said to be balanced. In this favorable case, the sorting algorithm is of
linear complexity. This is not certain if some blocks contain a lot of points and,
in this case, a solution consists of sorting these points recursively. Moreover, if at

62 MEsH GENERATION

Tmin Tmax

Figure 2.7: Ezample of a block defined during the construction of the partition
related to the bucket sorting.

each stage, all points but one belong to the same block, for instance if z; = 3!, for
n
i = 1,...,n, the recursion requires n — 1 levels and the time is 3 7 that is O(n?).
i=1
The efficiency of bucket sorting is thus related to the number of points to be
sorted in an interval of size §, which is related to the distribution of the z;’s. More
precisely, in [Devroye-1986], it is shown that points for which the distribution
function is of compact support and of square integrable? are sorted in linear time
by recursive bucket sort®. Intuitively, this just means that although some regions
seem to be highly populated in the original sample, a good separation of the points
1s achieved after a small number of recursions with interval lengths 4.

Remark 2.2 We have described here the bucket sort for one dimensional data
(integer or real numbers for instance). This technique can also be applied to data
in R? or R3, for example points that need to be sorted according to various criteria.

Remark 2.3 Notice also, as for the previous ezamples, that numerical problems
are not taken into account in the discussion. Indeed, what happens if a point
is located on the right-hand side of a point (being considered as larger, within the
roundoff errors) when it should be on the left-hand side (mathematically speaking) ?

Leaving these remarks to one side, does this mean Bucket sort should be
preferred to Quicksort when the dataset to be sorted is known to have certain
properties 7 The answer is not that clear : Quicksort sorts an array in place
whereas Bucket sort requires more memory (several points may fall within the
same bucket). So, depending upon the implementation, the O(n) time algorithm
may outrun another one in O(nlog n) for some sample sizes.

2.4.3 Searching algorithms and dichotomies

In Section 2.3.2, we have analyzed the performances of a sequential search in an
array and we have shown that a linear time complexity can be achieved for a

2If f is this density function, f is said to be square integrable if the integral of its square
converges, i.e., f f? < oco.

3Sufficient conditions are usually well-known for a probability density to be sorted in linear
time. But coming up with necessary conditions remains an open issue.

BASIC STRUCTURES AND ALGORITHMS 63

fruitful search as well as for a failure. We now turn to a more powerful strategy,
the dichotomy that leads to a result (positive or negative) in a O(log n) time.

The intrinsic weakness of a sequential search is that, at each step, the com-
parison performed between the sought value 2 and the part of the array analyzed
does not provide any global information about the array. However, for a sorted
array, this drawback can be avoided. Indeed, by comparing = with the element in
the middle of the array, one can decide which part of the array should contain z.
A simple comparison thus allows the number of potential candidates to be divided
by two. As the size of the problem decreases by a factor 2 at each step, the size
of the searching domain is reduced to 1 after log n comparisons. Such a searching
algorithm based on dichotomy follows the general scheme :

Algorithm 2.9 Dichotomy search of an item z in an array Tab.

Procedure IsContainedInSortedArray(Tab,x,found)
l+1, ren,
WHILE [# r

ide « |17

IF z < Tab(idz), THEN r « idx
ELSE | « idz + 1
END IF
END WHILE
IF z = Tab(l), found =.TRUE.,
E1SE found = .FALSE.
END IF

Despite its performances, we must notice that a dichotomy search is not always
the best method. For instance, if we want to find a name beginning by B in a
phone book, it is usually recommended to start from the beginning of the book
rather than from the end ! This simple remark suggests an improvement in the
binary search. When the value z is searched for in a sub-array indexed from ! to
r, we start by estimating the place where z is most likely to be. The natural way
of doing this is to interpolate in the sub-array Tab(, ..., 7), which is equivalent
to replacing the index idz in the above scheme by :

) z — Tab(l)

ide =1+ [(”” Vb = Tab(l)J '

For this reason, the searching algorithm, known as interpolation-search algorithm
or interpolating search, is very similar (in its concept) to a bucket sort. Its effi-
ciency is strongly related to the properties of the dataset. It can be proven that
for a large variety of datasets (in terms of density), a fruitful search or a failure
can be achieved in O(loglog n).

Another search strategy of the same kind consists in using a bucket tree to
store the elements. Similarly, the complexity is related to the partition density of
the elements, see [Devroye-1986].

64 MEsH GENERATION

Exercise 2.11 The WHILE statement in the above algorithm is skipped if Tab(idz) =

z. Does this affect the complexity of a successful search (z is found) or a failure
(x is not in Tab) ?

2.4.4 Three main paradigms

Before going further, we introduce three paradigms that will be used later and
which can be considered fundamental in algorithmics.

The first paradigm is known as D1v1de-and-conquer Briefly speaking, it
consists in solving a problem P by

i) dividing P into several sub-problems, for instance into two sub-problems P,
and P, (of smaller sizes),

it) solving the sub-problems, here P; and P»,
iii) merging the partial solutions together.

The recursive division stops in practice when the sub-problem becomes sufficiently
small and its solution is easy to obtain. The number of sub-problems created and
the way of merging the solutions are related to the nature of the problem in hand.
For instance, the Quicksort divides a problem in two and the merging operation
simply consists in putting the solutions end to end.

The second paradigm concerns the Computational model. This consists in
defining the type of operations that may be used when devising an algorithm.
For instance, in quicksort or in bucket sort, we noted the difference between the
former approach, which uses only pairwise comparisons, and the second approach
which requires the floor function | |. We noticed that this resulted in complexities
that are sensitive to various properties of the dataset (random permutations versus
probability densities in our examples).

The last one is the Randomization paradigm which we encountered with
the pivot selection in the quicksort algorithm. Broadly speaking, making choices
at random is an elegant and efficient way to avoid worst-case complexities with
high-probability. Intuitively speaking, if an event of bad complexity occurs with
some probability, having it occur over a long sequence is very unlikely. Thus, this
technique will be widely used in the following.

These three techniques are of course independent. In particular, quicksort-like
strategies as compared with bucketsort-like ones can be viewed as two independent
implementations of the Divide-and-Conquer paradigm. The former splits the task
into a constant number of sub-problems while the latter attempts to make decisions
faster using a higher branching factor.

Exercise 2.12 Let List; and Listy be two ordered linked lists of sizes n and m
respectively. Show that they can be merged in time n + m — v(n, m) by changing
pointers only, with v(n, m) the number of items of List, bigger than the largest
element of Listy (or vice versa).

BASIC STRUCTURES AND ALGORITHMS 65

Let List be a list containing n ttems. Show that List can be recursively sorted by
first splitting it into two equally sized sub-lists, sorting these sub-lists and merging
them. What is the time complexity of this method ? (This sorting algorithm is
known as the Merge sort).

Exercise 2.13 Let Lo = (21,29, ...,) be a set of n real numbers. Suppose also
we have a coin and define L;yy from L; as follows : for each x in Lit,, toss the
coin and add x to Ly, if the output is heads. Now, call e the first integer such
that L. is the empty-set. Show that E(e) = O(logn) and Pr(e > alogn) < —=.

2.5 One dimensional data structures

One-dimensional data structures for handling (one-dimensional) objects are con-
sidered amongst the most fundamental since they are the building blocks on which
more involved algorithms and data structures are based. In Section 2.2, we saw
how to store unordered objects. In this section, we shall see how to define dic-
tionaries and priority queues. As for the data structures already described, these
can easily carry out operations such as “is this element contained in”, “insert” or
“delete” an element and, moreover, are more geared to handling requests such as
“find the min”, “find the max”.

2.5.1 Binary tree

In Section 2.4.3, we used a Divide-and-Conquer paradigm to search a sorted ar-
ray. We noticed the running time improvement over the naive algorithm of Sec-
tion 2.3.2. In this section, we do the same in a dynamic context based on a Binary
Search Tree (referred to hereafter as BST'), that improves the complexity of any
searching operation on linked lists. We begin first with a definition.

0. / root
1 ST o internal
LT node
S X
e N Ve AN .
2 INULL ‘
s y /\/ _ >/ ! /
; . BN o 7 AL
3 NULL NULLI \ INULL- [NULL! leaf
‘ . j
. e N
4 NULL, NULL)/

Figure 2.8: Pointer representation of a binary tree.

66 MESH GENERATION

Definition 2.1 A binary tree is a data structure whose node contains, together
with the information field (the key), two pointers, the left and the right children.
If in addition the information field obey some ordering relationship, such a tree is
called a Binary Search Tree (BST).

The topmost node is called the root of the tree. A distinction is made between a
node that has children, called internal, and a node without children, called external
or a leaf. The depth (height) of a node is the number of edges (branches) crossed
from the root to that node (Figure 2.8).

An example of binary search tree growth is illustrated in Figure 2.9 where the
insertion of the values 17, 5, 1 and 3 is depicted. First, 17 is inserted and stored
at the root since the tree is empty. Then 5 is inserted and put in the left subtree
as 1t is smaller than 17. Similarly, 1 goes to the left of 5 and 3 to the right of 1.
The resulting tree has one internal node at depths 0, 1, 2 and a leaf 3, it has an
edge at depths 1, 2 and 3.

Figure 2.9: Binary tree constructed from the sequence of keys 17, 5, 1 and 3.
Notice that in this tree, according to the sequence of the values, the nodes have
only one child. A different ordering could lead to nodes having two children.

To see which parameters influence the operations on BST, let us consider the
searching and insertion procedures whose general schemes are given below :

Algorithm 2.10 Searching in a BST.

Procedure Contains(node,x)
IF node = NULL THEN return = .FALSE., END
IF node.key = x THEN return = TRUE., END
ELSE
IF z < node.key THEN Contains(node.left,)
ELSE Contains(node.right,)
END IF
END IF

Algorithm 2.11 Inserting a key in a BST.

Procedure Insert(node,nodeFather,x)
IF node = NULL
allocate a new node, newnode
newnode.key « x

BASIC STRUCTURES AND ALGORITHMS 67

newnode.left « NULL and newnode.right < NULL
IF z < nodeFather.key THEN nodeFather.left «- newnode
ELSE nodeFather.right < newnode
END IF
END IF
IF z < node.key THEN Insert(node.left, node,r)
ELSE Insert(node.right,node, r)
END IF

Basically, the strategy consists in tracing a path down the tree and making the
right decision at each node encountered. If a key already present in the tree is
asked for, the searching process stops in an internal node or in a leaf (terminal
node). If the key is not in the tree, the process ends up in a node and adds a
child to 1t. The average cost of a search is related to the sum of the depths of
the node in the tree. As for the worst-cases, these quantities are bounded by the
depth of the tree, h, which is such that |logan| < h, < n — 1. On average,
see [Mahmoud-1992], the expected depth of a random tree containing n keys is
E(h,) ~2.98logn.

Randomly building BST trees is therefore interesting and is easy to handle if
one can possibly afford bad performances. However, should this not be the case or
should deletions be allowed (very little is known for a random tree after a sequence
of deletions and insertions), a different strategy must be applied.

Bad performances clearly arise from “skinny” and “elongated” trees. This is,
for example, the case in Figure 2.9. One would prefer the configuration given in
Figure 2.10, right-hand side.

) (@) 5
A : N Ve
~ N RightRotate(T’, y) N ,,/ “ P \
) ¢ . a < 1 17

//" \ 1VLet,fR(E)t,;lrtE(a—‘,7_1;)7 /)/,/ \\\\ \

Figure 2.10: Left hand side : balancing by rotation around a node. Right hand
side : balancing the tree of Figure 2.9.

To avoid this type of situation, the strategy consists in balancing the tree to
have its subtrees contain roughly the same number of items. The elementary
operation towards this goal is the rotation around a node depicted in Figure 2.10.

In practice, there are several methods to balance a tree. For instance, AV L*
trees, [Wirth-1986], are such that for any node the depth of the two subtrees
differs by at most one. For the red-black trees [Cormen et al. 1990], the balancing
is achieved by some constraints satisfied by the color of the nodes. The reader is
referred to the cited references for more details about tree balancing, an operation
that can be a bit tricky.

The performances of the red-black trees are summarized in the following the-
orem :

*acronym for Adelson, Velskii et Landis, inventors of this type of tree.

68 MESH GENERATION

Theorem 2.1 The depth of a red-black tree containing n keys satisfies 1_0_3_71 <
h, < 2logn. The operations “insert”, “delete”, “exists”, “find the min”, “find the
maz” are in O(logn).

We now give some schemes for traveling through (traversing) a binary tree.

Algorithm 2.12 Tracing a path in a binary tree.

Procedure inOrderProcessing(node)
IF node # NULL

mOrder Processing(node.le ft)

process node

inOrder Processing(node.right)
END IF

Algorithm 2.13 Tracing a path in a binary tree (pre-order processing).

Procedure preOrderProcessing(node)
IF node # NULL

process node

preOrder Processing(node.le ft)

preOrder Processing(node.right)
END IF

Algorithm 2.14 Tracing a path in a binary tree (post-order processing).

Procedure postOrderProcessing(node)

IF node # NULL
postOrder Processing(node.le ft)
postOrder Processing(node.right)
process node

END IF

Exercise 2.14 A m-ary search tree is defined as a search tree whose nodes have
ezactly m children (a node contains the key and m pointers). How do m-ary search
trees compare against BST in terms of search time and memory requirements ?

Exercise 2.15 Show how a red-black tree can be used for sorting in ©(nlogn).

2.5.2 Hashing

Like the bucket sort, the hash functions consist in splitting the dataset processed
into bins or buckets. The hashing process is viewed here as a one-dimensional struc-
ture, in particular to emphasize the fundamental difference between the hashing
technique and the bucket sort.

However, it seems obvious that this structure is adequate for multi-dimensional
data and, practically, is commonly used in such situations. If h denotes the hash

BASIC STRUCTURES AND ALGORITHMS 69

function and if z is the element considered, then h(z) is the hash value associated
with z, as will be seen hereafter. In three dimensions, we will find, with obvious
notations, h(z,y, z) the hash value associated to the element (z,y, z).

There is however a fundamental difference between the hash function used in
bucket sort, namely h(z) = [*=%=w= |, and general hash functions. While the for-
mer is monotonic, i.e., if # > y then h(z) > h(y), this property is not strictly
required in the latter case. Moreover, general hash functions are usually imple-
mented using modulo, see Figure 2.11, left-hand side, for instance.

h(z) h(z)
; " : A

- - L B -

xr T
Figure 2.11: Non monotonic hashing (left) and monotonic hashing (right).

It should be emphasized that this enables the building and handling of dic-
tionaries®, but does not allow the processing of proximity queries such as “given
h(z), report the neighbors of z from the values of h in a neighborhood of h(z)”.
We shall return to this issue in Section 2.6.

To define precisely a few standard hash functions, we start with the following
definitions.

Definition 2.2 Let U be a universe, i.e., a set of possible keys (0, 1, ...), let
S be a subset of U of size n, let T be an array of buckets indexed by a set of
integers I. Suppose, in addition, that each bucket is endowed with an auziliary
data structure (linked list, array, BST, ...) that may contain up to b items. Then,
a hash function is an application h from U to I. Two keys r and y are said to
collide if for x # y we have h(z) = h(y). A bucket is said to overflow if more than
b keys have been hashed into it.

As an example, consider Figure 2.12. Here, the set of all possible keys is the
integer (in this example) range 1, ..., 50. The values to be hashed are five numbers
§ = (2,5,10,15,37). The hash table is an array of 10 linked lists (thus b = o).
The hash function satisfies 2(10) = ~(37) = 1, h(2) = 3, h(15) = 6 and h(5) = 8.
Typically, if one wants to know whether z is stored in the hash table, the algorithm
consists in checking whether z is present in the data structure associated with the
bucket of 7" indexed by h{z). The important parameters are therefore the relative
size of § as compared with that of 7" and the number of items referenced within
each bucket.

Several types of hash function can be envisaged :

5A set on which insertion, deletion and searching perations are defined.

70 MESH GENERATION

T o
£
{ I 1
Tl - =10 — 37
h(z) 2
T T g
u S 1..50 S -1,
7 N B e
/ N o //// x\/ - I 5
/ T 1 .
| AP ey -
\ | 10 2 - 15) o " - | 7
\ AN - 5- ‘,/</ _— /
AN ST s | 8
N e - 1
e - > .9
10

Figure 2.12: Ezample of a hash table.

e universal hashing, for which h is chosen randomly,

L]

perfect hashing, where h is injective,

[]

minimal hashing, where card(S) = card(T),
e dynamic hashing, where card(S) is not known beforehand,
¢ monotonic hashing, where h keeps the ordering on the keys.

'I'wo main problems are to be considered when implementing a hash technique.
The first is related to the choice of the hash function (see above). The second,
related to this choice, deals with collisions handling.

The collisions handling is indeed very important. One can of course rehash
the whole table if some buckets are overflowing, but that does not tell us how to
choose the right hash function.

An initial strategy consists in setting b = 1, in which case a single key at most
1s stored per bucket. This peculiar hashing is called “open addressing”. The hash
function maps & x Z to Z and the sequence of buckets attached to the key z is
seq(z) = (h(x,0), h(x.1),...,h(z,m — 1)). The function h should be chosen such
that for any key x, seq(z) is one of the m! permutations of 0,1,...,m — 1 with
equal probability. Several such functions are described in [Cormen et al. 1990].
Their design is mainly concerned with avoiding overly long common sub-sequences
between seq(x) and seq(y).

The second strategy aims at avoiding collisions as much as possible. A funda-
mental notion in this context is that of universality :

Definition 2.3 Given two integer ranges U = 0,...,n—1and Z = 0,...,m — 1,
with n > m, a family of hash functions H is called 2-universal if for any z, and
z2 of U such that x1 # x5 and h chosen at random in H, the following holds :

Pr(h(z1) = h(z2)) <

3=

BASIC STRUCTURES AND ALGORITHMS 71

Interestingly, the condition :

1
1 # 2, Y1 # Y2, AND Pr(h(z1) = y1, h(z2) = 32) = 2
implies the previous condition and corresponds to a 2-universal hashing called
strong. The idea is to have the images of two points behave as independent random

variables.

