Тема 2. Методы анализа математических моделей

Лекция 7. Методы анализа смешанных моделей

1. Методы анализа смешанных моделей

Смешанные математические модели — модели, в которых используются одновременно различные описания изучаемых процессов или явлений.

Какие описания по их сути мы знаем:

- детерминистические и стохастические,
- сплошная среда и отдельные частицы,
- непрерывные и дискретные,
- классические и квантовые,
- изотропные и анизотропные,
- обратимые и необратимые,

и т.д

Также описания могут отличаться по форме представления:

- вербальные,
- числовые,
- функциональные,
- дифференциальные,
- интегральные,
- геометрические,
- топологические,
- автоматы,
- алгоритмы,

и т.д.

Пример. Модель транспортных потоков (МТП).

МТП может включать дискретные и непрерывные элементы.

- модель транспортного равновесия (вариационные неравенства);
- модель блуждающих частиц;
- гидродинамическая модель.

2. Методы компоновки смешанных моделей

2.1. Метод суперпозиции

В некоторых случаях каждый процесс или фактор можно рассматривать независимо от остальных и учесть его влияние на результат в виде прямого добавления в общую сумму.

Такая ситуация базируется на принципе суперпозиции полей.

2.2. Метод расщепления по физическим процессам

Здесь компоновка модели производится по принципу учета дополнительных факторов.

Расщепление используется как на уровне модели, так и на уровне численного алгоритма.

2.3. Метод многих масштабов

Здесь главным является разделение физических процессов по пространственным и временным масштабам.

3. Примеры смешанных моделей

3.1. Пример на основе метода суперпозиции

Система уравнений магнитной гидродинамики.

3.2. Пример на основе метода расщепления по физ. процессам

Газовая динамика с химическими реакциями.

3.3. Пример на основе метода многих масштабов

Двухмасштабное моделирование газодинамических процессов на основе методов механики сплошной среды и молекулярной динамики.