2.5.3 Priority queues

Many situations require the records to be processed in order, but not necessarily in
full order and/or not necessarily all at once. For instance, an algorithm may require
the highest value to be processed, then more values to be collected, etc. The data
structures supporting this kind of operation are called priority queues and can
be viewed as generalizations of stacks or queues. More precisely, a priority queue
is a data structure containing records with numerical keys (numerical values), the
priorities, and supporting the following operations :

o the construction of a priority queue for a set of items,
e the insertion of a new value,

e the search for the maximum,

o the modification of the priority of an item,

o the deletion of an arbitrary specified item,

o the merging of two priority queues.

Interestingly enough, the red-black tree data structure turns out to be a simple yet
efficient implementation for priority queues. From the discussion of Section 2.5.1
and according to Theorem 2.1, we know that the insertion, deletion and search
operations have a O(log n) complexity. Moreover, the construction, the modifica-
tion of the priority and the merge requests simply require a sequence of insertions
and deletions.

More sophisticated implementations of priority queues provide better com-
plexities for the construction, modification of priority and merge operations. In
particular, a fashionable data structure for that purpose is the heap data structure,
which is a complete binary tree with the property that the key in each node should
be larger than (or equal to) the keys in its children (if any). The reader is referred
to [Sedgewick-1988] and [Cormen et al. 1990] for further reading.

Exercise 2.16 Show how to implement a priority queue using an ordered linked
list. What are the complexzities of the “merge” and “change priority” operations ?

Exercise 2.17 Suppose a red-black tree is endowed with an additional pointer to
the mazimum (or minimum) entry stored. Give the complezity of the “find the
Maz” (“find the min”), “insert” and “delete” operations.

72 MESH (GZENERATION

2.6 Two and three-dimensional data structures

After one-dimensional data structures, we now turn to multi-dimensional data
structures. Here, we find grids and trees (quadtrees and octrees). Described in
this section as data structures, these structures will be viewed again (Chapters 5
and 8) as they also serve to construct meshing algorithms.

In this section, we show how several ideas developed for one-dimensional data
structures can be reused in two and three dimensions to handle more complex
objects such as points, polygons, etc. In Section 2.6.1, we present several grid-like
structures, in Section 2.6.2 we consider tree-like structures and in Section 2.6.3 we
mention some problematic side-effects that may arise when using these construc-
tions.

2.6.1 Grid-based data structures

Grid-based data structures are the two and three dimensional equivalent of the
one-dimensional bucket-like data structure. Interestingly, their performances vary
greatly depending on the kind of items processed. If points are stored in two-
or three-dimensional grids, very precise theoretical results have been known for a
while, see [Devroye-1986] for example, that give indications about the behavior of
the operations involved with such grids. However, when more complex objects are
involved, such as polygons, many theoretical results remain to be established and
Justified experimentally. The aim of this section is precisely to present guidelines
for the efficient use of grid-like partitions for applications such as mesh generation.
A good starting point for further reading is [Cazals,Puech-1997].

Let A = A, x Ay X A, = [l‘minyﬁmar] X [ymin;ymax] X [zminazma.r] be some
three-dimensional domain containing a set £ of n objects, which may be polygons,
etc. Suppose we also want to answer proximity requests over the items of £. For
example, we want to find the closest polygon to a given point or find the pairs of
intersecting polygons.

Similar to the bucket sort for the one-dimensional case, a nice way to address
this class of problems consists of subdividing A, the domain of interest, into nynyn,
axis aligned boxes (voxels) of size §,6,6, with d, %ﬁ (and similar values for the
other dlmenswns) and having each voxel reference the items intersecting it. Once
this pre-processing step has been done, the voxel containing a point P(z,y, z) is
identified by the triple ind;, indy and ind, with, for instance, ind, = £= g (and
similar expressions for the other indices). From this voxel, the items of & close
to P are easily retrieved. In order for this construction to be efficient, two types
of constraints must be taken into account. First, each voxel should reference a
small number of items of £. Then, the memory requirements should be affordable,
i.e., nynyn, = O(n) with a small constant. We discuss here three grid-based data
structures, Figure 2.13, that achieve these goals for different input datasets.

A grid is in fact a structure that can be uniform, recursive or related to a
hierarchy of uniform grids.

BASIC STRUCTURES AND ALGORITHMS 73

A - N '//l

A L,\) PN)
O I - !
) ™

CA S e leuel?

\ DY -C

{ ;J/‘f = i 7/ D

e T s - levell
e e T T evell
pawreve ' o
AT “ Lo R
P 7 level0 leveld .;A%,/‘i%/ levelO

Figure 2.13: The three types of grid-based structures. Left, a uniform grid, middle,
a recursive grid and right, a hierarchy of uniform grids.

Uniform grid. A uniform grid for the set £ is a partition of its bounding box
into ngnyn, subdivisions of equal lengths along the z, y and z axes. To get a
memory requirement that is linear in the number of objects, the n; are usually
taken so that n; = a; 3\/n. The o; are positive constants and the simplest choice
is @y = ay = a; = 1. Other choices may be preferred, for instance related to
heterogeneous values based on the ratios of the dimensions of the box, the amount
of memory available, etc.

Uniform grids provide a simple and efficient way of handling uniform distribu-
tions. But their performances get catastrophic for more structured datasets, so
other solutions have to be found.

Recursive grid. Once a uniform grid has been built for a set £, one may find
that some voxels are too populated (they record too many items). If mazi, stand-
ing for the maximum number of items, is some positive integer (e.g. 50), a recursive
grid for € is a hierarchical structure based on uniform grids such that whenever a
voxel contains N items, N > maxi (the initial voxel being the bounding box) it
is recursively split into a uniform grid of approximatively N voxels.

Especially if no memory limitation is set, recursive grids provide the simplest
and fastest implementation for handling many proximity problems. For unevenly
distributed inputs, the performance gain over uniform grids can be up to several
orders of magnitude.

Hierarchy of uniform grids. A weakness of the previous construction is that
the recursion may waste a lot of empty voxels (Figure 2.13, middle). To solve this
problem, the blind recursion can be replaced by a process that figures out more
cleverly which are the dense areas that should be allocated resources. The strategy
proposed in [Cazals,Puech-1997] successively separates the objects according to
their size (filtering step), finds subsets of neighbors called clusters within these
classes (clustering step), stores each cluster in a uniform grid and finally builds a
hierarchy of uniform grids (Figure 2.13, right). For a description of the filtering
and clustering steps, the reader is referred to the previous reference.
Nevertheless, the hierarchy of uniform grids offers a flexible and efficient data
structure for input datasets with strong coherence properties. This is especially

74 MEsH GENERATION

true since its construction overheads are almost the same as those of a recursive
grid.

2.6.2 Quadtrees and octrees

A quadtree is a two-dimensional spatial data structure whose counterpart is the
octree in three dimensions. The term quadtree refers to a class of hierarchical
data structures whose common property is to recursively decompose some spatial
region. Very much like grid-based subdivisions, quadtrees can be used to store
a varlety of inputs (points, line-segments, polygons, etc.) in any dimension (to
simplify, the term quadtree will be employed whatever the dimension). And also
similarly to grids, very little is known about the theoretical properties of this kind
of structure, other than for points.

The basic idea consists of splitting the region processed into two sub-regions
along each axis. In dimension d, a region is therefore split into 2¢ children. The way
the splitting hyper-plane(a line in two dimensions, a plane in three dimensions) is
chosen, together with the recursion termination condition determines the quadtree
type. We present below the two basic schemes when the input is a set of n points,
see [Samet-1990] for more details.

Point quadtrees. The point quadtree can be seen as a generalization of a binary
search tree. In two dimensions for instance (Figure 2.14), each point is stored in a
node and serves as the pivot in the subdivision of the associated region into four
quadrants. The quadrants are numbered from left to right and from top to bottom
(see the figure).

As will be shown, locating a point in a quadtree is an easy matter that requires
comparing its coordinates to those of the nodes currently traversed in order to
decide which quadrant it is contained in.

The optimal strategy for building a point quadtree depends on whether or not
the input dataset is known a priori. If it is, choosing at each step the median point
along one axis (which luckily may also be the median of the other axis) results
in a tree of depth between logs n and logan. If no a priort information is known,
the points have to be sequentially inserted and the weakness already mentioned
for BST trees may arise, i.e., the tree may be very elongated. Finally, similarly
to BST trees, point quadtrees can be made dynamic, that is support deletions.
Nevertheless, this operation is rather tricky, see [Samet-1990].

Overall, point quadtrees are an interesting and versatile data structure which
however suffers from several drawbacks. First, the higher the dimension, the higher
the number of empty null pointers created . Then, its depth is usually larger than
that of grid-based structures. Its use is therefore recommended when recursive
grids or a hierarchy of uniform grids are too demanding resource-wise and/or
when a dynamic feature for the process is desirable.

Point-Region quadtrees. If one requires the four regions (the quadrants in
two dimensions) attached to a node to have the same size, the data structure
obtained is called a Point-Region quadtree (PR-quadtree). The recursion stops

BASIC STRUCTURES AND ALGORITHMS 75

T 12 ‘
34
p Y ¢
Py ‘ N
: P, e T e
0P5 - ° op 55 132 54 P;
i 3 RN N 7N .
. L ’," ‘. g\ // A . // N /A \\
[] P8 ‘ iP 1 .P7 Pg Pe Pg P7
J b

Figure 2.14: Point quadtree based on a set of points in R2.

whenever a quadrant contains at most one data point, so that every point may be
stored in a leaf node. As an illustration, consider Figure 2.15 which represents the
PR-quadtree for the set of points of Figure 2.14. Before going further, notice that
this type of quadtree is the one that will be commonly used in this context (see
Chapter 5).

Locating a point in a PR-quadtree requires finding the quadrant it lies in,
which is similar (although certainly simpler here) to the previous quadtree case.

Inserting a point starts with a quadrant location. If the quadrant found is
empty, insert the point and it is finished. Otherwise, it is refined into four regions
(children) and if the other point does not belong to the same quadrant, insert the
two points and it is finished, otherwise both points are recursively inserted into the
quadrants. It should be clear that many splits may be necessary to separate points
located very close to one to another. More precisely, the depth of the tree may
be as much as logs(%), where L and ! are the distances between the closest and
farthest pair, respectively. In other words, the depth of the PR-quadtree depends
upon the values manipulated (see also Section 2.4.2). In order to avoid wasteful
memory allocation, a conservative approach consists of splitting a node only if its
depth in the tree is not more than a certain threshold. Alternatively, the leaves
can be allowed to accommodate up to mazi points, with mazi a small integer.
Deletion of a node is considerably simpler than for point quadtrees because there
is no need to rearrange the tree as all values are stored in the leaf nodes. However,
the deletion of a node having exactly one brother should be followed by a collapse
step of the four leaves.

In conclusion, PR-quadtrees offer an interesting alternative to usual point
quadtrees especially because it is easier to obtain a dynamical aspect. However,
one has to be careful about the height of the tree which may become very great if
two points happen to be very close to each other. Hence, grid-based data structures
are usually (much) more efficient because of their greatly reduced depth.

2.6.3 About filters and side-effects

Numerous operations on meshes and triangulated surfaces require a priori running
more or less tricky and expensive algorithms. For example, in order to compute

76 MESH GENERATION

T2
[. L | 374)
‘ B j N
- N S - - - . - - ™ S -
Lo | Py 2 5 5 6
| —+ - 1 - ! 1 T P6 \ \ /’,”"N\\ /{ /’\\\ pd ’ﬁf\
} e P] 0NN VAVARTRAN PV AR i \
+P,§ L - P Py Py 4P P PP P
Py Py e \\
A) ¢ Py Ps

Figure 2.15: The equivalent Point-Region quadtree data structure.

the intersection between a line and a discretized surface (a triangulation), one has
to compute pairwise intersections between the line and each triangle. Similarly,
to render and plot such a (meshed) surface on a graphical device using the ray
tracing method®, one has to intersect lines (in R?) with the surface. Because this
could be very expensive, as with any algorithm involving two geometric entities,
a conservative approach consists in first making sure some necessary conditions
are satisfied before running the computation. For example, for a ray intersecting
a polygon, the intersection point P is necessarily contained in the bounding box
of the polygon. If this is so, it must be further checked whether P lies within the
polygon and this requires a linear time in the number of vertices of the polygon
(see [O’Rourke-1994)), otherwise, any further check is unnecessary.

Suppose now that the polygons are accessed through a grid-like data structure.
In order to lessen the number of entities referenced by each voxel and thus the
number of polygons tested (for intersection for a given ray), one is tempted to
reduce the voxel sizes (thus increasing the total size of the grid in memory). By
doing so, one also increases the probability of the ray belonging to the rectangle
bounding box. Put differently, reducing the number of intersections results in
more expensive computations because the coarse filter given by the bounding box
becomes less efficient. This kind of side effect should be borne in mind when
performing fine tuning of an algorithm.

2.7 Topological data structures

For the sake of simplicity, we restrict ourselves here to the two-dimensional case
and we only consider triangulations. Not surprisingly, the central building block
to describe such meshes is the triangle, together with a couple of data structures
encoding the adjacency relationships (in some sense). For surface meshes, a more
general structure is necessary (a triangle could share an edge with more than one
other triangle).

$Very briefly, the ray-tracing method consists of figuring out, for a given scene and viewpoint,
the color of each pixel in the image representing this scene is rendered into has to be painted

contributions of the relected and refracted rays.

BASIC STRUCTURES AND ALGORITHMS 77

Triangulations (meshes) can be represented in many different ways. First, we
present a representation based essentially on the triangles themselves. Then, we
briefly discuss another representation based upon the triangle edges.

2.7.1 A triangle based representation

The triangles are indexed from 1 on. A triangle is an (oriented) triple of vertices
(cf. Chapter 1). With each triangle are associated its (at most) three edge neigh-
bors (two dimensional case). The neighborhood relationships are encoded such
that

k = Neigh(j,1)

which means that the triangle of index & is adjacent to the triangle of index 7 and
that the edge j of triangle i is the common edge (k = 0 means that the edge j of
triangle 7 is a boundary edge). Suppose also that vertex J of triangle 7 is opposite
to edge j of this triangle (see also Chapter 1).

The pair of triples vertices-neighbors is one possible way of representing a
triangulation (and probably the most concise one) also called the adjacency graph
of the triangulation.

A richer representation is based upon the triples of vertices and the connection
matrices. Each triangle K is endowed with a 3 x 3 matrix defined as follows (Fig-
ure 2.16) :

e the diagonal coefficient 7, ¢;; indicates the local index of the triangle vertex
opposite to triangle K by the edge 1,

® another coefficient ¢;; gives the index of the Jjth vertex of K in its ith neigh-
bor.

Figure 2.16: Definition of a triangle K and of its three neighbors K;. One can see
the global indices of the vertices (P:,A, ...) and the local indices (in any triangle)
of these points (1, 2 et 3).

78 MEsH GENERATION

According to its definition, the adjacency matrix of triangle K in Figure 2.16 is :
213
ck=1[(13 2
3 21

Hence, for the first line, point A of K| sees K and ¢;; = 2 because A is the second
vertex of K. Similarly, ¢;» = 1 because the index of P, in K; is 1 and finally,
c13 = 3. Notice that, unlike the depicted example, the matrix has no specific
property (symmetry, for instance).

This representation is richer than the previous one and makes access to neigh-
borhood items easier, as vertex information is added to element information.

Remark 2.4 One can notice that the diagonal of this adjacency matriz allows the
whole set of coefficients to be reconstructed.

A question arises at this point : “Which data structure should table Neigh be
implemented with ?” As pointed out in Section 2.7.1, if the number of vertices of
the triangulation is known, so is the number of triangles (an upper bound). In this
case, an array can be allocated beforehand, although the triangulation algorithm
creates intermediate (transient) triangles. Another solution consists in using a
dynamic hash table.

Remark 2.5 To decide which is the best structure, we face a recurrent problem.
Shall we use a “rich” structure, which is more memory consuming but provides
more information at once or a “poor” structure which is less expensive but gives
less information. The answer is strongly related to the memory available, to the
cost of retrieving stored information and also to the cost of updating the structure.

2.7.2 Winged-edge data structure

Another way to represent a mesh consists in viewing it from the point of its edges.
This solution, as opposed to the previous one (for which a constant number of
neighbors per face is assumed), allows edges common to more than two faces to be
dealt with as well as with faces having an arbitrary number of vertices. We can find
here two alternatives, the winged-edge (see [Baumgart-1974], [Baumgart-1975),
[Weiler-1985]) and the half-edge (see [Mintyla-1988], [Kettner-1998]) data struc-
tures which are edge-based structures. This kind of structure, also described in
[Knuth-1975], essentially allows the following operations :

e walk around the edges of a given face,
e access a face from the adjacent one when given a common edge,

e visit all edges adjacent to a vertex.

BASIC STRUCTURES AND ALGORITHMS 79

2.7.3 Hierarchical representation

A more general description, useful for triangulations as well as for arbitrary meshes
(manifold or non-manifold, conforming or not) is based upon the exhaustive enu-
meration of the relationships between the mesh entities.

Schematically, this description indicates the hierarchy between the entities ac-
cording to their dimensions (points, edges, faces, elements). Hence, we have a
direct link such as :

Points — FEdges — Faces — FElements,
and the reverse link
Elements —— Faces — Edges — Points.

This type of storage, [Beall,Shephard-1997], offers numerous advantages, although
it is rather memory consuming and expensive when updating the structure. It
provides a direct access to the entities of a higher (resp. smaller) dimension.

For a dynamic type of situation (such as graphical visualization, for instance),
this kind of structure is especially attractive.

2.7.4 Other representations

Some peculiar applications can benefit from a very specific organization of the
data. For instance, for a two-dimensional triangulation, if each vertex is endowed
with the oriented list of the neighboring vertices (sharing an edge), this structure
allows the related triangles to be easily retrieved, [Rivara-1986].

Other representations can also be found, for instance the STL format which
consists in enumerating all faces (elements) using the vertex coordinates (neces-
sarily duplicating this information).

To conclude, one can notice that interchange formats (STEP, IGES, SET, VDI,
CGM, etc.), although not directly aimed at meshing structures, can nevertheless
give some information on how to design structures for meshes.

2.8 Robustness

Non-robustness refers to two notions. First, the result may not be correct (for
instance, the convex hull of a set of points is not convex). Then, the program stops
during the execution with an error or in a more catastrophic way (the computer
crashes) with an overflow, an underflow, a division by zero, an infinite loop, etc. If
the algorithm is reputed to be error-free (from a mathematical point of view), this
means that its implementation leads to an erroneous behavior. Anyone who has
implemented a geometric algorithm is likely to have faced this type of problem at
some point.

This section has several aims. First, we give a very brief overview of the
potential reasons why numeric problems arise; we recall how real numbers are
encoded on most computers, and explain why the issues are even more difficult

80 MEsH GENERATION

in a geometric context. We then provide some guidelines to reduce these risks,
and finally we give an overview of the state-of-the-art techniques used to make
floating-point operations robust.

2.8.1 Robustness issues

Numerical issues in scientific computing have been known since the early days of
computers. The core of the problem lies in the limited resources used to encode
numbers (the bits) and the drawbacks are twofold. First, the biggest and small-
est numbers that can be represented are upper and lower bounded, so that some
calculations cannot be carried out if the intermediate value exceeds these bounds.
Second, real numbers have to be represented approximatively since one cannot
squeeze infinitely many of them into a finite number of bits. These difficulties can
yield to erroneous results and also generate undefined operations such as \/z with
& < 0Oorxzxywithz =0and y = co. The unpredictability of floating point opera-
tions across different platforms led in the eighties to the adoption of the IEEE-754
standard [Goldberg-1991], (Kahan-1996]. In addition to the previously mentioned
exceptions, this standard also defines several floating-point storage formats and
templates for the +, —, x, = and /- algorithms, that is, any implementation of an
operation should produce the same result as the operation provided by the stan-
dard. Note that this makes calculations consistent across different architectures,
but does not eradicate exceptions at all.

More practically, the way floating-point numbers are represented on most mod-
ern processors is in the form mantissax 277"t where the mantissa is represented
by a p bits binary number. For example, p = 24 (resp. p = 53) for simple (resp.
double) precision in the IEEE-754 standard. Rephrasing the issues raised above,
how should one proceed when calculations produce numbers that cannot be rep-
resented using that many bits ? If one does not care so much about exactness,
the standard format specifies how such results have to be rounded to fit back into
the finite representation. If one does care about exactness, one needs to switch to
another representation.

One solution is the multiple-digit format based on a sequence of digits and a
single exponent. Another solution is the multiple-term format where a number
1s expressed as a sum of ordinary floating point words. This latter approach has
the advantage that the result of an addition such as 24° 4+ 2740 is encoded in two
words of memory while the multiple-digit solution requires 81 bits and incurs a
corresponding speed penalty when further processed.

2.8.2 Computational geometry

From the computational point of view, geometric computations are even more
difficult to handle than pure numerical calculations. A simple remark makes this
point clear. Consider for instance the computation of the solution of a general
matrix system by any suitable method. A solution close to the exact one, within
a given precision, is usually obtained, except in some pathological cases. Let us
now consider two examples of geometric calculations.

BASIC STRUCTURES AND ALGORITHMS 81

The first example concerns the problem of computing the convex hull of a set
of points S = (P4, ..., P,) in the plane.

Clearly, two points P; and P; contribute to the convex hull if all the remaining
points lie on the same side of the line passing through P; and P;. So that the only
predicate one needs for the computation is the so-called orientation test that, for
three points A, B and (', indicates whether C lies to the left of, on or to the right
of the line passing through A and B (Figure 2.17).

P;
X
Pit2 e LT
A e . “\X
Py
% 9% .
X X
« e
- ></

Figure 2.17: A convez hull that is non convez !

Using this predicate, the output of any convex hull algorithm consists of a
combinatorial structure over §, namely the list of vertices defining the convex
hull, together with a consistency condition stating that the corresponding polygon
is convex. But should a predicate calculation yield an erroneous result, the result
computed may not be convex (as on the figure where P;y; was reported to lie on
the right side of P;P;12). The result may be 100 % erroneous with respect to the
goal almed at, but one could always consider that this result is close enough to
the theoretical result, if the error is small, as in the previous example, a correct
answer about a few percent.

The second example corresponds to a more critical situation. To construct
a Delaunay triangulation using an incremental method, one has to determine
whether a given point belongs to the circumscribed disk (in two dimensions) of an
element. The predicate used in this case is the inCircle predicate described above.
A slight error, however minor, in the answer can lead to a result (here a triangu-
lation) that may be correct (but that does not satisfy the Delaunay criterion) or
to an erroneous result (overlapping elements). With respect to the goal expected,
one can get an approximate answer within a few percent (the result is valid but
the triangulation is not Delaunay) or a totally wrong answer (no triangulation at
all).

Here, we have emphasized two different cases, one where a result is obtained
and the other one for which the errors are so great that no result at all can be
expected. Notice also that such errors can lead to a “fatal” error, a program
failure.

82 MEsH GENERATION

BASIC STRUCTURES AND ALGORITHMS 83

2.8.3 The algebraic degree of a problem and predicates

In spite of this apparent difficulty, geometric computations have the nice prop-
erty of requiring numeric calculations which mostly consist of evaluating algebraic
expressions. Examples are distance computations, the orientation predicate al-
ready mentioned (Orientation), as well as the inCircle predicate which indicates
whether a point D belongs to the disk whose boundary is the circle passing through
three points 4, B and C or is external to it.

The common feature between these calculations can be formalized as follows :
define an elementary predicate as the sign (—,0,4) of some homogeneous poly-
nomial over the input variables and its degree as the maximum degree of the
irreducible factors. Also define the degree of an algorithm as the maximum degree
of its predicates. Similarly, the algebraic degree of a problem is defined as the min-
imum degree of any algorithm solving it. For example, a convex hull algorithm
using only the orientation predicate has degree 2. But a Delaunay triangulation
using only the inClircle predicate has degree 4.

We now introduce the Orientation and inCircle predicates.

A A, 1
Orientation(A,B,C)=| B, By 1|, (2.1)
C: Cy 1

where A, denotes the & coordinate of point A. Here we analyze C' with respect to
the line passing through A and B.

A, A, AZ+AD 1

. B, B, BZ+B: 1

inCircle(A, B,C, D) = ¢ Y z 2.2
C, Cy C2+ Cg 1 (2.2)
D, Dy Di+D. 1

We analyze the position of point D with respect to the circle (disk) passing through
A, B and C. '

Exercise 2.18 What is the algebraic degree of bucket sort and quicksort algo-
rithms described in Section 2.4 ¢

2.8.4 Robust and efficient floating-point geometric predi-
cates

We are thus interested in evaluating the sign of the predicates. We will assume in
the discussion that the sole operations required are the addition and the multipli-
cation. As mentioned above, the main issue of floating-point calculations is related
to rounding and we noticed that the arbitrary precision computations solved this
difficulty. Unfortunately, the overhead makes these solutions impractical. In this
context and especially since we are interested in the sign of the expressions rather
than their value, it was observed that floating-point calculations were, in fact, very
often reliable, so all that was needed was a way to take care of these confusing
situations. To that end, the following paradigms have been proposed.

e interval analysis : the evaluation of an expression is replaced by that of
guaranteed upper and lower bounds on its value. When the sign is needed, if
the interval does not contain 0, one can conclude. Otherwise, the evaluation
must be performed again with higher precision (or by any other method).

e arithmetic filters : the evaluation of an expression is accompanied by that
of the maximum absolute error.

Details can be found in [Shewchuk-1997b] and also in [Devillers-Preparata 1998],
for instance. Several methods are available (or have been studied) and it seems
likely that these methods will be further refined and, possibly, work their way into
real-world applications.

Remark 2.6 In mesh generation, the main idea 1s to make sure the algorithm
will provide a valid result, not necessarily strictly conforming to the theory but
usable (a non-convex convex hull is theoretically awkward although it depends on
the application envisaged).

2.9 Optimality of an implementation

The design and the implementation of a computer program performing some task
usually requires taking care of various aspects. What is needed is to design the
algorithm, to implement and test it and, possibly, to profile it (speed and memory
requirements). Optimizing a computer program consists in optimizing its running
time and/or its memory requirements, or fine tuning its time-space trade-off. In
this section, we briefly review some features any programmer should be familiar
with when pursuing these goals (dealing with efficiency and robustness).

2.9.1 Memory handling

Broadly speaking, the memory handling of a computer by the operating system is
usually divided into two categories, the static and the dynamic memories. Basi-
cally, the static memory is a chunk used in a stack-like manner to store the local
variables and the parameters used in the user-defined procedures and functions.
The dynamic memory is a pool the user can request slots from in a dynamic
fashion.

In Section 2.2.5, we saw that allocating and de-allocating dynamic memory
could be very costly. A good strategy sometimes consists in writing a special case
dedicated memory handler using particular features of the requests processed. For
example, if one knows beforehand how much space is going to be needed, a linked
list or a stack may be better implemented by an array allocated once for all.

Another problem is fragmentation. If too many small slots are requested and
freed too often, the memory map may end up like a piece of gruyere cheese. In
this case, although a significant amount of memory may be available overall, any
request for a big chunk may fail since no such continuous block is available.

Finally, there is another problem worth mentioning. It is desirable to group into
memory the data manipulated in a program so as to avoid, as far as possible, cache

84 MESH GENERATION

defaults which are extremely costly. This kind of problem is rarely mentioned.
Cache memory is random access memory RAM that a computer microprocessor
can access more quickly than it can access regular RAM. As the microprocessor
processes data it looks first in the cache memory and if it finds the data there
(from a previous reading of data), it does not have to do the more time consuming
reading of data from larger memory. Therefore, a judicious data organization can
save a lot of time in memory reading because of cache defaults.

2.9.2 Running time profiling

When trying to reduce the time required by a calculation, two questions have to
be addressed :

e which are the most time consuming functions (procedures) of the program ?
e can one significantly reduce the amount of time spent therein ?

One way of knowing how much time is spent in the different steps of a computer
program is to use a profiler. Most modern computers come with tools geared to
this goal and the functionalities offered are twofold. First, the number of times a
given block is called (typically a function) is reported. Second an estimate of the
time spent within the block is given. This value is obtained either via a compiler
directive or by sampling the program counter regularly. In the latter case, the
desired value is obtained by calling (and loading) very often (usually several times
per period) the internal clock, thus running the risk of distorting the measurement.
Indeed, this estimate may not be very sound for functions whose unit call cost is
much less than the sampling grain. Getting much better information can be done
by running a system call when stepping in and out of a particular function to
retrieve the system time, thus slowing down less dramatically the execution time
and not altering the measurement as much.

Several strategies may be employed to optimize a piece of code. In practical
terms, a set of simple rules can be followed. Before reviewing this briefly, we
provide Table 2.1 that shows, with respect to the number of cycles, the total cost
of the classical operations.

In this table, the computer architectures M; are the following :

My : HP PA 7100 M, © Sun HyperSparc
M3z : DEC alpha 2106/ My : Apollo 68040
Ms . Intel Pentium MMX-based PC

The simple analysis” of Table 2.1 shows that some operations must be avoided
as far as possible. To this end, one has to find another way of implementing
the desired functionality while asking the question about the pertinence of such
an operation (say, for instance, a distance calculation d, if d2 makes it possible
to decide unambiguously, thus allowing to avoid the extra V- call. Similarly,
comparing angles can be achieved by comparing their cosine values).

"The goal is not to compare such or such an architecture but to point out that significant
differences exist between numerical operations.

BASIC STRUCTURES AND ALGORITHMS 85

- M, M, M3 M,y Ms
+,—, % 1 1 1 1 1
/ 6 18 59 42 32
N 11 39 129 207 81
exp 58 163 156 685 175
arctan 66 120 173 242 140
log 69 158 125 361 143
sin, cos 89 | 521 - 532 | 265 - 281 | 293-307 115
arcsin,arccos 98 | 173 - 184 | 209 - 234 | 538-558 | 259 - 310
a® 157 522 398 1,741 402
tan 168 563 343 298 166

Table 2.1: Number of elementary cycles for some classical operations on a range
of computer architectures.

Following these remarks, we propose here some ideas to optimize a program.
As will be seen later, this approach concerns high level as well as low level func-
tionality, some of these operations being simply common sense.

e analyze the predicate likely to give the desired information. If several pred-
icates can be used, pick the best one (in terms of its degree).

o if a predicate has a high degree, look for another formulation of the problem
in which this predicate is no longer involved.

e examine the operations used and keep track of costly operations,
e minimize the number of parameters of a function,

e avoid indirections as far as possible (pointers or, even worse, pointers to
pointers),

e use arrays if possible (take care of multiindices arrays or matrices with more
than 3 indices, for example),

e avoid small loops® (typically a loop i = 1,2 is not legitimate) and in the case
of nested loops, use the most judicious implementation.

e etc.

To conclude and without pursuing this discussion further, notice that opti-
mizing a program can lead to a less elegant or less formal implementation (for
example, when a recursive call is replaced by a loop).

8Theoretically, compilers should be able to perform this task in most cases.

86 MESH (GENERATION

2.10 Classical application examples

For the sake of simplicity, in this section we consider triangular meshes only,
although most of the constructions described can be extended (more or less easily)
to other kinds of meshes. The following examples are given to emphasize how to
benefit from algorithms and data structures described in the previous sections
when dealing with applications related to mesh generation.

Therefore, numerous examples are linked to frequently encountered operations
in various tasks in mesh generation or mesh modification algorithms. The order
in which examples are given is not strictly significant. Some of these examples are
purely academic, others deal with more real-world applications.

Remark 2.7 The following examples can be seen as a set of exercises. Starting
Jrom data assumed to be known beforehand and depending on the goal envisaged,
the reader is welcomed, on the one hand, to examine the proposed solution and,
on the other hand, to look for alternate solutions to the same problem.

2.10.1 Enumerating the ball of a given vertex (1)

Given a mesh and a vertex of this mesh, the ball of this vertex is the set of elements
sharing the vertex. We propose here a method which, for any vertex of a mesh,
provides the list of the elements in its ball. Our interest is motivated by the
fact that vertex balls are commonly used in numerous parts of mesh generation
or mesh optimization algorithms (see Chapter 18, for example). The proposed
method works without the knowledge of the adjacency relationships between the
elements (see above for a definition of what these relationships are and, below,
how to obtain them).

Let ne be the number of triangles in the mesh and let Tria(1 : 3,1 ne) be the
array that stores the vertex indices of the mesh elements. Let np be the number
of mesh vertices’. The array Tab(1 : np) is initialized to the value —1. Now, in
view of a further usage explained below, we fill the arrays T'ab and List (of length
3 x ne) as follows :

Algorithm 2.15 Construction of the ball of the mesh vertices.

Procedure PrepareBall(Tria)
17 1
FOR 1 =1,ne
FOR j=1,3
s < Tria(y,1)
List(ig) « Tab(s)
Tab(s) « 1ij
17— 15+ 1
END FOR 3
END FOR :

9The points are assumed to be sequentially numbered from 1 to np (thus, in a connected way,
if this last property is not satisfied, np must be the largest number (index) of a point).

BASIC STRUCTURES AND ALGORITHMS 87

It is now possible to easily generate the indices of all the elements sharing a given
vertex. Let P be the index of the considered vertex, then its ball is obtained as

follows :

Algorithm 2.16 Enumerating the ball of a vertex.

Procedure BallPoint1(P)

1y « Tab(P)

IF ij # —1 THEN
(vertex P is the vertex of element 1),
jeig—3x(i—-1)4+1,
(vertex P is the vertex of index j in element 1),
tj « List(ij) and back to IF.

E1SE END.

On completion of this procedure, the different indices 7 obtained in the algorithm
are the indices of the elements!” in the ball of the point P used as entry point
while for each triangle of index 7, the index j gives the position of point P.

Note that the above method consists of two algorithms. The first one is a
preparation step which constructs the relevant tables. Once that has been done,
the second one can be used repeatedly to access the ball of any vertex in the mesh.

2.10.2 Enumerating the ball of a given vertex (2)

Here, we consider a similar problem but now only one ball is of interest (i.e., we
consider only one vertex P) and, in addition, we assume that the neighb'oring
relationships are available (in an example below, see how to compute this infor-
mation).

Given a triangle, its three neighbors are given via a table Neigh(1 : 3,1 : ne)
(where ne is the number of triangles). Indeed,

k = Neigh(j,1)

means that element k is adjacent to element ¢ and edge j of element ¢ is the shared
edge (while & = 0 if edge j of element 7 is a boundary edge). Also we assume that
vertex j of triangle i is opposite edge j of this triangle (see Chapter 1).

Now, let k¢ be a triangle having a vertex P, the following algorithm computes
the indices of the elements in the ball of P (we assume that P is not the index of
a boundary vertex) :

Algorithm 2.17 Enumerating the ball of a verter.

Procedure BallPoint2(P)
k ko, ltab < 0,
REPEAT

19Tn what follows, depending on the context, we will not differentiate between the index of an
entity and this entity itself. For instance, point P and point of index P must be c.onSJdered as
two possible expressions of the same notion. Similarly, element k is the element of index k.

88 MEsH (GENERATION

ltab « ltab + 1,
tab(ltab) « k
take j the index of P in triangle k,
take Jne,: the index following index j,
k «— Neigh(Jneat, k),

WHILE £k # ko .

On completion, ltab is the number of triangles in the ball of vertex P and the
indices of the desired triangles are the k’s in the array tab.

Exercise 2.19 Eramine the case where the vertex P in question is a boundary
verter. Modify the above scheme accordingly. (Hint : take care of the case where
Neigh(j,i) =0).

Notice that the proposed scheme does not extend to solving the same problem

when a tetrahedral mesh is considered, where a more subtle algorithm must be
defined.

Exercise 2.20 Construct the ball of a verter using the adjacency matrices de-
scribed in Section 2.7.2.

2.10.3 Searching operations

The problem is to find the item (the box, the cell or again the element) of a
structure (a grid, a quadtree or an arbitrary mesh) within which a given point
falls.

Such problems are so-called searching problems or localization problems or
again point location problems and are fundamental for various mesh generation
methods. Let i,y be the coordinates of the given point.

Searching in a grid. Using a grid (Section 2.6.1) is a source of simplification
by many respects. First, the indices of a box containing a point can be computed
trivially. Second, it is easy to have access to the neighborhood of a given box and
to that of a given point.

Let A, (resp. Ay) be the size of the grid box in direction z (resp. y), the grid
being constructed (see above) with the point zg, yo as left bottom corner. Then

. r — X . y—yo
zndI:[AL J and zndy:[A, J

are the two indices of the box containing the point. Actually, ind, as well as
ind, are integer values while the point coordinates could be floating-point values.
Depending on the information stored in the grid, these indices can be used for
various purposes (for instance, to find a point close to the point considered, any
point in the box being a candidate, or, in the case of an empty box, any point in
a non-empty box found in a certain neighbourhood of the initial box).

BASIC STRUCTURES AND ALGORITHMS 89

Searching in a quadtree. The easiest way to locate the quadtree cell (a PR-
quadtree here according to Section 2.6.2) containing a given point is to start from
the root of the tree and to use the values of the coordinates of the center of this
cell to determine which one of the four children contains the given point. The
center of a cell is easily obtained based on the box indices, we have :

Ay

Ay .
e = ind; Ar + - and y. =indy Ay + 3

where z., y. are the coordinates of this center.

The process is then recursively performed until a leaf (a terminal node) is
reached.

An alternative approach is based on the underlying binary encoding of the
quadtree by which a cell can be defined by an index consisting of a series of 0
and 1. The root 1s the 0 cell while the four first children can be identified by the
following indices (Chapter 5) :

(00,01, 11, 10)

where 00 is the bottom left cell, 01 is the cell on the right of the previous one,
11 is the top right cell and 10 is the cell on the left of the previous (it is also the
cell on top of the 00 cell). Actually, adding 01 to an index enables us to go to the
cell on the right while adding 10 at the current index leads to the cell top of the
initial cell (at the lower level, this effect will be obtained when adding 0001 and
0010 respectively, and so on).

Thus, binary operations can be used to locate a given point when a suitable
system of coordinates has been defined.

Searching in a mesh. In this case, we assume that we are given a triangular
mesh 7 covering a convex (planar) domain (for the sake of simplicity we consider
this simple case only) and we want to find which element in 7 contains point P.
Let K be a triangle in 7 and let Vi, V5, V3 be its three vertices whose coor-
dinates are denoted by z; and y;, (i = 1,3), then the signed surface area of K
is :
Sk =i| T2TEL EmEL (2.3)
21 v2—yn1 ¥y3—wu
Actually, we can define Sk as twice the above value so as to avoid a division
(notice that, due to the numbering convention of Chapter 1, Sk is strictly positive
if K is a valid element).
Let us define the virtual triangle K7 as the triangle K where the vertex Vj of
K is replaced by the point P considered. Then, we can compute Sk, (j = 1,3)
whose sign enables us to determine!! where the point P is located with respect to
the half-planes bounded by the lines supporting the three edges of K (note that
7 regions are defined in this way). According to the sign of Sg;, we pass through
the corresponding neighbor of K and we repeat this process until the three Sg;’s

11'We meet again here the barycentric coordinates.

90 MESH GENERATION

are positive (assuming that P is distinct from all the mesh vertices) meaning that
the visited triangle contains P.

Based on these observations, a searching algorithm is easy to design and im-
plement. One has to select a triangle K in the mesh and then follow the above
scheme.

Rapid searching procedure in an arbitrary mesh. The previous algorithm
can be very time consuming if a large number of elements needs to be visited
between triangle K, the initial guess, and the solution triangle. This could lead
in fact to a large number of area computations. Therefore, this algorithm could
be combined with a grid (or a tree-like structure). A grid, or a tree-like structure
enclosing the mesh is constructed and, for each cell one mesh vertex contained
in it, if any, is recorded. In our previous examples, we showed that it is easy to
find the cell of a grid or tree containing the given point. Also, a mesh element
is associated with every point recorded in the cells. Hence, we can associate the
given point with a close mesh point in the same cell. Any element, Ko, having
this mesh point as a vertex can be used as an initial guess for the above searching
procedure. In this way, the number of visited triangles is reduced and the number
of necessary computations is reduced as well.

Remark 2.8 Note that the grid (the tree structure) could be defined in various
ways depending on the nature of the dataset. In this respect, for a grid, the number
of bozes (indeed the values A, and Ay as introduced above) and thus the occupation
of the boxes are parameters that clearly affect the efficiency of the whole process.

Intersection of a line segment with the elements of a mesh. Intersection
problems are important components for some mesh generation techniques. One
such problem is the following : given a mesh and a line segment between any two
mesh vertices, construct the list of elements that are intersected by the given line
segment.

Exercise 2.21 Modify the searching technique in a mesh given above to solve this
problem.

2.10.4 Enumerating the set of edges in a mesh

In this section, we describe several examples of methods for creating the list of
the edges in a mesh. Let na be the number of edges, which we will label from 1
to na in the process of building the lists. In general, na is not known beforehand,
so that in practice, an upper bound namaz for na is needed to allocate memory
resources for the arrays used.

An elementary method. Let ne be the number of elements in the mesh and
let T'ab(1 : 2,1 : namaz) be the table used to store all the edges. The following
procedure enables us to fill the table T'ab :

BASIC STRUCTURES AND ALGORITHMS 91

Algorithm 2.18 Enumerating the edges in a mesh.

Procedure TableEdgel()

na « 0,
FOR : = 1,ne
FOR j=1,3

let €1,e2 be the indices of the endpoints of edge j of element 1,
k « 1 and IF found is a boolean, set found =.FALSE.,
WHILE (found = .FALSE. AND k < na +1)

IF [(e1 = Tab(1,k) AND e2 = Tab(2,k)) OR

(e2 = Tab(1, k) AND e; = Tab(2,k)) 1, THEN found = .TRUE.

ELSE k « k+1

END IF

END WHILE
IF found =.FALSE., the edge considered is a new one, THEn

na < na+1 AND T'AB(1,na) + e;, TAB(2,na) + ez,

END IF
END FOR j
END FOR i

On completion, na is the number of edges and Tab contains the mesh edges (in
fact, the indices of the edge endpoints). Notice that the number of times the
comparisons are performed in the inner loop is proportional to ne x na. This
method is very time consuming in terms of complexity; however, it can handle a
non-manifold surface mesh in R3 (a mesh is said to be manifold if all of its edges
are shared by exactly two triangles or belong to the boundary, see Chapter 1)
without any changes.

Using an edge coloring scheme. In this example, we build the same table
using a technique of edge coloring to ensure that every mesh edge is recorded only
once. We assume that the mesh is manifold (if a surface mesh is considered) and
that we can access the neighboring elements across each internal edge, i.e., we
have constructed a list Neigh(j,7) which is the index of the neighbor of element
i on side j. (See the next section). Let ColorTab(l : 3,1 : ne) be a table which
stores a color value (0 or 1) for edge j of element ¢ in ColorTab(j,?). Then we can
build T'ab(1 : 2,1: na) as in the first example by :

Algorithm 2.19 Edge coloring scheme.

Procedure TableEdge2()

na < 0,
FOR 1 =1,ne
FOR j=1,3

let ej,e2 be the indices of the endpoints of edge j in element 3,
IF ColorTab(j,i) =0 THEN, na < na+1,

set Tab(l, na) =e1, Tab(2,na) =e2 and ColorTab(j, i) =1,

k = Neigh(j,i), let jx be the index of this edge in element k,
set ColorTab(jx,k) =1, IF k#0.

92 MESH GENERATION

ELSE, edge j of element ¢ has already been visited.
END IF
END FOR ;
END FOR ¢

On completion, na is the number of edges and Tab contains the edges. The outer
pair of loops of this method and the first one are the same. But the inner loop of
this method is only executed 3 x ne times. We reduced the amount of computation
by using the large temporary table ColorTab. Note that this algorithm, serving as
an example of static coloring, requires the input of the neighborhood relationships
between the elements so as to know, for a given element, its (one, two or) three
neighbors.

Notice also that this algorithm does not extend to three dimensions (as the
coloring a vertex does not identify an edge (while a similar property holds for a

face)).

By hashing. In the two previous examples, we constructed arrays for the edges
of a graph which in fact consists in labeling each edge with a number. The arrays
give a direct access to the endpoints of the edge from the edge number. But
to determine the number of an edge from its endpoints, you have to search that
table. In this example, we build a set of lists that provide the opposite access
to edge data, i.e., we construct a list that allows a direct access to the number
of an edge from the edge endpoints. This construction is an example of hashing
(Section 2.5.2). It works even in the non-manifold case where an edge is shared
by more than two elements.

Let ne be the number of elements, and e; and e, be the endpoints of an
edge a. We assume that we have a table Sum(1 : 2 x np) where np is the number
of vertices'? in the mesh, a table Link(1 : namaz) with namaz > na the number
of edges in the mesh'? and a table Min(1 : namaz).

We first give the construction, then we add some comments. The construction
consists in (after initializing all the arrays to 0) :

Algorithm 2.20 Construction of the edges of a mesh.

Procedure TableEdge3()

na « 0
FOR : =1, ne
FOR 7=1,3

compute s =e¢; €2,
IF Sum(s) =0, na « na + 1, Sum(s) + na, Min(na) + min(e;,ez),
ELSE IF Min(l) # min(e1,ez) with | = Sum(s), THEN

(A) IF Link(l) =0 THEN

na < na+1, Link(l) < na and Min(na) « min(e;, e2),

ELSE, consider m = Link(l),

12Gee the previous note about np.
13See the previous note about namaz.

BASIC STRUCTURES AND ALGORITHMS 93

IF Min(m) # min(ei,e2), THEN set ! =m and back to (A4).

END IF
END FOR j
END FOR i

As a result, na is the number of edges in the triangulation.

More precisely, for each element edge, we compute an index s as the sum of its
two endpoint numbers giving an entry point in the table Sum. A zero value for
Sum(s) means that the current edge must be considered as a new edge (thus, it
could be stored or processed as desired). Otherwise, one or several edge(s) with
the same sum index have already been encountered. Hence, we just have to check
if any of these edges matches the current edge (thanks to Link). This list traversal
1s done until the current edge is found (thanks to Min). Actually, if it is found,
we proceed to the next edge, if not, it is inserted at the next available entry in
Link.

Based on this construction, the edges can be retrieved using the following
procedure :

Algorithm 2.21 Retrieving the mesh edges.

Procedure RetrieveEdge()
na 0
FOR s=1,2 xnp
IF k= Sum(s) # 0, we find an edge such that e; +e2 = s and
min(e1,e2) = Min(k) and, while scanning the array Link we find
all the edges having the same sum of indices s.
Practically, these edges can be obtained as follows
na < na+1, the pair s — Min(k), Min(k) is the edge na,
WHILE | = Link(k) #0
na +—na+1,
k <1 and the pair s — Min(l), Min(l) is the edge na.
END WHILE
END IF
END FOR s

Many variations of this example can be obtained by modifying the keys of the
hashing (replacing the Sum and the Min by different encoding schemes) or by
modifying the purpose of the algorithm. For instance, it is possible to obtain the
list of the boundary edges. Note that different choices of hashing function lead
to different numbers of collisions (the number of edges with the same key) which
could dramatically affect the efficiency of the method.

Exercise 2.22 Analyze how this technique could be used to improve the efficiency
of the elementary method in the first example.

2.10.5 About set membership

The question is here to decide (quickly) whether an edge is a member of a set of
edges stored in an array.

94 MESH GENERATION

Depending on how the edge table is constructed (see the examples discussing
how to construct this table in the previous section), finding if a given edge is a
member of this table can be efficiently solved provided a suitable data structure is
used (conversely, a less suitable data structure leads to a time consuming method).

In practical terms, if a hashing technique has been used to establish the edge
table (see the above procedure), checking whether an edge is a member of this
table is easy. Let ej, e; be the two indices of the edge, then :

Algorithm 2.22 Check the erxistence of an edge e1,es tn a mesh.

Procedure ExistEdge(e;,e2)
compute s =¢; + €2,
IF k = Sum(s) # 0, one or more edges
such that e; +e; = s exist.
IF Min(k) = min(e1,ez2), then edge e;,e; belongs to the table.
E1SE, scan the table Link to find
all edges having the same sum of indices s :
WHILE [= Link(k) # 0, k « [and analyze Min(k).
ELSE, the edge is not stored.
END IF

provides the correct answer. Notice that the efficiency with which the question is
answered depends on the way the edge table has been constructed.

2.10.6 Constructing the neighborhood relationships

We consider again a triangular mesh and we would like to construct the neighbor-
hood relationships from element to element. Let Neigh(1 : 3,1 : ne) be this table,
then

k = Neigh(j,1)

means that element & is adjacent to element 7 and edge j of element ¢ is the shared
edge (while k = 0 if edge j of element 7 is a boundary edge).

To construct this table, a variation of the algorithm previously employed to
construct the edge table can be used where additional information is associated
with the edges at the time they are visited. In this respect, it is necessary, for a
given edge, to know the element of which it is a member and to know its index in
its element.

The first time an edge is visited, for element i and index j, these two values
are stored. When, say for element [at index J, the edge is met again then, the
two following relationships are completed :

Neigh(j,i) =1 and Neigh(J,I)=1.

Exercise 2.23 Discuss the non-manifold case (for a surface) where more than
two triangles share a given edge.

BASIC STRUCTURES AND ALGORITHMS 95

2.10.7 Static and dynamic coloring

In a previous procedure, we showed one application of static coloring applied to
some items of a mesh with the purpose of deciding quickly whether such or such
a situation occurs.

In this case, such a tool can be seen as a boolean operator where the status of
an item is defined as TRUE. or .FALSE. (or 0 or 1) depending on the situation.
In some cases, a two-flag operator is inefficient and dynamic coloring can be used
more effectively.

Let us give a very simple example. We would like to construct balls about each
vertex using a technique like the second enumeration method for balls discussed
earlier in this chapter. For this purpose, let List; be a list of the indices of elements
in the ball around the vertex of index 7, and let ColorTab(1 : ne) be a color table
for the elements of the mesh. An initial solution (np being the number of internal
vertices) can be as follows :

Algorithm 2.23 Construction of the ball of points.

Procedure BallPoint3()
FOR j = 1,ne
ColorTab(j) < 0
END FOR j
FOR 1= 1,np
define List; as the empty list
find an element of index k which belongs to the ball of vertex i
store k into List; and set ColorTab(k) =1
WHILE element k has a neighbor of index j that has the vertex i
AND that ColorTab(j) =0
k < j; ColorTab(k) =1;
END WHILE
FOR j =1,ne
ColorTab(j) « 0
END FOR 3
END FOR :

"This method uses two colors which must be maintained, which in turn requires
additional processing of ColorTab to reset its entries input to zero. One way to
avoid this would be to maintain a list of the element indices that were encountered
for the current i value and use it to reinitialize the relevant ColorTab entries to 0.
Another way is to use dynamic coloring method using colouring values 1 through
np as follows :

Algorithm 2.24 Construction of the ball of points.

Procedure BallPoint4()
FOR j =1,ne
ColorTab(j) «+ 0
END FOR j
FOR : = 1,np
define List; as the empty list

96 MESH GENERATION

find an element of index k& that belongs to the ball of vertex i
store k in List; and set ColorTab(k) =1
WHILE element k has a neighbor of index j having the vertex :
AND that ColorTab(j) <1
k « j; ColorTab(k) « i;
END WHILE
END FOR ¢

Here the vertex label 7 is used as a dynamic color code to simplify the manage-
ment of the element status which is automatically updated without any explicit
processing.

2.10.8 About the construction of a dichotomy

The dichotomy approach, illustrated by a small example here, is a useful approach
to a variety of meshing problems. This example involves a partition of an interval
a < & < b which is a set of points z; for i = 1...N such that ¢ = z;, b = 25 and
z; < ri41. Suppose that we are given a continuous function f(z) defined on the
interval @ < 2 < b and a tolerance value 7. We wish to construct a partition of
this interval such that |f(z;+1) — f(x;)] < 7 for each sub-interval.

The following method uses the dichotomy approach to build tables T'ab and
Nezxt which store the desired partition.

Algorithm 2.25 Construction of a dichotomy.

Procedure IntervalDichotomy ()

Tab(l) < a , Tab(2) « b

11, ltab « 2, Neat(1l) « 2

REPEAT
z =Tab(t) ; y=Tab(Next(i))
IF |f(y)— f(2)] > <,
THEN ltab « ltab+ 1, Tab(ltab) « 2%
Next(ltab) « Next(i), Nert(i) « ltab
ELSE 1 « Next(1)

UNTIL ¢ = 2.

Note that this kind of algorithm has various applications and, in some sense,
can emulate a recursive process (whereas this capability is not necessarily included
in some programming languages).

Concluding remark

In Section 2.10, we have discussed a few examples of algorithms to illustrate how
to use such or such basic structures or basic algorithms. Obviously, numerous
other application examples can be found and, actually, meshing algorithms as well
as mesh optimization algorithms or, in general, mesh manipulation algorithms or
even mesh visualization algorithms can take advantage of using such or such basic
ingredients in order to easily find or process the mesh entities that are involved in
the whole procedure.

Chapter 3

A comprehensive survey of mesh
generation methods

Introduction

Mesh generation has evolved rapidly over the last two decades and meshing tech-
niques seem recently to have reached a level of maturity that allows them to
calculate complete solutions to complex three-dimensional problems. Thus, un-
structured meshes for complex three-dimensional domains of arbitrary shape can
be completed on current workstations in reasonable time. Further improvements
may still be expected, for instance regarding the robustness, reliability and opti-
mality of the meshing techniques.

Early mesh generation methods employed meshes consisting of quadrilaterals in
two dimensions or hexahedra in three dimensions. Each vertex of such meshes can
be readily defined as an array of indices and these types of meshes are commonly
referred to as structured meshes. By extension, any mesh having a high degree
of ordering (for example a Cartesian grid) is said to be structured. More recent
developments have tried to cope with the complex geometries (for instance in
C.A.D. models involving multiple bounding surfaces) that were difficult to handle
(i.e., to mesh) with fully structured meshes. Nowadays unstructured meshes can
be associated with finite element methods to provide an efficient alternative to
structured meshes.

*
* x

The purpose of this chapter is to provide a comprehensive overview of the
current techniques for both structured and unstructured mesh generation and to
discuss their intrinsic advantages or weaknesses. These techniques will be further
discussed in more detail in the relevant chapters of this book. First, a preliminary
classification of existing meshing techniques is proposed. One section is dedicated
to surface meshing as surfaces play an important role in unstructured mesh gener-
ation techniques. Finally, a brief outline of mesh adaptation approaches is given.

98 MESH GENERATION

3.1 Classes of methods

Despite many conceptual differences (since mesh generation methods have been
developed in different contexts and were aimed at different field of applications),
the classification of these techniques into seven classes has been proposed, for in-
stance, in [George-1991]. Although this classification reflects the main approaches
published, it appears that several techniques can be gathered together (due to
their intrinsic properties), thus leading to a modified classification into only five
categories :

Class 1. manual or semi-automatic methods.

They are applicable to geometrically simple domains. Enumerative methods
(mesh entities are explicitly user-supplied) and explicit methods (which take ad-
vantage of the geometric features of the domain) are representative of this class.

Class 2. parameterization (mapping) methods.

The final mesh is the result of the inverse transformation mapping of a regular
lattice of points in a parametric space to the physical space. Two main approaches
belong to this class, depending on whether the mapping function is implicitly or
explicitly defined:

e algebraic interpolation methods. The mesh is obtained using a transfinite
interpolation from boundary curves (surfaces) or other related techniques
explicitly defined,

o solution-based methods. The mesh is generated based on the numerical so-
lution of a partial differential system of equations (elliptic, hyperbolic or
parabolic), thus relying on an analytically defined function.

Class 3. domain decomposition methods.

The mesh is the result of a top-down analysis that consists in splitting the
domain to be meshed into smaller domains, geometrically close to a domain of
reference (in terms of shape). Two main approaches have been proposed, the
difference being the structured or unstructured nature of the mesh used to cover
the small domains :

o block decomposition methods: the domain is decomposed into several simpler
sub-domains (blocks), each of which is then covered with a structured mesh
(obtained for instance using a mapping technique, as seen above).

o spatial decomposition methods: the domain is approximated with a union of
disjoint cells that are subdivided to cover a spatial region object, each cell
then being further decomposed into mesh elements. Quadtree and octree-
based techniques are representative of this class.

Class 4. point-insertion / element creation methods.
The related methods generally start from a discretization of the boundary of
the domain (although this feature is not strictly required) and mainly consist

A SURVEY OF MESH GENERATION METHODS 99

in creating and inserting internal nodes (elements) in the domain. Advancing-
front (element creation) and Delaunay-based (point insertion) approaches are two
methods belonging to this class.

Class 5. constructive methods.

The final mesh of the domain is the result of merging several meshes using
topological or geometric transformations, each of these meshes being created by
any of the previous methods.

Remark 3.1 Needless to say, this classification is necessarily arbitrary. However,
while not unique, it does account for the different approaches published. Other
methods not included in this classification exist, which are designed to handle spe-
cific situations.

A difficult task consists of clearly identifying the method capable of providing
an adequate mesh, depending on the field of application. Basically, the geometry
of the domain and the physical problem direct the user towards which method to

apply.

On the other hand, the emphasis can be put on the type of meshes created
by any of the proposed methods. From this point of view, two classes of meshing
techniques can be identified, depending on whether they lead to structured or
unstructured meshes. The following sections provide additional details on this
aspect.

3.2 Structured mesh generators

In this section, we briefly describe the main approaches generally used to create
structured meshes. While not claiming exhaustivity, the techniques mentioned
here are representative of the current and latest developments in this field.

The basic idea common to all structured mesh generation methods consists
of meshing a canonical domain (i.e., a simple geometry) and mapping this mesh
to a physical domain defined by its boundary discretization. Numerous types
of such transformations exist and have been successfully applied to computational
domains, for instance parametric space for surfaces (Bézier patches, B-splines), La-
grange or transfinite interpolation formula, quasi-conformal transformations, etc.

The first problem to solve is where to place the mesh points in such a way
as to achieve a natural ordering appropriate to the problem considered. A trivial
O.bservation shows that simple domains such as squares and discs, in two dimen-
sions, have an intrinsic curvilinear coordinate system. In this sense, the mapping
techniques described below provide a basis for mesh generation.

Curvilinear coordinates. The physical domain discretization requires some
le.Vel of organization to efficiently compute the solution of the P.D.E.s. This orga-
hization is usually provided through a Cartesian or cylindrical coordinate system.
More precisely, the grid points are defined using coordinate line intersections,

100 MEsH GENERATION

which allow all numerical computations to be performed in a fixed (square or
rectangular) grid. Hence, the Cartesian coordinates used to represent the P.D.E.s
have been replaced by the curvilinear coordinates.! A constant value of one curvi-
linear coordinate (and a monotonic variation of the other) in the physical space
corresponds to vertical or horizontal lines in the logical space.?

Theoretically, two procedures can be used to generate a system of curvilinear
coordinates, algebraic interpolation techniques [Gordon,Hall-1973] and solution-
based techniques [Thompson-1982a]. From the computational point of view, the
classical algebraic method is usually faster than the differential equation methods.

3.2.1 Algebraic interpolation methods

A simple, though efficient, way to achieve a structured mesh is to use a sequence
of mappings to reduce the possibly complex domain to simple generic shapes (e.g.
a triangle, a quadrilateral, a hexahedron, etc.). After a structured mesh has been
defined in the logical space, the mapping function is used to generate a mesh
conforming to all domain boundaries. This technique has proved useful for two
dimensional domains as well as in three dimensions.

The mapping function(s) and the mesh point distribution in the logical space
can be chosen arbitrarily. However, it may be of some interest (and sometimes
more efficient) to force the boundary discretization in the logical space to match the
given domain boundary discretization.® The control of the mesh point distribution
in the parametric space makes it possible to control the density of mesh vertices in
the real domain (for instance to obtain a finer mesh in regions of high curvature).

Remark 3.2 In general, the domain discretization must be a conver polygon
(polyhedron, in three dimensions)* to guarantee the validity and the conformity
(according to Definition 1.7) of the resulting mesh.

The problem of finding a proper mapping function is equivalent to finding a
specific function of the curvilinear coordinates. This function contains coefficients
that enable the function to match specific values of the Cartesian coordinates on
the boundary (and possibly elsewhere). Algebraic grid generation is thoroughly
discussed in [Shmit-1982] and [Eriksson-1982]. Figure 3.1 shows an example of an
algebraic mesh generated by the method described in [Baker-1991b].

To emphasize the algebraic method feature, we simply mention one particular
mapping function, the transfinite interpolation scheme. This approach was first in-
vestigated by [Gordon,Hall-1973] and, then, by [Eriksson-1983], among others. Its
most significant feature is its ability to control the mesh point distribution and par-
ticularly the slope of the mesh lines meeting the boundary surfaces [Baker-1989a).
In this chapter, we do not pursue the notion of transfinite elements and refer the
reader to Chapter 4. However, we describe its application to the mapping of a
unit square, in two dimensions.

!Note: the mapping of the physical space onto the logical space must be one-to-one.
2 Also called transformed or parametric space.

3This feature makes it possible to conform exactly to the given domain boundaries.
4or at least close to a convex shape.

A SURVEY OF MESH GENERATION METHODS 101

Figure 3.1: Single block algebraic grid for a fuselage plus two lifting surfaces (data
courtesy T.J. Baker, Princeton University).

Unit square mapping by transfinite interpolation. Here, we are concerned
with a continuous transformation which maps the unit square (€,7) € [0, 1] x
[0, 1] one-to-one onto a simply connected, bounded two-dimensional domain. The
mapping can be seen as a topological distortion of the square into the domain.
The problem is to construct the mapping function that matches the boundary of
the domain, and more precisely, the boundary discretization of this domain.

Let ¢;(€,1),i = 1,4 be the parameterization of the side 7 of the real domain,
for which four such sides have been identified, and let a; be the corresponding
edge endpoints (corners). For the sake of simplicity, we have assumed that the
discretizations of any two opposite edges of the domain have the same number of
points®. A discretization of the unit square is constructed, analogous to that of
the real domain (i.e., each side of the square conforms to the discretization of the
corresponding real side, in terms of relative distances between successive points).
A quadrilateral mesh is then formed in the logical space by joining the matching
points on opposite edges, the internal nodes thus being the line intersections.

Then, the mapping function takes the lattice of points in the parametric space
.(unit square) and maps it to the physical space (real domain) using transfinite
interpolation based on the Lagrange interpolation formula as follows:

F(&n) = (1=n)¢1(8) +Eb2(n) + nés(é) + (1 —&)da(n) (3.1)
= (1 =8 —n)ar +&(1 — n)as + Enaz + (1 — €)nas). '

Figure 3.2 shows a mesh of a domain mapped by applying a transfinite interpola-
tion formula.

The same technique can be applied to map a right triangle onto a triangular-
shaped domain and can be extended to three dimensions as well (cf. Chapter 4).

50One can always obtain such a situation by adding more points along a boundary edge, if
needed.

102 MESH GENERATION

Figure 3.2: Surface mesh obtained using a transfinite mapping of the unit square
(right: with element shape control.)

Remark 3.3 (Sequential mappings) Another algebraic method which is simi-
lar to the coordinate transformation method introduced above is based on the combi-
nation of a sequence of mappings. It becomes possible to reduce a compler domain
to a simple generic shape by introducing several simple conformal mappings suc-
cessively.

Remark 3.4 (Blending approach) The association of several meshes, each one
being generated separately as a simple domain, to form a global smooth mesh using
a weighted combination of functions is the attractive key feature of the blending
grid technique. Although very promising, this approach is by no means easy to
implement for arbitrary complex configurations. To some extent, this technique
prefigures the multiblock approach.

3.2.2 P.D.E.-based methods

Since the problems of concern are formulated in terms of partial differential equa-
tions, it seems obvious to link the coordinates to the solutions of a system of
P.D.E.s. If the coordinates vertices are specified on the boundary of the region,
the equations must be elliptic, as they would be parabolic or hyperbolic if the
specification concerned only part of the domain boundary. Hence, the important
step of finding a mapping between a Cartesian and a boundary-fitted curvilinear
coordinate system is to clearly identify the equations. Of this kind of technique,
the elliptical equation method is the most popular (cf. [Eiseman,Erlebacher-1987]
for a general survey of P.D.E.-based methods).

Elliptic method. The main advantage of the elliptic equation method is that
it preserves grid orthogonality in the vicinity of the boundary. Another property
is the inherent smoothness over the entire domain that prevails in the solution of

A SURVEY OF MESH GENERATION METHODS 103

elliptic problems. Moreover, boundary discontinuities do not propagate far inside
the domain. A drawback is that the coordinate system is the solution of a system
of partial differential equations, thus resulting in more computing time than other
methods of generating a grid. This technique has provided some interesting results,
especially in computational fluid dynamics (CFD) simulations for transonic flow
over airfoils [Thompson-1982b], [Thompson-1987).

The most simple elliptic system is the Laplace system defined as

V=0 i=13 (3.2)

which can be obtained from the Euler equations for the minimization of the integral

I= ///gwgﬂ?dv

where the quantity [VE'| represents in a certain way the grid point density along
the coordinate line for a variation of €' (' = ¢, €2 = 5, ...). The smoothing
effect of the Laplacian tends to closely or equally space the lines according to the
boundary curvature.

Remark 3.5 The strong smoothing effect of the Laplace transform may lead to an
undesirable node point distribution. To overcome this problem, control functions
can be introduced in Equation 3.2.

Parabolic and hyperbolic methods. The mesh generation procedure can also
be based on parabolic or hyperbolic P.D.E.s. Equations of the parabolic method
can be derived from the elliptical method by modifying the proper terms. The
parabolic technique is useful to generate a mesh between two boundaries of a
multi-connected domain, with two boundary specifications. The hyperbolic ap-
proach tolerates only one boundary specification and is mainly interesting for use
in calculations over unbounded domains or for generating orthogonal meshes.
For instance, the solutions of the following set of equations

TeZy +y§y7) :O) cffyn—-rnyfzv(f»m;

where z¢ = g—g, defines a hyperbolic system [Steger,Sorenson-1980], where the
first equation corresponds to the orthogonality condition and the second equation
defines the local cell area based on a specified distribution V(€,n). The main
firawback of the hyperbolic-type approach is its inability to create meshes for
mnternal flow problems.

3.2.3 Multiblock method

Wfapping a mesh around a complex domain boundary may be a tough and even
ll.ltractable problem to solve. One way of getting around this difficulty is to con-
sider a multiblock scheme. In this approach, the whole domain is decomposed into
several simpler sub-domains (i.e., blocks), each of which is then covered automat-
1cally with a structured mesh, resulting, for instance, from an algebraic technique

104 MESH GENERATION

or a P.D.E. methods. This feature makes the multiblock approach particularly
interesting for parallel computations.

Remark 3.6 In general, the resulting mesh is structured at the block level but
no longer at the global domain level. Therefore, this approach usually leads to
unstructured meshes.

Several possibilities of implementing the multiblock technique arise depending
on which constraints are required between the blocks (for instance what degree of
continuity or conformity is desired).

Figure 3.3: Several implementations of the multiblock approach : overlapping
(top), composite (center, mesh lines are continuous across the boundary) and
patched (bottom, conforming surfaces of the boundaries, however discontinuous
mesh lines).

Overlapping. If no special attention is paid to the block interfaces, each block
can be meshed separately for each component of the domain. The resulting mesh
is a system of overlapping sub-meshes. Although the meshes are easy to gener-
ate, the main drawbacks of the technique are the transfer of information between

A SURVEY OF MESH GENERATION METHODS 105

neighboring meshes and the accuracy of the interpolation which can prevent the
stability of the method.

Patched. An additional constraint to the overlapping multiblock technique re-
quires the separate meshes to conform to the surfaces of their common boundaries,
even if mesh lines are not continuous. In this patched approach, the interpolation
procedure is easier than that required by the previous approach and mesh refine-
ment can vary in specific regions without propagating elsewhere.

Composite. If mesh lines are required to be continuous across the boundaries,
thus propagating mesh refinement throughout the entire domain, we obtain the
composite multiblock method. This technique requires a global vertex numbering.
Its main advantage is the improved accuracy that results.

General scheme. The composite multiblock decomposition method can be sum-
marized as follows :

Step 1. Decompose the computational domain into simple blocks.

e Use a global vertex numbering

¢ Define the block interfaces to ensure conformity
Step 2. Discretize the block interfaces. The requirements are to

e obtain good geometric approximation
e ensure the mesh lines are continuous across the boundaries

e ensure the adequacy of each block with respect to the local mesh gen-
eration process (for instance, with an algebraic method, the number of
points on opposite edges must be identical),

Step 3. Mesh each block separately (create internal points)

Step 4. Construct the final mesh by merging the sub-meshes.

3.2.4 Product method (topology-based method)

Semi-automated procedures sometimes give additional meshing capabilities to the
user. Actually, the mesh of a complex domain of cylindrical topology in d-
dimensions can be easily obtained from a d — 1-dimensional mesh of a section,
Fhe source (for instance, a cylinder can be defined using a circle and a direction
In three dimensions). More precisely, a point leads to a series of segments and a
Segment results in a set of quadrilaterals. The efficiency of the method is related
to the ability of the user to define the reference mesh.

In three dimensions, the purpose of the two-dimensional reference mesh is to
provide a pattern from which to extrude the final mesh. The number of layers
(slices) and their positions (.e., the node locations along the reference line) can

106 MESH GENERATION

be supplied implicitly (the discretization of the line is given) or explicitly (using
a stretching function for instance). The reference mesh is then extruded along
the direction to create the desired number of three dimensional element layers
between an upper and lower bound. Based on the type of two-dimensional element
(triangles or quadrilaterals), the resulting quasi-regular mesh is defined from either
wedge or hexahedral shaped elements (cf. Figure 3.4) apart for some peculiar
configurations leading to degenerate elements.

Remark 3.7 In gencral, the final mesh is not structured as the reference mesh
is not necessarily structured. However the connectivity of the resulting mesh is
derived from that of the reference mesh.

The main drawback of this approach is the possibility of degeneracies (for
instance when part of the domain boundary is coincident with the axis).

General scheme. Schematically, the product technique can be written as fol-
lows :

Step 1. Identify and mesh the domain of reference (section)
Step 2. Extrude the reference mesh based on

o the specified direction

o the desired number of layers
Step 3. Optimize the mesh.

Figure 3.4 illustrates the principle of a product method by depicting a source
mesh composed of quads and the resulting hex mesh. For the sake of clarity, only
one layer of elements, between two sections, is displayed.

3.3 Unstructured mesh generators

In general, structured meshes for arbitrary complex geometries are difficult to ob-
tain in a fully automatic manner. An alternative to a structured mesh consists of
using simplices (triangles or tetrahedra). This feature gives the mesh maximum
flexibility to address complex geometries as well as to control mesh point distri-
bution. As previously mentioned, unstructured meshes are mostly composed of
simplicial elements and the major automatic mesh generation methods produce
such elements. However, there also exist some methods resulting in unstructured
meshes consisting of quads or hex. Nevertheless, such methods are more tedious
both to design and to implement.

In this short survey, we will focus mainly on first type methods (simplicial
methods) while the others will be discussed after.

Unstructured mesh generation is a task that may appear both easy and difficult
at the same time. The first point is related to the fact that theoretical issues can
be used to help the algorithm design for some approaches. The second point, a

A SURVEY OF MESH GENERATION METHODS 107

Figure 3.4: A two-dimensional source mesh (section) and one layer offset in the
resulting three-dimensional mesh.

contrario, is that we don’t have such results for some other methods. In addition,
whatever the case, the mesh generation technique must be robust and reliable
since complex geometries and delicate situations must be envisaged.

After these remarks, we now introduce the main approaches that enable us to
create two and three dimensional unstructured meshes. To this end, we give the
main characteristics of the various methods while the following chapters will give
a detailed discussion on the same methods.

The generation of unstructured meshes involves the creation of points and the
relevant connectivities. This is usually achieved through different stages that can
be summarized as follows :

Step 1. Definition of the domain boundaries

Step 2. Specification of an element size distribution function
Step 3. Generation of a mesh respecting the domain boundaries®
Step 4. Optimization of the element shapes (optional).

The boundary discretization (which represents a polygonal (polyhedral) ap-
proximation of the boundary of the physical domain) can be achieved as a sepa-
rate procedure or simultaneously with the creation of the mesh (in which case, the
boundary integrity must be guaranteed by the mesh generation technique).

The element size distribution function can be defined in two ways, implicitly or
explicitly. In the first case, either the size of an interior element is deduced from
the boundary discretization by interpolation, or, if a control space is supplied, for
which the element size is defined at each vertex, the value at any point can be

Sor the boundary discretization.

108 MEsH GENERATION

computed by interpolation between vertices (cf. Chapter 1). On the other hand,
a function f(z,y,z), defined over the entire (three-dimensional) domain, can be
either constructed analytically to define explicitly the element size distribution or
user-supplied (academic test case).

In general, good-quality meshes cannot be obtained directly from the meshing
techniques. Therefore, a post-processing step is required to optimize the mesh with
respect to the element shapes. Regardless of the mesh generation method used,
topological and geometrical mesh modification techniques are required to obtain a
high-quality mesh suitable for finite element computations (cf. Chapters 17 or 18
for more details about the optimization procedures).

Three approaches can be identified in the context of automatic methods in-
cluding the spatial decomposition based methods, the advancing-front and the
Delaunay type methods. After a survey about these methods, we will turn to
some other approaches.

3.3.1 Spatial decomposition methods

Spatial decomposition methods were applied to mesh generation purposes about
two decades ago [Yerry,Shephard-1983]. In such approaches, the resulting hier-
archical tree structure (quadtree and octree in two and three dimensions respec-
tively) serves as a neighborhood space as well as a control space (cf. Chapter 1)
used to prescribe the desired element sizes (the element sizes are related to the
cell diameter).

General principle. At first, the domain is enclosed in a bounding box (one
cell). The domain is then approximated with a union of disjoint, variably sized
cells, representing a partition of the domain. The cells are recursively subdivided
until each terminal cell is no larger than the desired element size (local value of the
element size distribution function). A covering up of a a spatial region enclosing
the object (a bounding box) is then obtained. Each terminal cell is then further
decomposed into simplices (triangles or tetrahedra), thus leading to a suitable
finite element mesh of the domain. The stopping criterion can be based on the
curvature of the model entity or supplied by an adaptive analysis error estimate.

This type of method is usually capable of proceeding either directly from a
given discretization of the domain boundary or, more generally, by generating
the boundary representation of the domain using simple queries to a geometric
modeling system (i.c., a C.A.D. system).

General scheme. Schematically, a classical quadtree/octree-based technique
involves the following steps :
Step 1. Initializations.

e boundary discretization (or analytical description of the boundaries),

o definition of the size distribution function (if available).

A SURVEY OF MESH GENERATION METHODS 109

Step 2. Tree decomposition.

o Initialization : the tree representation is derived from a box enclosing
the domain
o Recursive subdivision of the box up to a satisfactory criterion

Step 3. Tree balancing : limit the difference between neighboring cells to only
one level (the so-called 2 : 1 rule).

Step 4. Cell meshing using predefined patterns (internal cells) and local con-
nections (boundary cells)

Step 5. Optimization : topological and geometrical modifications.

Figure 3.5: Original CAD model (Patran geometric modeler) and octree-based
mesh before optimization (data courtesy of Mac Neal-Schwendler Corp.)

Main features. The tree decomposition technique produces a set of cells that
must have a size that is compatible with the element-size distribution function.
As the size of the cells in the tree is directly related to the expected local size, the
element size resulting from the method will have a size close to the targeted value.
In contrast to other mesh generation methods, there is no particular difficulty at
the time the field points are created. As the field points are chosen at the quadrant
(octant) corners, this stage is simple and does not require some specific checks
(such as a filtering stage used to detect points that are too close together, etc.).
However, this strategy of point location induces some rigidity. In other words, the
point distribution may conform to the size function but the exact location of these
points is not necessarily optimal. Hence, the extent of optimization required after
the mesh completion may be relatively great.

The simplicity of the method implies in most cases its robustness. The only
problem regarding convergence is related to the cases where it is not so easy to
distinguish two entities which are rather close (two very close points which are not
directly connected). This is why the case of the corners (points where the incident
entities may form a rather acute angle) must be considered with special care.

110 MEsH GENERATION

Boundary discretization. The boundary mesh of the domain boundaries could
be an input data of the problem or not.

In the case where this mesh is supplied, it is necessary to identify the points
and the characteristics of this mesh (corners, ridges, discontinuities, etc.). On the
other hand, it is not necessary to provide this surface mesh with an orientation,
which is not the case for an advancing-front technique, for instance. As the spatial
decomposition introduces some points (including some in the boundaries), it is
necessary to check that the input mesh is a fine enough geometric approximation
of the boundaries (to avoid difficulties when creating a point on these boundaries).

In the case where the boundary discretization is not supplied, such a mesh
will be automatically created based on the tree structure. In this case, we assume
that a geometric modeler is available and is used by means of a series of queries.
Indeed, it is necessary to know the point on the boundary closest to a given point,
to find the intersection between the boundary and a cell, etc.

Curvature-based refinement. This approach is carried out to improve the
accuracy of the geometric approximation of the domain boundary. Hence, finer
meshes are achieved in highly-curved regions and coarser meshes in regions of low
curvature. The geometric approximation error’ can be related to a fraction of the
desired mesh size as represented by the cell size [Shephard et al. 1996]. Hence,
the length of a mesh edge is related to the level of the cell in the tree structure.

Tree decomposition. Starting from a box enclosing the whole domain, a tree
is developed by recursive partition of its cells. The initial tree includes four cells in
two dimensions and eight such cells in three dimensions. Each cell is analyzed so
as to determine whether it conforms to a stopping criterion. If not, it is subdivided
into four (resp. eight) cells of identical size. At completion, a covering-up of the
enclosing box is obtained.

The stopping criterion used in the method is related to various facts based on
the application in question. The most widely used criteria state that :

o all cells include at most one boundary point,

o all cells with no point inside include at most one edge (face) of the boundary
discretization,

o the size of all cells conforms to the size map,
e etc.

This strategy implies that the decomposition tree enables us to separate two close
boundary entities. Therefore, for instance in two dimensions, two edges belonging
to two opposite but close domain sides will belong to two different cells. This
means that at least one point will be created inside the domain in each region.
Hence, the tree acts as a neighborhood space and as a separator.

7The maximal gap between the mesh edge or face and the curve or the surface.

A SURVEY OF MESH GENERATION METHODS 111

Tree balancing. Using this tree construction approach results in adjacent cells
which can differ greatly in terms of size. Therefore, as the element sizes are related
to the cell sizes, a smooth enough size gradation from element to element will be
obtained if the size variation from cell to cell is bounded by a factor two (this is
the well known 2 : 1 rule). Prescribing such a rule also results in another positive
property. In fact, it allows us to know in advance the possible combinations of the
cells and then those of the elements resulting from such combinations (at least for
the internal cells®). It is then easy to define a priori all the patterns (the so-called
templates) that will be subsequently employed to mesh the internal cells at a, very
low cost.

For efficiency reasons, tree balancing can be carried out during the building
of the tree. When a cell subdivision is done, the tree balancing is verified and
the adjacent cells are subdivided or not depending on the case, then, in turn, the
neighboring cells are considered and such a process is recursively applied, etc.

Filteringstep. Due to the way the tree is constructed, say following an arbitrary
order (z.e., with no special attention paid to the geometry of the domain),it is
possible to have two points related to the intersection of the boundary with a cell
side quite close to a cell corner or even to another intersection point (related to
another cell side). To prevent the creation of necessarily bad quality elements
using these points, a point filtering step is applied. Provided the domain topology
is preserved, some points can be merged with one another. Actually, this task
may be tedious, particularly in three dimensions where the tree structure could be
affected (for instance, when modifying the position of a cell corner).

Element creation. The quadtree-octree method idea consists of using the tree
structure for internal point creation as well as mesh element creation. As pre-
viously seen, the tree balancing rule reduces the number of transition patterns
from cell to cell. Predefined patterns, the so-called templates can then be used to
quickly fill up the internal cells of the tree. A more general triangulation method,
[Shephard,Georges-1991], is necessary to fill up the boundary cells (i.e., those that
are intersected by the object boundaries). In this case, it is necessary to conform
to the domain topology as well as to the domain geometry. For instance, in two
dimensions, one must be sure that an edge related to a given geometric entity
actually links two intersection points.

Following this approach, it should be noted that the cell corners and sides will
be members of the final mesh where they will be element vertices, edges (faces in
three dimensions).

External element removal. The mesh resulting from the previous stage is a
mesh of the enclosing box. To obtain a domain mesh, all elements exterior to
this domain must be removed. To this end, one needs a coloring algorithm (see
Chapter 2) similar to that used in a Delaunay type method.

8 A cell is said to be internal (with respect to the bounding box) if it is not intersected by the
domain boundary.

112 MEsH GENERATION

Optimization. Meshes as completed by this method are globally good qual-
ity meshes. Nevertheless, since the internal points correspond to the cell corners
(apart from the boundary points), a certain rigidity may be present. Moreover,
the tree construction does not explicitly pay attention to the intersections of the
boundaries with the cells. In other words, the boundary may intersect a cell close
to one side of it. As a consequence, ill-shaped elements can be constructed, for
instance rather flat elements. Thus, the classical optimization procedures (Chap-
ter 18) by means of topological and geometrical local operators can be used.

Figure 3.6: Initial C.A.D. model (CATIA, courtesy of Dassault Systemes) and
octree type mesh (ibid.).

Numerical issues. Quadtree-octree type methods are relatively easy to imple-
ment. However this apparent simplicity may hide some numerical difficulties, for
instance, point localization problems (in a cell), intersection problems (from the
model and the tree cells), and tree traversal procedures. However, the global com-
plexity (in terms of memory occupation and CPU time) is of order O(n), where n
stands for the number of elements.

3.3.2 Advancing-front method

First suggested by [A.George-1971], this type of method has undergone signif-
icant improvements proposed by [Lo-1985], [Lohner,Parikh-1988] and more re-
cently by [George,Seveno-1994], [Lohner-1996b] and [Peraire,Morgan-1997} and
[Rassineux-1995]. In this approach, the main idea is to construct the mesh element
by element, starting from an initial front(i.e., a domain boundary discretization
supplied as a list of edges in two dimensions and a list of edges and faces in three
dimensions). The technique proceeds by creating new points (or using a set of a
priori created points) and connecting them with some points of the current front so
as to construct the mesh elements. Thus, the yet unmeshed space is then gradually
nubbled since the front moves across the domain. The front can be simply defined

A SURVEY OF MESH GENERATION METHODS 113

as the set of mesh entities (edges or faces, thus entities of d — 1 or d dimensions)
separating the part of the domain already meshed from the region not yet filled.
The technique is iterative, an entity of the front (edge or face) is selected and a
mesh element is formed either by connecting this entity to an existing point or to
a newly created point so as to formn a new good quality simplex. At each element
creation, the front is updated and then dynamically evolves. This iterative process
terminates when the list is empty (the domain is then entirely meshed).

General scheme. A classical advancing-front technique can be summarized as
follows :

1. Imtialize the front with the domain boundary entities which can be sorted
based on a given criterion ;

2. Define the element size distribution function which could be provided as
input data or constructed as the best from the available input informations ;

3. Select the next entity from the front (based on a specific criterion). This
leads to the following :

e create an optimal point P based on the entity,

e determine whether a mesh vertex V' exists that should be used instead
of P. If such a point exists, set V to P,

o check for element intersection, element size, ..., to validate the above
choice,

¢ once a correct point has been identified, add the corresponding new
element, update the mesh data structure and update the front ;

4. Then as long as the front is not- empty, return to 3 ;

5. Optimize the mesh (if needed).

Critical features. Recurrent problems of any advancing-front method include
the way to select a front entity, the (optimal) points identification and the element
validation checks once a candidate point has been analyzed. All these operations
must be made using robust and efficient algorithms since the convergence of the
full process is strongly related?.

Boundary discretization. The mesh of the domain surface (input data of the
problem) composes the initial front. Each connected component of the boundary
Is orientated in a consistent way that allows the domain to be precisely defined
Wwith respect to its position around the boundary. In two dimensions, this leads
to defining in which way the polygonal segments of the boundary are considered.

°In two dimensions, a theoretical issue about simple polygon triangulation (cf. Chapter 6) -
insures the convergence of an advancing-front method. However, this nice result does not extend
to three dimensions.

114 MESH (GENERATION

Figure 3.7 Two-dimensional advancing-front mesh of a multi-airfoil without
mesh optimization. Left: entire computational domain, right: partial enlargement
around the wing body.

In thrce dimensions, the face orientations are such that all the faces (for a given
connected component) have their normals with the same orientation. The case of
a non manifold surface, in three dimensions, is more tedious and requires specific
attention (for instance, the non-manifold face of the surface can be repeated).

Remark 3.8 Since the boundary discretization is the initial front, boundary in-
tegrity is part of any advancing-front method and thus is preserved.

Front analysis. The mesh elements are created based on the front entities. The
selection of a front entity can be related to various criteria, based on the targeted
solution. This operation is not, in general, a purely local process (indeed, it is
necessary to anticipate the front evolution to prevent some bottlenecks at a later
stage). In two dimensions, one strategy resulting in a nice mesh gradation consists
in selecting the smallest front edge (using, for instance, a heap structure). In three
dimensions, it could be worthwhile selecting the faces at some neighborhood of
the last created elements so as to minimize the necessary intersection checks.

Internal point creation. In general, mesh quality is a function of the internal
point distribution. Provided that the desired element size is supplied everywhere
(cf. Chapter 1, the notion of a control space), several strategies can be used to find
the location of a point from a given front entity. An optimal point is defined at
the place where the element composed of the front entity and this point is regular
(equilateral in two dimensions). In three dimensions, such a position belongs to
the normal passing through the face centroid G at a distance from G dependent on

A SURVEY OF MESH GENERATION METHODS 115

the size function that is desired for the element. This location is then, if necessary,
iteratively adjusted using an optimization procedure [Seveno-1997].

Candidate vertices. The above optimal point P is not necessarily inserted in
the mesh. In fact, another vertex of the current mesh can be seen as a potential
candidate due to its proximity to the point P previously computed. This prox-
imity notion depends on the distance from point to point, according to the size
specification h(P) at point P when this information is provided (or has been con-
structed). In this respect, any point in a sphere centered at P, with radius h(P) is
ipso facto part of the candidate points. The set of such points is ordered based on
the distance to P after which these points are analyzed so as to determine which
one will be used to construct an element regarded as optimal with respect to the
sclected front entity.

Validation. The question here is to select among the admissible points the best
candidate to construct an “optimal” element (in terms of aspect ratio (shape)
and/or size). In fact, one needs to check that a guest element (if retained as a
mesh element) has no intersection with the front and does not include any other
mesh vertices. These checks must be rigorously implemented and the number
of intersection tests must be reduced so as to minimize the cost of the full mesh
generation process. To this end, specific data structures (binary trees or quadtrees-
octrees) can be used to reduce the number of tests necessary. A point leading to an
invalid element or leading to any intersection is removed from the list of admissible
points.

Then, among the candidate points now identified (for which all the tests have
been successful), the one that will result in the best quality possible (in shape or
size) must be chosen. Moreover, it is of the utmost importance to analyze precisely
the configuration obtained after any valid element creation to decide whether or
ot 1t may lead to a delicate or blocked configuration.

Convergence issue. Since the advancing-front method is based on local oper-
ations, convergence problems may be encountered, especially in three dimensions.
A wide variation in size for the clements between two neighboring fronts may
lead to intersection (overlapping) problems and the algorithm may have difficulty
when meshing such configurations. As no theoretical results can guarantee that
the method will complete a mesh in three dimensions, it is sometime useful to
cancel some iterations and thereby removing some elements and points in the
mesh. For efficiency reasons, such operations that enable us to overcome some
local bottlenecks must be reduced as far as possible.

Front updating. Once an optimal point has been inserted in the mesh, one or
several elements are created. The external faces of such elements (those separating
the already meshed domain and the not already meshed regions) are stacked into
the front list while the edge (face) of the former front used in the construction is
removed from this list.

116 MESH (GENERATION

Mesh optimization. Meshes completed by an advancing-front method are in
general good quality meshes. Nevertheless, due to the local aspect of the algo-
rithms, it may be useful to optimize the resulting meshes. In such a case, the
classical optimization procedures (cf. Chapter 18) are used.

Remark 3.9 The theoretical complexity of an advancing-front method is estab-
lished to be in O(nlog(n)), where n is the number of simplices in the final mesh.
In practice, efficient data structures are necessary to achieve this result, as pointed
out in [George,Seveno-1994], [Lohner-1996b].

Surface meshing. A two-dimensional implementation of the advancing-frout
technique can be adapted to create surface meshes, provided that the surfaces are
mapped onto a parametric space (logical space) or by using a direct approach. The
aim Is to obtain a nice approximation of the real surface by means of a piecewise
surface (the mesh) in such a way as to obtain sufficiently good regularity (for
instance a (¢! continuity).

In the first approach, the method uses the fundamental forms of the surface
and completes an anisotropic niesh in a planar domain, the parameter space. This
mesh 1s then mapped onto the physical space in such a way as to bound the gap
between the triangle edges and the surface. This is done thanks to the so-called
tangent plane metric or the metric of the maximal radii of curvature (cf. Chap-
ters 13 and 15) that make it possible to compute the lengths of the segments
in the parameter space using the geometry of the real surface (for instance, see

[George,Borouchaki-1997]).

Remark 3.10 (Variant) The same technique can be applied to the generation of
quadriateral or hexahedral elements. In two dimensions, it is then usually known
as the paving technique, [Blacker,Stephenson-1991], and in three dimensions, the
plastering technique, [Blacker, Meyers-1993].

3.3.3 Delaunay technique

The computational-geometry properties of the Delaunay triangulations have been
investigated for many years [Delaunay-1934]. Even before this date, in 1850,
Dirichlet proposed a method to decompose a domain into a set of convex polyhe-
dra [Dirichlet-1850]. However, the application of these approaches to mesh gener-
ation has only more recently been explored [Hermeline-1980], [Cendes et al. 1985],
[Cavendish ¢t al. 1985], [Baker-1986], (Weatherill-1985], [Mavriplis-1990]. The ear-
liest strategies used predetermined sets of points as the Delaunay construction
provides a suitable technique to connect these points, although it does not pro-
vide a mechanism to generate points. Moreover, the Delaunay triangulation of
a domain may not preserve boundary integrity'® which is a key requirement for
mesh generation procedures and thus, this point must receive a special atten-
tion. Most of the current procedures for point insertion are based either on

104 ¢., does not conform to a given boundary discretization.

A SURVEY OF MESH GENERATION METHODS 117

Bowyer-Watson's algorithm [Bowyer-1981], [Watson-1981] or Green-Sibson’s al-
gorithm [Green,Sibson-1978].

For a given set of points § = {Pi}, k = 1, N, a set of regions {Vi}!! assigned
to each of thesc points can be defined, such that any location within V; is closer
to P; than any other of the points :

Vi= PP =P <|P =P Vi #i}.

The regions are convex polyhedra, the Voronoi regions or cells. Joining all the
pairs P;P; sharing a common segment of a Voronoi region boundary results in a
triangulation of the convex hull of &, the so-called Delaunay triangulation. The
set of triangles (resp. tetrahedra) defining the Delaunay triangulation satisfies
the property that the open circumcircle (resp. circumsphere) associated with the
nodes of the element is empty (i€, does not contain any other point of §). This
condition is referred to as the in-circle (resp. in-sphere) criterion and is valid for
n-dimensional space.
Iu this approach, an initial mesh is constructed, for instance from a bounding
'2 enclosing the boundary discretization (list of edges and/or faces) of the
domain. All boundary points are inserted iteratively into the initial triangulation
of the bounding box, thus leading to a Delaunay triangulation with no internal
point. ‘T'he boundary connectivity constraint is not taken into account in this
construction scheme. Hence, it is necessary to ensure that the entities of the
boundary discretization are present in the resulting Delaunay triangulation and, if
necded, to retrieve the missing entities by modifying the triangulation. Local mesh
modifications are applied to remedy the situation and to finally obtain a mesh of
the bounding box of the domain conforming the given discretization. Then, the
exterior elements are removed (using a coloring scheme) and internal points can
be created and inserted in the current mesh. Finally, the resulting mesh can be
optimized.

bhox

General scheme. Provided with a size distribution function and a boundary
discretization of the domain under interest, the global procedure for the mesh
generation using a constrained Delaunay method can be outlined as follows :

Step 1. Initializations :

e input the boundary entities,

e construct an initial triangulation 7 of the bounding box of the domain.
Step 2. Insert all boundary points into 7g.
Step 3. Construct an empty mesh 7. (no interior points) starting from 73 :

¢ recover the missing boundary entities (boundary integrity),

""known as the Dirichlet tessellation or the Voronol cells.

12hlrroducinga bounding box is not strictly required, but is a source of simplification. Without
this trick, the discussion becomes more subtle and makes it necessary to include several situations
(rather than just one).

118 MESH GENERATION

o identify the connected components of the domain.

Step 4. Internal point creation and point insertion (i.e., enrich 7 so as to obtain

a mesh 7).
Step 5. Mesh optimization.

In the above scheme, some steps deserve a special attention as they are con-
nected to the robustness of the method and influence the quality of the resulting
meshes.

Delaunay kernel. Let 7; be the Delaunay triangulation of the convex hull of
the set of points S = {P;}, k = 1,4, where 7 = 1, N. The insertion of P = P;,; in
77; results in the triangulation 7;4+1. This can formally be written as

Tivr=Ti = Cp + Bp,

where Bp denotes the set of elements formed by joining P with the external edges
(resp. faces) of the set of elements Cp, whose circumcircle (resp. circumsphere)
contains P. This insertion procedure is known as the Delaunay kernel.

Boundary integrity. Boundary recovery is commonly performed before the
insertion of internal points, just after the insertion of boundary points. An al-
ternative approach recovers the boundary integrity in the final stage of the mesh
generation process, although it may result in a poor quality mesh, thus requiring
a final optimization stage [Mavriplis-1995].

One technique of recovering boundary integrity consists of inserting a number
of additional boundary points until the triangulation conforms to the boundary,
although the initial boundary discretization is obviously not preserved. An al-
ternative (and more elegant) approach consists of modifying the Delaunay trian-
gulation using local mesh modifications operators to conform the boundary (cf.
Chapter 18). This procedure matches exactly the specified boundary discretiza-
tion. In two dimensions, if a boundary edge is missing, but its two endpoints
belong to two adjacent triangles, an edge swap is used to recover the missing
edge. In three dimensions however, the implementation of the procedure is more
complex and more tedious. Moreover, additional points (the so-called Steiner
points) are often required to enable the boundary recovery procedure to be per-
formed [George et al. 1991a).

Field point creation. Various approaches have been investigated to create in-
ternal points. One strategy consists of inserting the new mesh points at the cir-
cumcenters of the elements [Holmes,Snyder-1988], [Weatherill,Hassan-1994]. This
technique results in meshes for which the (dihedral) angles are bounded. However,
the resulting meshes can be irregular and the mesh gradation is not well handled.
An alternative approach consists of driving the point creation by the boundary
point distribution.

A SURVEY OF MESH GENERATION METHODS 119

It is assumed that the point distribution on the surface matches the geomet-
ric (curvature) and finite element requirements. This distribution is then ex-
tended into the domain using an interpolation scheme. One way is to create the
points along the internal mesh edges, first in the empty mesh and then in the
current mesh, so as to conform to the desired element-size distribution function
[George et al. 1991b]. In this approach, the point creation is controlled by a back-
ground mesh (actually the empty mesh).

A third technique uses point sources considered as control functions with el-
liptic partial differential equations [Weatherill Hassan-1994]. Another technique
consists of using an advancing-front point-placement strategy to create the inter-
nal nodes. The front 1s then defined as the transition region between well-shaped
and badly-shaped elements [Rebay-1993], [Frey et al. 1998].

Once created, the internal points are then inserted randomly in the current
mesh using the Delaunay kernel procedure.

Figure 3.8: Delaunay mesh of a mechanical device. Boundary mesh with no inter-
nal point (left-hand side) and resulting mesh (right-hand side).

Robustness. In two dimensions, this technique is very robust and reliable 13. In
three dimensions however, the lack of a theoretical proof for the boundary recovery,
that can be translated in terms of computer procedures, greatly diminishes the
robustness of the method, which relies explicitly on heuristic techniques.

The Delaunay method results in a very efficient mesh generation technique.
Most of the operations can be achieved in constant time (provided adequate data
structures, cf. Chapter 2). The overall complexity (space and time requirements)
is O(nlog(n)). In practice, this method appears to be one of the most efficient
meshing techniques available today, as speeds in excess of 250,000 elements /
minute on current workstations have been reported by several authors.

131t is easily proven that the boundary integrity can always be recovered.

120 MEsH (GENERATION

3.3.4 Tentative comparison of the three classical methods

Without seeking to provide a classification, it could be of interest'? to observe
the meshes the three methods previously discussed (quadtree, advancing-front or
Delaunay) are likely to complete using the same description of a domain. This is
quite easy to do since all these methods assume the same input data, a boundary
mesh, and complete the same type of meshes (simplicial meshes).

Figure 3.9 displays different meshes of the same computational domain result-
ing from the quadtree, advancing-front and Delaunay type methods. Table 3.1
adds some statistics about the number of vertices np and the number of elements
ne, the shape quality of the mesh Qps and the quality value of the worst element
Quorst 10 these meshes (Chapters 1 and 18).

method np ne On | Quorst

quadtree 1,246 | 2,171 | 1.25 1.88
advancing-front | 2,557 | 4,795 | 1.1 1.61

Delaunay 2,782 | 5,528 | 1.16 1.82

Table 3.1: Statistics relative to the different meshes depicted in Figure 3.9.

Observing these examples indicates a non-negligible variation in size for the
meshes (the number of elements is in a ratio of 2 or more) while the mesh qualities
are about the same (close to 1 !). The CPU costs are all less than one second.
Thus, at least in two dimensions, all the methods produce rather similar meshes
(in terms of quality). Notice that the element sizes inside the domain are only
related to the boundary discretization provided as input data. The quadtree type
method, based on a gradation rule of type 2 : 1, results in larger elements inside
the domain (say, far away from the boundary) and thus produces fewer elements
than the two other methods. Advancing-front and Delaunay meshes are rather
similar in terms of size.

A more subjective view could produce some differences regarding the aesthetics
of the created meshes.

3.3.5 Other methods

Various other techniques have been developed for unstructured mesh generation,
although none of them seems to be widely used today. However, two classes of
techniques offer promising capabilities in specific fields of applications : hybrid

methods, which are useful for CFD (Computational Fluid Dynamics) computa-

tions, and partitioning methods, which can be used in parallel applications.

Hybrid methods. This approach combines features of structured meshes (in
general in the vicinity of the domain boundaries) and unstructured meshes (for
instance, [Weatherill-1988], [Kallinderis et al. 1995], [Khawaja et al. 1995], and

14 Moreover, such an idea is not really discussed in the literature and, in addition, implies that
several methods are available in the same place.

A SURVEY OF MESH GENERATION METHODS 121

Figure 3.9: Overview of the different mesh generation methods when applied in
a domain (used, for instance, for a C.F.D. problem). Quadtree type mesh (top),
advancing-front type mesh (middle) and Delaunay type mesh (bottom) including a
close-up view around the fuselage.

122 MEsH (GENERATION

[McMorris,Kallinderis-1997]). In hybrid prismatic/tetrahedral meshes, the initial
surface triangulation is the outer prismatic surface. In general, layers of prisms
are used to resolve boundary layers and wakes, while tetrahedral elements cover
the remaining part of the computational domain. A hybrid type mesh combining
elements of different orientations seems more flexible to accommodate the differ-
ent flow features. The most common technique employed for generating prismatic
elements is a marching method that starts from a surface and propagates towards
an outer boundary. The marching direction vectors are the normal at the sur-
face vertices and the marching distances along these vectors (7.e. the stretching
of the nodes along the direction) are dependent on the physics of the problem
(for instance related to the Reynolds number), [Garimella,Shephard-1998]. The
grid is built one layer at a time in an iterative process. The unstructured mesh
is generated using a classical unstructured mesh generation method (Delaunay,
advancing-front, octree, etc.).

The tedious part in developing this type of mesh generator lies in the man-
agement of the interfaces between the structured and unstructured meshes. For
instance if a Delaunay algorithm is used, the boundary integrity constraint may be
relaxed (or even omitted). A promising technique consists of using a buffer layer
for the transition from the prismatic to the tetrahedral elements (for instance,
pyramidal elements with quadrilateral bases can be introduced). An alternative
method consists in allowing the outer layer of prismatic elements to be broken
down during the boundary recovery stage.

Partitioning methods So far, this chapter has only dealt with unstructured
mesh generation methods that generate simplicial meshes. Quadrilateral meshes
may be desirable in some applications (structural mechanics for instance) where
they result in increased computational performance and numerical accuracy. In
this context, partitioning methods offer a way to design automated algorithms for
producing well-structured quadrilateral or hexahedral meshes.

Most of the first partitioning algorithms subdivided the domain recursively
until simple elements (i.e., patterns) or very simple transition meshes remained
[Cavendish-1974], [Schoofs et al. 1979]. This class of techniques is known as recur-
sive partitioning. Another approach consists of separating the mesh generation in
two phase : automatic subdivision of the domain into subregions and meshing of
the resulting subregions. The first stage is based on the identification of suitable
subdivisions and uses the medial axis (surface) of the domain or the Voronot di-
agram of its edges (faces) [Tam,Armstrong-1991], [Armstrong et al. 1995]. In the
second stage, an algebraic method (or a similar method) can be used to mesh the
various regions resulting from the partition.

Quadrilateral meshing. Two approaches (direct and indirect) may be adopted
to generate quadrilateral meshes for domains of arbitrary shape.
e Direct methods.

Among the direct methods, essentially two approaches have been investigated : a
domain decomposition technique followed by quadrilateral sub-domain filling by

A SURVEY OF MESH GENERATION METHODS 123

Figure 3.10: Partitioning method based on medial aris subdivision : skeleton of the
domain (left-hand side) and quadrilateral mesh of the domain (right-hand side).

means of an algebraic method [Armstrong et al. 1995], [Talbert,Parkinson-1991]
and the quadrilateral paving techniques [Blacker,Stephenson-1991]. The first ap-
proach is domain decomposition sensitive and relies on the quasi-convex nature
of the resulting sub-domains. The domain decomposition algorithms usually re-
quire local or global knowledge of the domain. In particular in this last case, the
skeleton fully defines and allows an accurate decomposition of the domain. The
second method consists in paving the domain from the boundary to the interior
and managing the front collisions. By its very nature, the performances of this
method are closely related to the boundary discretization.

When a constant isotropic metric field is specified, these two classes of methods
are likely to lead to the same results. In fact, in an advancing-front method, the
front shape tends toward the skeleton. On the other hand, if a generalized metric
map is specified, the second method is more likely to respect the field.

e Indirect methods.

Given a triangular mesh of the domain, the indirect approaches aim at combining
triangles to form quadrilaterals [Lo-1989], [Johnston at al. 1991], [Lee,Lo-1994],
[Zhu et al. 1991], [Rank et al. 1993, [Lewis et al. 1995] and lead to two related
merging processes. The triangle merging procedure is either driven by the quadri-
lateral quality [Borouchaki,Frey-1998] and may lead to mixed triangular - quadri-
lateral meshes, or starts from the boundary and moves to the interior of the do-
.rnain, ensuring an even number of vertices when two fronts collide and results
n pure quadrilateral meshes (if the boundary discretization has an even number
of vertices). This second method requires a topological classification of the front
collisions. '

The resulting quad meshes can be enhanced using a specific optimization proce-

dure capable of optimizing the shape or the size quality of the elements!® (cf. Chap-
ter 18).

®While bearing in mind that merging two good quality triangles does not necessarily lead to
a good quality quad.

124 MEsH (GENERATION

Figure 3.11: Triangular to quadrilateral conversion, indirect approach. Original
triangular mesh (left-hand side) and optimized quadrilateral mesh (right-hand side.

Mesh generation by local optimizations. In the context of moving (evolv-
ing) mesh methods (such as those encountered in forming calculations for in-
stance), it is often desirable to allow the mesh topology to change progressively
rather than to build a new mesh. The remeshing is required to avoid element
distortions due to large deformations and to adapt the mesh dynamically to the
new conditions [Coupez-1997].

An initial mesh of the domain can be optimized for any kind of criterion, for
instance one related to the volume of the elements. Starting from a very crude
mesh (for instance obtained by connecting a node to each face of the boundary of a
non-convex domain, thus leading to overlapping elements), the optimization stage
will attempt to minimize the sum of the absolute value of the element volume.
The improvement process tends to optimize an element shape quality function
(cf. Chapter 18), and internal nodes can be introduced to remove locked configu-
rations and to optimize the mesh.

3.4 Surface meshing

Surface meshes play an important role in numerical simulations using finite element
methods and the quality of the geometric approximation may affect the accuracy
of the numerical solutions. In this context, a surface mesh is usually intended
to be the boundary description of a domain used in a three-dimensional finite
element analysis. Therefore the surface mesh must conform to specific properties,
related for instance to the geometry of the surface it represents or to the behavior
of the physical phenomenon. The aim is to create an optimal piecewise planar
approximation of the original surface in which the maximal distance between the
original and the approximating surface does not exceed a given tolerance.

A SURVEY OF MESH GENERATION METHODS 125

Depending on the surface definition, three techniques have been investigated :
mesh generation via a parametric space (if a CAD modeling system has been
defined, for instance), mesh generation for implicitly defined surfaces (e.g. iso-
surfaces) and, if the sole data is a given surface discretization (i.e., a surface
triangulation), surface mesh optimization (which proves useful, for Instance, in
the study of large deformations in structural mechanics).

3.4.1 Parametric mesh generation

A regular surface parameterized by u, v can be defined using a function o as :

o :QCR? ———>EC]R3,(u,v)r—->0'(u}v), (3.3)

where © is a domain of R? and ¢ is a smooth enough function. The goal is to
achieve the final surface mesh via a triangulation in the parametric (logical) space.
The two-dimensional mesh generation is governed by a set of metrics related to the
intrinsic properties of the underlying surface. These metrics correspond to sizing or
directional specifications. The control induced in this way is then explicitly writ-
ten as a criterion about the lengths of the mesh edges, see [Dolenc,Makela-1990],
[Samareh-Abolhassani,Stewart-1994], among many others.

Figure 3.12: Parametric surface meshing, analytical example. The surface is de-
fined as : z(x y) = 2.5 01 YY) sin(2x) cos(2y) in the domain [—6,6] x [—6, 6]
of the Oxy plane. Left-hand side : constant-size surface mesh, right-hand side :
geometric surface mesh.

General scheme. Let be the domain in R2 corresponding to the parame-
terization of a surface ¥. The parameter space 1s supplied with a Riemaniann
Structure, used to govern the meshing process, which is constructed according to
the nature of the expected mesh (isotropic, anisotropic, specified sizes, uniform
Sizes, etc.). Actually, the metric of the first fundamental form of the surface!® is
mvolved, which is defined by interpolating the discrete metric map associated with
a given mesh of Q. The issue here is to mesh Q with unit length mesh edges (with

regard to the metric) and in such a way that the resulting elements are of good
quality.

1 -
Sand even that of its second fundamental form.

126 MEsH GENERATION

The domain meshing process consists of three stages. The two first concern the
parameter space and consist in meshing the boundary of and then in meshing
2 using this boundary mesh as input data. The final stage consists in mapping
this mesh onto the surface.

Meshing a surface boundary. The discretization of the curves defining the
surface boundary enables us to construct a geometric support using a well-suited
mathematical representation. This support is approximated by a polygonal seg-
ment whose constitutive segments are unit length segments. This polygonal seg-
ment is the sought mesh (Chapter 14) unless a map that is not necessarily of
compatible size must be adopted. This mesh is constructed using a mesh of the
boundaries of Q and, at completion, we have the boundary discretization ready.

Meshing the domain. To complete the surface mesh, we construct, using a
suitable method (Delaunay or advancing- front, in general), a mesh whose vertices
are the points of the boundary discretization together with a series of internal
points such that unit edges and good quality elements are obtained (with respect
to an appropriate metric). This construction is made in 2 using the discretization
of the sides of this region as previously created.

Mapping onto the surface. Mapping the mesh in Q onto surface ¥ is rather
easy, one just needs to apply function o. The vertex positions are the image by o
of the vertices in the parametric space. The connections are those of this planar
mesh.

Remark 3.11 This technique can be applied to surfaces defined using several
patches, each of which corresponds to a parametric space. In this case, the mesh-
ing procedure starts by meshing the interfaces between the patches so as to insure
mesh conformity. In this way, a patch-dependent mesh is obtained. Notice that
this constraint can be overpassed (Chapter 15).

3.4.2 Implicit surface triangulation

Recent years have witnessed increasing interest in the use of implicit functions for
defining geometric objects, for instance in the field of Computer-aided geomet-
ric design [Requicha-1980], [Ricci-1972], [Wyvill et al. 1986], [Pasko et al. 1995
or in applications where the domains involved are obtained using tridimensional
scanning and sensing devices (e.g. biomedical imaging systems). They are called
implicit because they represent subsets of R3 that are not specified explicitly by
their boundaries or parameterizations.

An implicit algebraic surface can be defined as the set of points (z,y, z) in R?
that conform to an equation such that :

f(z,y,2)=0. (3.4)

A geometric object is considered as a closed subset of R3 with the definition
f(x,y,2) > 0. The boundary of such an object is a so-called implicit surface. The

A SURVEY OF MESH GENERATION METHODS 127

defining function f may be defined or approached in different ways, depending on
the field of application.

Scheme of the method. There are relatively few papers'” on implicitly defined
surfaces (cf. [Ning,Bloomenthal-1993] for an overview).

The classical scheme as proposed by [Allgower,Schmidt-1985] and now well
recognized in most of the approaches is based on two operations :

o a sample of the function values at the vertices of a covering-up set of the
domain,

o the connection of these vertices in order to obtain a mesh.

The sampling step aims at creating a set of points belonging to the implicit surface.
This task is delicate as, in general, one has to solve non-linear equations. The aim
of the connection step is to construct a topology similar to that of the surface and,
in addition, such that a well-suited surface approximation is obtained (from the
geonietric point of view).

77
28,
L]
‘\! ==

7

\§§f

W\

%
17

T
i
72

2/

r
T
HH
)
5

.ﬂ

7]

o
—

Figure 3.13: Ezample of implicit surface meshing, the domain is defined as the ex-
trusion of a sphere from a cube using CSG primitives. Left : original triangulation
based on a regular grid partitioning, right : optimized geometric surface mesh.

Yarious approaches. A popular technique consists in sampling the basis func-
tion in the space and uses a numerical method to find the zeros of this function.
The mesh vertices will then correspond to the roots resulting from this algorithm.
In practice, a spatial decomposition of the domain is developed (for instance, using
an octree) and the function is approximated locally (in each cell) by a piecewise
surface. The global conformity of the mesh is insured by the cell subdivision rule
(using the same idea as in an octree type method, see above). The cell size may de-
pend on the local curvature or on some other explicitly defined parameters. There

17 B X B .
In comparison with the literature on parametric surfaces.

128 MEgsH GENERATION

are two classes of algorithms depending on the nature of the data. In the case
of discrete data, the implicit function is not exactly accessed since the sole values
available are those at the vertices of the covering-up. A linear interpolation can
then be used to compute the values of the function everywhere in the domain and
thus find the intersections between the function and the edges of the covering-up.

A simple numerical technique for constructing such a covering-up uses an oc-
tree [Bloomenthal-1988]. Lorensen and Cline [Lorensen,Cline-1987] introduced an
algorithm '® which is now commonly used for constructing a polygonal repre-
sentation of a constant density surface using voxels, and numerous algorithms to
guarantee topological correctness of the polygonization of isosurface have been
proposed since then. Also a Delaunay mesh of the convex hull of the points in
the sample can be used to construct this covering-up [Frey,Borouchaki-1996]. The
meshes obtained by any of these techniques are then optimized (for instance ac-
cording to size specifications) using classical mesh modifications operations (cf.
Chapter 19). This is due to the fact that no special attention is paid to the quality
of the triangles at the time they are constructed since the only concern is to suit
the surface.

3.4.3 Direct surface meshing

This approach consists of applying a classical meshing technique directly to the
body of the surface, without using any kind of mapping [Shephard,Georges-1991],
[Nakahashi,Sharov-1995], [Chan,Anatasiou-1997], [McMorris,Kallinderis-1997]. In
such approaches, the mesh element sizes and shapes are controlled by analyzing
the surface variations. At first, the curves representing the surface boundary
are discretized, then the surface mesh is created using any unstructured meshing
technique. The difference between the various approaches proposed lies in the
(iterative) algorithm used to find an optimal point location on the surface. An
optimization stage is usually required to improve globally the element shapes after
the generation of the initial surface mesh.

3.4.4 Surface remeshing

Although the surface meshing approaches described in the previous sections seem
appropriate, in many cases the domains are not defined in terms of analytical func-
tions but rather by means of a surface triangulation. Such applications include :
numerical simulations where the surface results from measurements, biomedical
engineering where the domain is provided by a sensing or scanning device, nu-
merical simulations that involve remeshing (e.g. forging problems, fluid-structure
interaction problems, etc.). In this context, we consider the tedious problem of
generating geometric finite element meshes given an arbitrary surface triangulation
representing the surface, possibly supplied with geometric specifications (ridges,
singular points, etc.) [Léhner-1996a], [Frey,Borouchaki-1998].

18the so-called Marching Cubes.

A SURVEY OF MESH GENERATION METHODS 129

kjkg;‘;b;‘*}‘
e N
Z—Z—7 %"«»:Aiﬁ-:_
777 USR]

Figure 3.14: Erample of direct surface meshing (octree-based method with
curvature-based refinement). Left-hand side : original triangulation (data cour-
tesy of Mac Neal-Schwendler Corp.), right-hand side : optimized surface mesh.

Problem statement. We are concerned with a case where the surface to be
meshed is defined through an initial triangulation enjoying some geometric prop-
erties'?. From this triangulation, a mathematical support (with a continuity G!
in general) is constructed which will be used to collect the required information
by a system of queries. The problem then involves constructing a new mesh, con-
forming to the given specifications, by means of successive modifications applied
to the initial triangulation. The required information are as follows :

o the placement of a point on the surface,

e the surface property collection at a local level (discontinuities, minimum
radius of curvature, main curvature radii, normals and tangents, etc.).

The remeshing procedure uses local modification operators that can be of a topo-
logical nature (to control the geometric approximation) or of a metric nature
(subdivision of edges that are too long, vertex removal, vertex relocation, etc.).

Control of the geometric approximation. The initial surface triangulation
1s optimized in accordance with the geometry to obtain a so-called geometric mesh
(regarding the geometric approximation of the surface) and also to the element
quality, in other words, a mesh which best fits the surface geometry. In such a
mesh, the maximal gap between an edge of the discretization et the real surface is
bounded (provided by a tolerance threshold value). Additional constraints about
the shape quality, to obtain a finite element mesh (regarding the element shape
and sizes) can be added.

Remark 3.12 The problem is to start from an initial surface triangulation which
contains a reasonably small number of elements and still represents an accurate
polyhedral approzimation of the surface. Usually, the given initial surface triangu-
lation needs to be geometrically simplified (with respect to a geometric tolerance),
prior to building the geometric support.

¥t a C.A.D. model is available, the surface is known using a series of queries to the modeler.

130 MEsH (GZENERATION

27177

Figure 3.15: Surface mesh optimization. Polyhedral biomedical iso-surface recon-
struction from volumetric data (public domain data, Naval Air Warfare Center
Weapons Division). Initial triangulation (left-hand side) and optimized surface
mesh for a tangent plane deviation lesser than 37 degrees (right-hand side).

Governed surface remeshing. The given triangulation initializes the current
mesh. In this mesh, we identify the singularities (corners, ridges, C°disconti-
nuities). A size map is constructed by evaluating in a discrete manner the intrinsic
properties of the surface (Chapter 19). The edges in the current mesh are then
analyzed one at a time so as to obtain unit mesh edges. This leads to :

e subdividing each edge judged too long (having a length greater than “one”)
into sub-edges of unit length (or a value close to one),

e removing any edge that is too short (provided the topological consistency is
preserved).

Point enrichment or removal are combined with edge swap (cf. Chapter 18) in
such a way as to enhance element quality. This process is repeated as long as one
edge is judged invalid (with respect to the given specification). At completion,
The surface mesh conforms to the intrinsic size map (i.e., the geometric map) or
to any other given map.

3.5 Mesh adaptation

Solution-adaptive meshing is a very promising technique that improves the nu-
merical accuracy of the solution at a lower computational cost. It relies on a more
efficient (optimal) point distribution (in terms of their number and their location),
and also on the shape of the element in the mesh (isotropic or anisotropic shape,
for instance). A new mesh is then constructed (using one of approaches discussed
in this chapter or by using a remeshing procedure), then the process is repeated,
the new mesh being assumed to better capture the physics of the problem in hand.
The successive iterations aim at optimizing this distribution based on an a poste-
riori error estimate. Starting from an initial mesh, an initial solution is computed.

A SURVEY OF MESH GENERATION METHODS 131

It is then analyzed by an error estimate and this analysis is written in terms of size
specifications used in turn to govern the mesh adaptation. The solution accuracy
is also strongly related to the interpolation step from the computational mesh (the
previous iterate) and the current mesh.

3.5.1 Mesh adaptation scheme

Despite several differences between the possible approaches that are suitable for
adaptive meshing, the following steps are usually representative of an adaptive
meshing strategy.

e Construction of an initial mesh 7;,

o Computation of the initial solution u; on 7;

¢ (A) Estimation of the local error in u;,

e (Re-)Construction of a mesh 7;; according to the estimated error values :

— construction of the control space CS; associated with Uj,

— construction of the governed mesh Ti+1 with respect to CS;,

°

Solution transfer on 7; 1,

Resumption of the solution procedure (return to (A) with i = 4 + 1).

Figure 3.16: Adaptively generated mesh for the computation of a supersonic flow
(Mach 3) over a Scramjet. Left-hand side : initial mesh (4,000 points), right-hand
sude : final mesh (90,000 points).

3.5.2 Mesh adaptation techniques

Adaptation methods can be broadly classified into three categories. The first
Category consists of a local or global modification of an initial mesh so as to adapt
1t to the computational requirements. The second category includes. the global
Mmethods that reconstruct the whole mesh at each iteration step. Finally, some
other methods combine these two approaches. The adaptation is first made at a
10§al level during a few iterations, then the mesh is entirely reconstructed prior to
being locally updated again.

132 MEsH GENERATION

In this classification, we can distinguish between r-methods, h-methods, p-
methods and the coupling of these last two resulting in hp-methods (cf. Chap-
ters 21 and 22).

Adaptive remeshing. The mesh on which a solution has been computed be-
comes the background mesh for the next iteration step. A discrete element-size
specification function is defined at the vertices of the background mesh, for in-
stance from a Hessian-based criterion or any type of error analysis method. A
new unstructured mesh is then generated by a classical mesh technique governed
by this new size map [Peraire et al. 1987], [Shephard et al. 1988], [Lohner-1989],
[Mavriplis-1990].

Mesh modifications. Local remeshing (refinement, coarsening) is an alterna-
tive (and sometimes less computationally expensive) approach to mesh adaptation,
based on mesh optimization techniques. The current mesh is modified in the re-
gions where the discrepancies between the current and the specified element size
are too large [Rivara-1984b], [Cendes,Shenton-1985a], [Rivara-1991]. Subdivision
refinement (h-refinement) can be used to produce nested meshes (i.e., containing a
subset of the initial mesh vertices), thus allowing an accurate transfer of variables
from one mesh to another (in multigrid approaches, [Désidéri-1998]).

3.6 Parallel unstructured meshing

The requirement to develop fast and reliable unstructured mesh generation algo-
rithms is common to several computational fields of application. Moreover, large
meshes (in excess of one million elements or even several million elements, for in-
stance in some CFD problems or wave propagation or crash problems) are now fre-
quently managed in these disciplines (for instance in computational fluid dynamics
simulations). In order to benefit from parallel architectures, the whole simulation
process (including mesh generation, numerical solving, adaptive remeshing and
visualization) need to be efficiently parallelized. Parallel computing is then a way
to solve very large size problems (irrespective of the cost).

The unstructured mesh generation techniques commonly used are intrinsically
scalar as they create one point or one element at a time. Parallelism can be
achieved if the points to be inserted are sufficiently far apart (the neighborhoods as-
sociated with these points are distinct). As pointed out by [Shostko,Lohner-1992],
distance is the enabling factor for parallelism. Moreover, parallel mesh generation
is a tedious task as it requires the ability to decompose the computational domain
into sub-regions that can be meshed separately on different processors. This is
referred to as the partitioning stage.

3.6.1 Parallelism and meshing processes

The strategy of parallel mesh generation can be divided into two categories :

A SURVEY OF MESH GENERATION METHODS 133

e the mesh generation method includes parallelism,

o the mesh generation process is parallel while based on a serial mesh genera-
tion method.

The first approach introduces parallelism at the mesh generation method level
while the second consists in using a given meshing method in parallel. This ap-
proach leads to meshing each sub-domain separately after the definition of the
various domain interfaces and after a mesh of these interfaces have been com-
pleted.

The second approach avoids the specific tests about the boundaries of the dif-
ferent meshes (in terms of conformity). On the other hand, meshing the interfaces
is relatively tedious [Shostko,Léhner-1992].

The mesh generation methods resulting in unstructured meshes as seen in this
chapter are basically scalar methods. Indeed, in general, they allow the creation
of one point or one element at a time. It is possible to include some degree of
parallelism if the points they try to insert are sufficiently far away (in other words,
when considering one point, there exists a certain neighborhood with no intersec-
tion with another one). Distance is then the key factor in meshing parallelism.
On the other hand, a solution method based on a domain decomposition tech-
nique requires the construction of the meshes of several sub-domains whose union
is a covering-up of the whole domain. Then, each sub-domain is dealt with in
one processor. One of the difficulties is therefore to transfer the data values as-
sociated with one sub-domain (and then belonging to one processor) to another
sub-domain (another processor). The efficiency of the method then depends on
the load balancing between the different processors (Chapter 23).

3.6.2 Domain decomposition

The aim of domain partitioning is to minimize the amount of inter-processor com-
n'lunication as well as to balance the computational load per processor. The parti-
Floning process can be subdivided into three classes depending on how the domain
1s split [deCougny-1997] :

* partitioning of an initial (coarse) mesh [Wu,Houstis-1996],

® partitioning of the domain (and not a boundary mesh) using a spatial de-
composition method [Saxena,Perucchio-1992]

b

® direct partitioning (also called pre-partitioning) of the mesh of the domain
boundaries (e.g. surface mesh in three dimensions) [Galtier,George-1996].

~ Once the partitioning has been completed, sub-domain meshing is performed
1 parallel with or without inter-processor communication.

4 posterioripartitioning. Provided with a mesh of the domain under interest,
all a posteriori partitioning method consists in splitting this mesh into several

